

Pergamon

Tetrahedron Letters, Vol. 35, No. 15, pp. 2321-2324, 1994 Elsevier Science Lad Printed in Great Britain 0040-4039/94 \$6.00+0.00

0040-4039(94)E0293-7

ATTEMPTED GENERATION AND STRUCTURE OF THE 4-(1,2,4-TRIAZOYL) CATION

Rudolph A. Abramovitch,* Harry H. Gibson, Jr.,* Terry Nguyen,* Santiago Olivella[†] and Albert Solé[†]

Department of Chemistry, Clemson University, Clemson, SC 29634-1905, USA

[#] Department of Chemistry, Austin College, Sherman, TX 75090-4440, USA

[†] Department de Química Organica i Química Física, Universitat de Barcelona, Marti i Franques 1, 08025 Barcelona, Catalunya, Spain

waru i Fianques I, 06025 barceiona, Catalunya, Spain

Abstract: 4-(and 1-) Amino-1,2,4-triazoles have been treated with nitrosonium tetrafluoroborate or with *iso* amyl nitrite and acetic acid in the presence of mesitylene. The main product is 1,2,4-triazole, together with a small amount of the 1- and trace amounts of the 4-mesityl derivatives. Ab initio calculations of the putative 4-(1,2,4-triazoyl) cation show the electronic ground state to be a closed shell singlet ${}^{1}A_{1}$ (4 π e) (3), with a low-lying ${}^{3}B_{1}$ triplet (4) only 1 kcal/mol above it; the σ -cation (1) is not a local minimum on the potential energy surface. Possible explanations of the results are proposed.

Nitrenium ions continue to receive significant attention.¹ There have been relatively few reports concerning the generation of nitrenium ions in which the nitrogen atom is part of a heterocyclic ring² and only a possible one³ when it is part of a heteroaromatic 5-membered ring. We conceived that if the 4-(1,2,4-triazolyl) cation (1) were formed it could undergo electronic reorganization to the 5π diradical cation (2), to the 4π cation (3) (antiaromatic if fully conjugated), to an isomeric 5π diradical cation (4) and to a σ -cation 5 isomeric with 1. Of course, singlet and triplet multiplicities would be possible.⁴

Treatment of 4-amino-1,2,4-triazole (6) with NO⁺BF4⁻ in acetonitrile gave only 1,2,4-triazole (7), no Ritter reaction-type products being detected. When the same reaction was carried out in the presence of mesitylene at room temperature triazole 7 was again isolated (77%); nitrogen and nitrous oxide (infrared) were evolved. In addition, 1-(2,4,6-trimethylphenyl)-1,2,4-triazole (8) (1%) was isolated,⁵ and a trace of 4-(2,4,6trimethylphenyl)-1,2,4-triazole (9) was detected by GC/MS and identified (authentic sample³). The same products, in approximately the same ratio, were observed when 6 was treated with *iso* anyl nitrite in the presence of acetic acid and excess mesitylene or when 1-amino-1,2,4-triazole (10) was treated as above with NO⁺BF4⁻.

Ab initio M.O. calculations⁶ predict the electronic ground state to be a triplet of B₁ symmetry with 5π electrons corresponding to diradical cation 4; S₀ corresponds to a 4π cation singlet of A₁ symmetry (3). The 6π electron singlet state corresponding to the σ -cation 1 lies high in energy above the ground state. The optimum C_{2v} structure calculated for 1 shows one negative vibrational frequency of b₂ symmetry, indicating that this is not a local minimum on the corresponding potential energy surface. The CASSCF/6-31G(d) optimized geometries are shown below along with calculated total atomic charges. The equilibrium bond lengths N₁-C₅ and N₂-C₃ in the ³B₁ and ¹A₁ states are somewhat long compared with 1,2,4-triazole,⁸ while the N₁-N₂ bonds are remarkably short. Two separate (non-conjugated) moieties in 4a and 3a, account for this. Fully conjugated antiaromatic 3 is thus avoided in 3a. At the CASSF/6-31G(d) level, the ³B₁-¹A₁ energy separation is 4.6 kcal/mol. If configuration interaction of all single and double excitations (CISD) with the 6-31G(d) basis set (CASSCF/6-31G(d)-optimized geometries, GAMESS program) are included, the singlet energy then falls 2 kcal/mol *below* the triplet. When zero-point vibrational energy corrections are added, the final singlet-triplet separation is 1.16 kcal/mol in favor of 3a, a very small difference indeed.

The experimental results agree with the computations: to the extent that dissociation of an intermediate 1,2,4-triazoyl-4-diazonium ion occurs, the species eventually formed is the singlet cation 3a which is easily converted to the diradical cation 4a. The latter can abstract two hydrogen atoms (from solvent) to give 1,2,4-triazolium tetrafluoroborate (2 steps) which gives 7 on isolation. An alternate (and simpler) explanation envisions the formation of a hydroxyazo intermediate⁹ or a labile <u>N</u>-nitrosamine¹⁰ (rather than a diazonium ion) followed by loss of N₂O (observed).⁹

That the same ratios of small amounts of 8 and 9 from either 1- or 4-amino-1,2,4-triazole are formed suggests a common intermediate -- 3a or 4a. Were mesitylene reacting directly with the two diazonium salts from 6 or 10 via $S_N 2'$ processes, different ratios of 8 to 9 might be expected. The formation of a small amount of a π -type complex between the highly electron-attracting triazolediazonium salt and the electron-rich mesitylene, followed by dissociation and migration of the arene to nitrogen within the complex could be an alternate explanation.

Acknowledgments. Grants from the National Science Foundation (CHE-9015972) (RAA) and The Robert A. Welch Foundation (HHG) are gratefully acknowledged. We thank Reilly Tar & Chemical Corporation for the gift of 4-amino-1,2,4-triazole, and Spanish DGICYT (PB89-0256) for a grant to purchase a Hewlett-Packard Apollo 735 workstation.

REFERENCES AND NOTES

 (a) Simonova, T. P.; Nefedov, V. D.; Toropova, M. A.; Kirillov, N. F. Russian Chem. Rev. 1992, 61, 584; (b) Abramovitch, R. A.; Jeyarman, R. In Azides and Nitrenes: Reactivity and Utility, Scriven, E. F. V. Ed.; Academic. London, 1984, Chapter 6.

- Gassman, P. G.; Campbell, G. A. J. Chem. Soc., Chem. Commun. 1971, 1437. Gassman, P. G.; Cryberg, R. L. J. Am. Chem. Soc. 1969, 91, 2047; Gassman, P. G.; Shudo, K. J. Am. Chem. Soc. 1971, 93, 5899. See, however, refs 1a, 5, 6. Furstoss, R.; Tadayoni, R; Waegell, B. Nouv. J. Chim. 1977, 1, 167. Ford, G. P.; Herman, P. S. J. Am. Chem. Soc. 1989, 111, 3987. Edwards, O.E.; Vocelle, D.; ApSimon, J.W. Can. J. Chem. 1972, 50, 1167. Padwa, A.; Blacklock, T. J.; Carlsen, P. H. J.; Pulwer, M. J. Org. Chem. 1979, 44, 3281; J. Ciabattoni, J.; Cabell, Jr., M. J. Am. Chem. Soc. 1971, 93, 1482. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396. Hiyama, T; Koide, H.; Nozaki, H. Tetrahedron Lett. 1973, 2143. Cann, M.C. J. Org. Chem. 1988, 53, 1112.
- 3. Abramovitch, R. A.; Beckert, J. B.; Pennington, W. T. J. Chem. Soc., Perkin Trans. 1 1991, 1761.
- 4. (a) Li, Y.; Abramovitch, R. A.; Houk, K. N. J. Org. Chem. 1989, 54, 2911; (b) Ford, G.P.; Herman, P. S. J. Chem. Soc., Perkin Trans. 2 1991, 616; (c) Smith, D. A.; Bitar, J. J. Org. Chem. 1993, 58, 6.
- Identified by comparison with an authentic sample synthesized from 2,4,6-trimethylphenylhydrazine hydrochloride and s-triazine according to the general method of Grundmann, C.; Ratz, R. J. Org. Chem. 1956, 21, 1037.
- 6. Carried out at the spin-unrestricted Hartree-Fock (UHF), second-order spin-unrestricted Moller-Plesset (UMP2), and multiconfiguration self-consistent field (MCSCF) of the "complete active space" class (CASSCF) levels of theory with the 6-31 G(d) basis set, using the GAUSSIAN 92 (UHF and UMP2 calculations) and GAMESS⁷ (CASSCF calculations) systems of programs. The CASSCF calculations adopted an eight-orbital ten-electron valence space. The valence orbitals included the five π MOs of triazolyl ring and the three σ-type orbitals associated with the in-plane nonbonding lone pairs of the nitrogen atoms. Minima at the UHF, MP2 and CASSCF levels were confirmed by calculation and analysis of the harmonic vibrational frequencies for negative values.
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. GAMESS QCPE Bull. 1990, 10, 52.
- Calculations at the HF/6-31G(d) level [Olivella, S.; Solé, A. unpublished results (1993)]: N₁-N₂ = 1.385 Å, N₂-C₃ = 1.32 Å, C₃-N₄ = 1.363 Å.
- Kreher, R.; Bergmann, V. Z. Naturforsch., Anorg. Chem., Org. Chem. 1982, 37b, 881. DeRosa, M.; Haberfield, P. J. Org. Chem. 1981, 46, 2639, and references cited therein.
- 10. Kuzmenko, V. V.; Pozharskii, A. F. Adv. Heterocycl. Chem. 1992, 53, 85.

(Received in USA 9 December 1993; revised 26 January 1994; accepted 4 February 1994)