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On the Kinetics of Complex Reactions* 

N. SEMENOFF 

Institute of Chemical Physics, Leningrad, U.S.S.R. 

(Received May 31, 1939) 

Chemical kinetics is the chemistry of intermediate compounds. These intermediates can be 
studied directly only with great difficulty but they can be investigated through kinetic measure­
ments themselves. For example during the induction period in the oxidation of hydrogen 
sulfide the "active centers" are withdrawn from the reaction vessel passed through a connecting 
vessel and introduced into a chamber in which the new reaction is just starting. The "active 
centers," responsible for shortening the induction period, are stable for several hours at room 
temperature. The formula previously given for a chain reaction proceeding from a single 
active center is extended here to include reactions with any number of active centers. Complex 
reactions of various types are treated mathematically and experimental curves are given. 
Among the types of complex reactions considered are those which involve the mutual inhibiting 
or promoting action of chains with quadratic rupture. 

§ 1. PRESENT PROBLEMS IN CHEMICAL KINETICS 

I N the early twenties of this century chemical 
kinetics began to develop at a quite astonish­

ing rate. During this period was developed the 
theory of chain reactions which plays such an 
important part in the study of compl~x reactions, 
as well as the theory of the activated complex 
which has so satisfactorily solved the problem of 
the kinetic analysis of the simpler reactions and 
of the elementary stages of the more complex 
r:eactions. However, in the course of the last 
two or three years, the development of chemical 
kinetics has slowed down partly because the 
workers in this field shrink from the immense 
difficulties in the way of its further development. 

Chemical kinetics should not be treated as a 
branch of physical chemistry. Chemical kinet­
ics represents an entirely new domain of science 
equal in scope to the domains embraced by in­
organic, organic and physical chemistry taken 
together. It differs essentially from chemistry in 
that it deals, not with the properties of stable 
compounds and their structure, but with the 
chemical process itself, however, complex it may 
be. Its relation to chemistry is more or less the 
same as that of physiology to anatomy. 

Every chemical process comprises a number of 
stages, proceeding byvarious unstable compounds 
which heretofore have been left out of account 
by chemistry because of their lack of stability. 

* This article was communicated to the symposium on 
"The Kinetics of Homogeneous Gas Reactions," but was 
not available in time for publication in the preprints. See 
page 633. 

Chemical kinetics might rightly be called the 
chemistry of intermediate compounds. One of the 
most important and most difficult problems of 
chemical kinetics consists in the development 
of simple and reliable methods of analyzing these 
intermediate compounds in their different stages 
of reaction. It is the lack of stability and the 
extreme difficulties inherent in the existing 
methods which are responsible for the slowing 
down of the progress of chemical kinetics. 

The study of the intermediate compounds con­
sists mainly in taking samples of the reacting 
mixtures, cooling them rapidly and then pro­
ceeding to their chemical analysis. Many diffi­
culties arise: (1) A great number of the inter­
mediate compounds lack stability at room tem­
perature and cannot be kept for the time required 
for analysis. (2) The microanalytical methods 
are rather cumbersome and not sufficiently re­
liable especially in the case of complex mixtures. 
(3) In the analysis, all the compounds have to be 
determined, including the side-products, and we 
have no criterion for choosing those substances 
which are responsible for the course of the re­
actio·n. 

The analysis of intermediates has not been 
used extensively enough, and new improvements 
should be developed. Attention might be drawn, 
in this respect, to some attempts at making use 
of the polarographic method of Heyrovsky.l I 
wish to give here (Table I) one of the polarograms 

1 I. J. Heyrovsky, Theory and Practice of the Polaro­
graphic Method. 
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684 N. SEMENOFF 

TABLE I. 

C,H.;OOH CH,O C,HeO 
--------------- -----------~--
The mixture contained 
The polarogram yields 

0.00264% 0.D318% 0.00715% 
0.00264% 0.0292% 0.00697% 

obtained at our Institute by Stern and Pollak2 

(Fig. 1). 
Professor Sokolik of our Institute and his co­

workers are now adapting the method to the 
analysis of the intermediate products formed 
during the pre-flame period which are responsible 
for inflammation and detonation in bombs, tubes 
and internal-combustion engines. 

With the aid of the abov~ method Professors 
Neumann and Dobrinskaja3 have investigated 
the increase in the amount of peroxides and alde­
hydes during the induction period preceding the 
formation of a cold flame in mixtures of butane 
and oxygen. The results obtained at a tempera­
ture of 310°C and a pressure of 333 mm Hg are 
given in Fig. 2. Curve 1 shows the variation of 
the pressure in the mixture with the time, the 
moment of the formation of the cold flame being 
marked by an arrow. A special highly-sensitive 
membrane manometer did not show any varia­
tion of pressure during 32 seconds; however, the 
polarographic analysis of samples of the gas 
showed a continuous increase in the amount of 
aldehydes (curve 2) and of peroxides (curve 3, 
drawn on a scale 10 times as great as that of 
curve 2). Plotting the logarithm of the aldehyde 
concentration, a linear increase with the time is 
obtained (curve 4). This means that, in accord 
with the theory, the amount of aldehydes in­
creases as e<l>t. The polarographic method can 
thus be applied when the partial pressure of the 
aldehyde or the peroxide in the mixture is less 
than 0.1 mm or 0.01 mm Hg, respectively. 

Among the physical methods of analysis we 
might mention that based on the study of ab­
sorption spectra. Quite recently Professor Kon­
dratiew of our I nstitute was able to detect by 
this method the presence of CS radicals in the 
cold flame of carbon disulphide. For the study 
of the extremely unstable products of the type 
of radicals one might recommend the method of 

2 Stern and Pol\ak, Acta Physicochim. 7, 567 (1937). 
3 A. A. Dobrinskaja and M. B. Neumann, Acta Physi­

cochim. 10, 297 (1939). The electrolyte was 1/20 N Lict. 

"line spectra" emitted by the products examined, 
which has been proposed and developed by 
Kondratiew, and successfully applied by Kon­
dratiew and Avramenko to the analysis of OH 
in a "cold" hydrogen flame. 

However, for different reasons, the absorption 
method can be applied only in a limited number 
of cases. Still more limited in its application is 
the investigation of complex reactions by means 
of the heavy hydrogen and oxygen isotopes or 
the artificial radioactive isotopes, though these 
methods sometimes lead to quite new and im­
portant results. Thus Professor Roginsky, of our 
Institute, and co-workers have found with the 
aid of radioactive indicators that the mono­
solvate exchange proceeds in many cases very 
slowly. They also investigated the kinetics of 
this process. Professor Roginsky was also able, 
by using the same method, to throw more light 
on the mechanism of the catalysis by aluminium 
bromide. 

The mass-spectrograph method appears also 
to be suitable for the analysis of the intermediate 
products. However, our attempts in this respect 
have proved a failure. Neither the physical nor 
the chemical methods are thus seen to yield 
simple and reliable means for the analysis of the 
intermediate products, though in many cases 
they prove quite helpful and should be developed. 

I believe, however, that in general the more 
universal methods should not be borrowed from 
other branches of science, but should be based 
on the principles of chemical kinetics itself. To 
illustrate the possibility of such methods, I wish 
to describe here the results of a few experi­
ments which have been recently undertaken by 
Emanuel and myself. 

In the initial stages of any self-accelerating 
reaction the amount of the substance having 
undergone reaction varies with the time accord-

J 
I ~ 

CHZI 
C3H60 

V 

l / 
V 

CzHC /' t-V 
-I v 0.2 1.0 1.4 1.8 0.5 2.2 

FIG. 1. 
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FIG. 2. 

ing to the law 

x=A(e1>t-l) ""'-Ae1>t. 

The amount of x can be detected with the aid 
of an apparatus of a given sensitivity only after 
a time-interval 71 (called "inducti~n period") 
when it has already attained a definite value Xo. 

I t follows from the theory that the addition of 
an active product will result in a decrease of 
this induction period, and it is on this fact that 
our method has been based. 

A mixture of H 2S and O2 was kept in the vessel 
1 (Fig. 3) during a time-interval tl (less than the 
period of induction 71 corresponding to the given 
temperature and pressure) and was then trans­
ferred to the vessel 2 maintained at the same 
temperature. In the vessel 2 the period of in­
duction 72 decreases in comparison with its 
normal value 72°. The experimental relationship 
between 11 and 72 is shown in Fig. 4. Midway 
between the vessels 1 and 2 the glass vessel R 
was placed, kept at room temperature. The 
mixture, before being admitted to the vessel 2, 
remained for a certain definite time () in the 
vessel R. In our experiments, tl was constant 
and equal to 71 (the total induction period). The 
experimental relationship between () and 72 is 
shown in Fig. 5. The active centers are seen to 
be extremely stable at room temperature and to 
live for several hours. 

The relationship between 72 and the relative 
concentration C of the active centers can now 
be established by diluting the mixture in R 
which contains a definite number of active cen-

ters, with a fresh supply of the mixture, this 
relationship is shown in Fig. 6. With the aid of 
the above curve which presents a calibration 
curve of the given analyzer, we are able to 
eliminate 72 from the curves 4 and 5, and thus 
answer the following questions: (1) How the 
relative concentration of the active centers in 
vessel 1 increases with the time. (2) How the 
active centers are destroyed in vessel R at room 
temperature. 

The corresponding curves are shown in Fig. 7 
and Fig. 8. If log C is plotted instead of the con­
centration C, fairly straight lines are obtained . 
This means that (1) in accord with the theory, 
the accumulation of the active products during 
the induction period obeys the law e1>t, and (2) 
that the destruction of the active products at 
room temperature follows a monomolecular law 
proceeding in a homogeneous way as established 
by varying the ratio of surface to volume for 
vessel R. The above purely kinetic method of 
analysis, together with chemical and physical 
methods, will enable us, we hope, to fully in­
vestigate the nature of the active products, and 
not only to find the mass of the product by 
using, for instance, the diffusion through a small 
aperture in the membrane, but also to determine 
its chemical composition and structure by study­
ing its interaction with various reactants in 
vessel R. Irrespective of the relative value of the 
method proposed, the possibility of developing 
new purely kinetical methods for the analysis of 
the intermediate products is not to be doubted. 

FIG. 3. 
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686 N. SEMENOFF 

The development of reliable methods for the 
analysis of the intermediate products forms thus 
one of the main problems of chemical kinetics 
awaiting solution. But it is not alone the lack of 
suitable methods which impedes the progress of 
chemical kinetics. The classification· of the chem­
ical reactions according to their formal over-all 

80 I--~+---+-----i 

o 10 20 30 

FIG. 4. 

kinetics remains one of the main problems of this 
branch of science, and very little has been done 
in this respect during the last three years. 

'As before, research is restricted to a few simple 
reactions, such as H2+Cb, H2+02, CH 4+OZ 

etc., and yet we have no definite knowledge of 
their kinetics and much less of the mechanism 
of the reaction. Very often contradictory results 
are reported by the different authors, and a gen­
eralization of the whole experimental and the­
oretical data available for any of the above 
mentioned reactions is still lacking. If this state 
of things persists, it will be long before chemical 
kinetics obtains the necessary solid foundations 
for its further development. 

I t must also be noted that the number of re­
actions investigated does not widen. It would be 
timely to proceed to the kinetic investigation of 
other types of reactions, but we are immediately 
confronted with several essential difficulties. 
Thus, for any reaction other than the oxidation 
processes there have never been observed in­
flammation limits having the character of chains. 
at least as far as the upper limit is concerned. 
It would be hard to believe that the phenomenon 
is restricted only to oxidation processes. Recently 
Appin, of our Institute, found characteristics of 
.the upper limit in the inflammation of nitrogen 

TEMPERATURE 

°C 

20 
40 
60 

TABLE 11.* 

p, 
MM He 

40 
70 

115 

* The saturated vapor pressure of NCh at 20°C is 150 mm Ilg. 

chloride vapor. Above a definite pressure P2, the 
vapor did not decompose, appreciably, for many 
days over a range of temperatures from 0 to 50°; 
but at pressures below P2, self-inflammation was 
observed. The lower limit was either entirely 
absent or else it lay below 0.01 mm, since even 
at this pressure the inflammation of the NCb 
vapor was quite distinct. Table II gives the 
values of the upper limit P2 for different tem­
peratures. 

Upon the addition of air, the upper limit de­
creased gradually and, upon a definite dilution, 
the NCls vapor became practically uninflam­
mabIe. This appears to indicate that the chain­
like inflammation is not limited to oxidation 
processes alone. 

I would like to point out still another circum­
stance. Some of the workers apparently lack a 
dear understanding of the fundamental state­
ments of the theory of chain reactions and of 
the deductions to which it leads. This is some­
times felt when the general jaws which, in my 
book, have been deduced for the case of one 
single active center are applied to reactions pro­
ceeding with a greater number of active centers 
and also in cases where the rupture and branch­
ing are connected with the mutual action of the 
intermediate products. These two problems were 

120r----,-----,-------,--~ 

"" ~ 
/i>'" 

~rT--~---~--~~+-----~ 

8 hours 
o 2 6 8 

FIG. 5. 
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KI~ETICS OF COMPLEX REACTIONS 687 

not sufficiently elucidated in my book. During 
the last few years I have developed a complete 
theory of complex reactions taking into account 
the disappearance of the initial products by 
combustion and the self-catalysis by the final 
products. It should be timely to discuss these 
problems at the present symposium. Space limi­
tations compel me to restrict myself to the exam­
ination of the problems concerning the analysis 

o 0,8 f,O 

FIG. 6. 

of the initial stages of the reaction, leaving aside 
the more complicated problem of accounting for 
the disappearance of the initial products by 
combustion and the self-catalysis by the final 
products. 

§2. COMPLEX REACTIONS LINEAR WITH RESPECT 

TO THE CONCENTRATION OF THE 

INITIAL PRODUCTS 

If m different intermediate products partici­
pate in the reaction, their respective concentra­
tions ni will be determined by a system of m 

differential equations of the type 

dn;jdt= no(i) +CliKlnl+C2iK2n2+ .,. 

+CiKini+'" +CmXmnm, (I) 

where no(i) is the rate at which the centers ni are 
generated spontaneously, at least in one of the 
above m equations. The term no(i) differs from 
zero. The values of the coefficients C;j are either 
zero or positive, their order of magnitude being 
close to 1 or to 2, at the utmost. The values of 
the coefficients C i are also positive and always 
exceed 1. 

The above system possesses stationary solu­
tions, proportional to the number nio of the 

f.Or-----.---r----!<·~-----, 

~8H-----~-----+----~~----~ 

. o.~ r-----+-------:IE--7"--+----i 

o ltD 

FIG. 7. 

centers generated (if one kind of centers is 
generated), if the determinant D of the homo­
geneous system satisfies the inequality 

(-l)m+lD <0. (1 ) 

For (_1)m+lD >0, non stationary solutions are 
obtained and the concentrations ni increase with 
the time. The solution of the characteristic equa­
tion D(A) = 0 yields m roots, out of which (m -1) 
roots are represented either by negative values 
or by complex quantities with negative real 
parts. The remaining root A = 4> which, as a rule, 
is the smallest as regards its absolute value, is 
either negative, if (-l)m+lD <0, or positive, if 
(-l)m+lD >0. 

This means that for not too small values of t 
the concentrations of the centers are proportional 
to e4>t and therefore to each other. If nio are the 
particular solutions of the system (putting 
dnjdt=O), we may expect that to a sufficient 
degree of precision 

(3) 

If (-l)m+lD <0, then it may be expected that 

(4) 

though with a lesser degree of precision (owing 

tOX-----.-------,,------. 

0.2 1-t------1--~j..~H---___4 

--- Bhours 

o 2 6 

FIG. 8. 
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688 N. SEMENOFF 

to the smaller absolute value of the root A = 1». 
If (-l)mHD <0, the values of n,o determine 
those concentrations of the intermediate products 
which will be established with the time, i.e., the 
stationary concentrations. The values of nio are 
all inversely proportional to 1 D I. The reaction 
rate which presents a definite linear combination 
of the values C iK;n; is also inversely proportional 
to 1 D I. If certain conditions are satisfied con­
cerning the order of magnitude of the different 
K;, then the value of the smallest root 1> will 
also be approximately porportional to D. 

The determinant (-l)m+lD can always be 
represented in the form of some quantity propor­
tional to the difference 0-(3 (the probability of 
branching minus that of rupture). Thus the 
stationary reaction rate w = Cno/ ((3 - 0). The 
nonstationary reaction rate as a function of the 
time is 

no 
w=--(e</>t-l). 

0-(3 
(5) 

In many cases presenting some interest from a 
practical point of view, 1>C(O-(3)/T, where T is 
the time during which the slowest link develops, 
C being a positive integer. 

For any complex reaction, the condition for 
the transition from a stationary to a nonstation­
ary regime reads 0-13=0. In a number of cases 
(but not all) 0 and 13 are simple functions of the 
temperature. 

Thus it can be said that all the expressions 
obtained earlier4 for the simplest case of a chain 
reaction proceeding with the aid of one single 
active center will also hold more or less accurately 
in the case of reactions with any arbitrary 
number of active centers. 

Example 1 
Afonocyclic system with three centers.-

dnddt=no- (Kl +Kt')nl 
+LK3n3=no-A lK1n l+LK3n 3, 

dn2/dt=K1nl- (K2+K2')n2=Klnl-A2K2n~, 

dn3/dt=K2n2- (K3+K3')n3 =K2n2-A 3K 3n3. 
(II) 

Here KI'nl, K 2'n2, K 3'n3 are the rates at which 
the chains are broken. 

4 N. Semen off, Chemical Kinetics and Chain Reactions 
(Oxford University Press, 1935), Part. 1. 

The value of L can be equal either to zero 
(complex reaction without chains), or to 1 
(simple chain reaction), or to 2 (branching chain). 
AI, A 2, A3 are always greater than 1. 

where 
-A o L 

,1= 1 -A2 0 =L-AIA2A3. (6) 
o 1 -A3 

For D <0, the stationary solutions are 

no AIA2A3 
njo=-----__ ; 

AIKI A 1A 2A 3-L 

no AIA2A3 
(7) 

n2o= -----, etc., 
AIA2K2 AIA~3-L 

the nonstationary solutions, for D > 0, being 

no AIA~3 
nl=-------e<l>t, 

AIKI L-AIA~3 
(8) 

the reaction rate being 

w=A IK1nl +A2K2n2+A3K3n3. 

1/A1=al is the probability that the chain will 
continue at the first link, 1/A 2=a2 the prob­
ability that it will continue at the second, 
1/A 3=a3, at the third link, while 1/AIA2A3 
= ala2a3 = a is the probability that the chain 
will b~e continued after a complete cycle. If L = 1, 
then (A lA~3-1)/ A lA2A3= l-a=(3 is the prob­
ability of a rupture after a complete cycle. Hence 
w ~no/ (3. Since ,1 is always < 1, any nonstation­
ary solutions are excluded. 

For L=2, (AIA~3-2)/AIA2A3=(3-a, and 
since in the case of a continuously branching 
chain a=o, the quantity (3-a will be equal to 
(3 -0. In this case nonstationary solutions are 
also possible, considering that L - AlA 2A 3 can 
be >0. 

It is easily seen that, if A 1K 1«A 2K 2 and 
«A 3K 3 , then 

AIKl(2-AIA~3) 0-(3 
1>=--------=--, 

AIA2A3 T 
(9) 

where T=l/AIK I, is the time during which the 
slowest link develops, being approximately the 
time during which the complete cycle develops, 
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KINETICS OF COMPLEX REACTIONS 689 

noT 
ni = __ (e(O~~/T)t_1). 

b-{3 

It must be noted that this approximate solu­
tion corresponds to that which is obtained in 
system I when putting dn2/dt=dna/dt=0. This 
approximate method of solution will be satis­
factory if A IK I«A 2K 2 and AaKa. 

The general aspect of the determinant of this 
or another complex reaction shows at once the 
most convenient form of diagram by which to 
illustrate the system. The above scheme is best 
represented as in Fig. 9, the diagram being self­
explanatory. 

Example 2 

Bicyclic system with three centers.-A number of 
schemes of this type are shown in Figs. 10, 11 
and 12, all three leading to similar results from 
a kinetical point of view. 

Let us examine the scheme 10, Its equations 
are: 

dnI/dt=no-A IKInl +K2n2+Kana, 

dn2/dt=KInl-A2K2n2, 

dna/dt =K2n2 - A aKana. 

The determinant 

where 

1 
o 

-Aa 

(III) 

(10) 

Let us denote by DI the minor of the de­
terminant D. Then D 1=KIK 2Aj; AI=A 1A 2 -1. 
This minor corresponds to the determinant of 
the chain reaction of the first cycle alone of the 
given bicyclic system (10). The precise solution 
of the above system of equations yields the 
following rule for obtaining an approximate ex­
pression for the value of c/> in the expressions 
ni= niO(eoJ>t-1) determining the variation of the 
concentration ni with the time in the case of a 
nonstationaFY regime (D >0). 

(a) If A 2K 2»A IK I and A3Ka, and 

(11) 

then we may put dnI/d!=dn2/dt=O in solving 
the system (lII). At the same time 

c/>=KaA/AI. 

(b) If A2K2>AIKI and AaKa and 

D/ A 2K2(A aKa)2«j, 

(12) 

(13) 

then in solving the system (III) we may put 
dn2/dt=dna/dt=O. At the same time 

(14) 

For D <0, the stationary solutions are: 

no AIA2Aa 
n30=-- ,etc. (lS) 

AIA2A3K3 A3(AIA2-1)-1 

If the first cycle of the bicyclic system be 
looked upon as the fundamental chain, then 
1-1/A IA 2 ={3 is the probability of rupture. The 
probability of the continuation of the second 
cycle a= 1/AIA2Aa will at the same time repre­
sent the probability of branching with respect to 
the fundamental chain. Hence 

1 

The stationary reaction rate w = C(no/ (3 - b) 
where C is of the order of 1. 

In the case of a nonstationary reaction 

no 
w= C--(eoJ>t-l). 

b-{3 

If the fundamental chain is sufficiently long 
and the branchings few, then K1'«KI, K 2'«K2, 

Ka«Ka'. Hence 

1 K3 1 K I ' K 2' 

b=---~- and 
AIA~a K 3' 

{3=1---~-+-. 
AIA2 Kl K2 

Since all the values K are temperature functions 
of the type e~E/RT, it follows that one of the ratios 
KI'/K1 and K 2'/K2 will be considerably greater 
than the other. Thus in the case of long chains 
with few branches (3 and b are simple temperature 
functions of the type e~EIRT. 

The value of c/> in expression (11) is equal to 

KaA AaKa(b-{3) b')'-l 
c/>=--=---- (16) 

Al f;l (j 
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where,), is the length of the fundamental chain, 
and 8, the time required for the branching, is 
great in comparison with the time required for 
the development of the fundamental chain, since 
the condition (11) will be satisfied only if 

DA 2K2/ DI2 = KallA d K ILl I2«1. 

Thus we are dealing with a case of "degenerate 
branching," as it has been called in my book. 

FIG. 9. FIG. 10. FIG. 11. FIG. 12. 

It can be easily seen that expression (16) is 
identical with that given in my book. 

I n case (b) according to (14) 

KIll AIK1Ll 0-{3 
cp=--= =--, 

A2Aa AIA2Aa '[ 

where '[ is the time required for the development 
of the first cycle (since 1/A IK I»1/A 2K 2). Thus 
a formula is obtained similar to that given in my 
book for chains where the branching does not 
proceed more slowly than the development of 
the fundamental chain. 

The following conclusions can thus be drawn. 
(1) For any complex reaction, the transition 

of the stationary to the nonstationary state is 
determined by the condition D = ° which is 
equivalent to {3-0=0. 

(2) In the case of a nonstationary state, how­
ever complex the reaction may be, the reaction 
rate (for values of t that are not too small) is al­
ways expressed by a function of the type e<Pt, and 
the concentrations of all the intermediate prod­
ucts are proportional to each other. 

(3) In most of the complex reactions present­
ing some interest from a practical point of view, 
if the branching does not proceed considerably 
more slowly than the development of the funda­
mental chain cp= (o-{3)/r, while in the case 
of degenerate branching cp= (0,),-1)/8. 

(4) For long chains with few branchings, {3 
and 0 are simple functions of the temperature of 
the type e-E /RT• 

(5) In the case of schemes that are not too 
complex-having but two or three kinds of 

centers-the reaction is best characterized by 
the values of {3 and o. In the case of still more 
complex schemes, the values A and L are more 
appropriate. 

§3. MUTUAL INHIBITING ACTION OF THE 

CHAINS. QUADRATIC RUPTURE 

If the rupture of the chains is due not only 
to the interaction of the active centers with the 
wall or with the initial products (rupture of the 
linear type), but if in addition some of the centers 
perish owing to recombination or to some other 
kind of mutual action, then the system of equa­
tions determining the course of the reaction 
ceases to be linear. vVe shall restrict ourselves to 
the examination. of one single case where only 
one of the centers perishes owing to recombina­
tion at a rate Bn12. 

(a) Quadratic rupture in a monocyclic system 

dnI/dt=no-A IK1nl + LKana - Bn12, 

dnddt=Klnl-A2K2n2, 

dnI/dt=K2n2- AaKans. 

(I) 

For the solution of the above system of equa­
tions the same determinant will be of use, as for 
the purely linear scheme of §2. 

Al 
where Ll= 1 

° 

D=KIK2K3Ll 

L 
° =L-AIA2Aa. 

-As 
(1 ) 

If Ll < 0, the system has a stationary ~olution, 
namely, 

2no 
nl= , 

(F2+4Bn o)!+ I Fi 
(2) 

where F=AIK1Ll/AIA2Aa is <0, I FI denoting 
the absolute value of F. For low values of no, 
expression (2) reduces to 

this being the same solution as for the system of 
linear equations. 

If Ll > 0, the linear system led to an infinitely 
autoaccelerating reaction, now this increase is 
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limited by the quadratic term; another stationary 
solution is thus obtained, independent of no (for 
low values of no) and corresponding to concen­
trations and velocities much higher than those 
forL1<O. 

In this case L1>0 and F=A1K1L1IA1A2A3>0, 

2no 

(P+4Bno)}-P' 
(3) 

which, for low values of no, yields 

F A lK1L1 
nl=-

B AIA~J3 
(3') 

and the reaction rate 

wv; Klnl=AIK12L1IA)AzAaB. 

If A1K1«A2Kz and AaKa. the solution of the 
system can be obtained by putting dnzldt 
=dnaldt=O, whence 

dnd dt = no+ Fnl - Bn12 (II) 

which for L1>0 gives 

Such is the case for rapid reactions (inflamma­
tion). Indeed, for a recombination of the type 
H+H+M=H2 +M, the constant B is of the 
order of 10-32 X 1018 = 10-14 at pressures of the 
order of 1/10 of an atmosphere. In order that 
the reaction rate K 12 I B be low, of the order of 
1014 molecules per second, the value of llKI must 
be equal to about one second. For such low 
developments of the link of the chain and for low 
values of no, the delay of inflammation should be 
of the order of tenths of a minute, but for the 
H 2+0 2 reaction this is different. Thus Kowalsky 
found 1 I K 1 equal to about l/lOth of a second at 
a pressure of ,,-,1 mm. At a pressure of 100 mm, 
1 I K 1 would therefore attain'" 10-3 sec. If we put 
K 1 = 103, the reaction rate K 12/ B becomes 
~106/10-14 ~1020 molecules per second and is 
practically infinite. 

Thus, when examining the upper and lower 
limits for rapidly-proceeding reactions of the 
type H Z+0 2, the quadratic ruptures can be left 
out of account though they are often present. 

(b) Quadratic rupture in polycyclic schemes 

2no(ev'q 1-1) 
nl= , 

h/q+F)+hlq-F)ev'q I 

Let us examine a scheme of this kind, as illus­
(4) trated in Fig. 11, but showing in addition a 

where q=P- 4Bno. 

For small vales of no, the above expression 
reduces to 

(5) 

for low values of t, and to nl = FIB, for high 
values of t. 

Thus, at the beginning of the process until the 
stationary velocity has been attained, the in­
crease of nl, and therefore the increase of the 
reaction rate, obeys the same law as in the case 
of a linear scheme; in the course of time this 
increase slows down, leading to a constant con­
centration FIB and a constant velocity. 

Thus, if the stationary reaction rate is so high 
that the reaction changes to thermal explosion 
even before this velocity has been attained, then 
the quadratic rupture can be neglected; it 
suffices then to examine only the linear scheme, 
assuming as before, that the condition A = 0 
continues to determine the transition to a non­
stationary regime. 

quadratic rupture at the right lower corner. 

dnt/dt = no- A 1K 1nI--j.LK2n2+ Kana, 
dn2/dt=Klnl-AzKzn~, (III) 
dna/dt=Kznz- A aKana - Bnaz. 

The determinant of the linear part of the 
scheme is 

L1=LAa+A2-AIA~3=A2- (AIA2-L)Aa. (6) 

The determinant of the first cycle nl- n2- nl is 

D=KIKzKaL1l where L1l = (AIAz-L). (7) 

If L11>0 and L1<0, the stationary solution, for 
low values of no, is 

no AIAzAa 
na=------

1L1 I A lAz 
(8) 

i.e., the same as for a scheme without quadratic 
rupture. If L11>0 (occurring only on the condi­
tion that L?;2) and L1>O, then, for low values 
of no, the stationary solution becomes 

(9) 
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and 
K32~A2 KIK2KaD 

w"""K 1nl=---=----
~12B BDI 

(10) 

For ~l ~ 0 and ~ >0, the solution becomes non­
stationary. A bicyclic system differs from a 
monocyclic one in this feature and its physical 
meaning is that, if ~1~0, the chain nl-n2-nl 
(i.e., a chain consisting of two links) leads to an 
infinitely high reaction rate, if all the centers n3 
perish, so that the quadratic rupture does not 
play any role in the process." 

If the condi tions of § 2, especially (11) and (13), 
are satisfied, we may put, in scheme (III), 
dnl/dt=dn2/dt=0 and reduce it to the equation 

dn3 nOA2 6. 
-=--+K3-n3-Bn32, (IV) 
dt ~1 6. 1 

having the same dependence upon the time as 
(II). 

If the stationary reaction rate w = Kl6.A 2/ 6.1
2 B 

becomes very considerable already at 6. 1 """+ 1, 
then the term Bn~2 can be neglected as it was in 
the monocyclic scheme. However, if the station­
ary reaction rate is low (this, as already men­
tioned, will be the case only for slowly developing 
reactions) then the bicyclic scheme leads to new 
results, namely that the condition for the transi­
tion to a nonstationary regime is no longer ~ = 0, 
but 6. 1 =0. This would mean that, in the case of 
a very pronounced rupture, the condition for 
inflammation is {3 - 0 = 0 for the first cycle 
(nl-n2-nl); while the second cycle, owing to 
the marked quadratic rupture, ceases to further 
the development.of the reaction. 

The above fact is of interest for any question 
relating to the nature of the explosion accom­
panying the oxidation of methane, hydrogen 
sulphide or arsine; as has been shown by Norrish 
in England and, in our Institute, by Shantaro­
vitch, Jakovlev and Emanuel, these are typical 
cases of chain reactions with quadratic rupture 
developing slowly with time. 6 

In all these cases the oxidation proceeds slowly, 
the velocity first increasing according to the law 

5 The case willlbe different if, in addition to the quadratic 
rupture En,·, ruptures of the type Cn!' and Cn2' must 
also be considered. -

6 R. G. W. Norrish and S. G. Foord, Proc. Roy. Soc. 
A157, 503 (1936); P. S. Shantarovitch, Acta Phisicochim. 
U.S.S.R. 7, 417 (1937); N. Semenoff Acta Phisicochim. 
9,453 (1938). ' 

(e<t>t -1) and then (when 10-20 percent has 
been consumed) attaining a constant value, after 
which it slowly decreases owing to lack of com­
bustibles. Lowering the pressure or diminishing 
the diameter of the containing vessel leads to 
conditions where 6. becomes less than O. Owing 
to the low value of no, the reaction then prac­
tically ceases, as has been shown by Norrish for 
methane, by Spence for acetylene and, very 
clearly, by Shantarovitch for arsine. The increase 
of the temperature or the pressure is followed by 
a gradual acceleration until explosion sets in. 
The experimen.tal evidence thus far available, 
points to thermal causes of the explosion (heat­
ing due to the normal temperature coefficient of 
the stationary reaction). However, in some cases, 
this cause may be sought in the acceleration 
caused by the decrease of 6. 1 to zero, or to be 
exact to almost zero. According to this explana­
tion the explosion bears an essentially chain 
character. Such is the opinion of Bernard Lewis. 

It must be noted that the above mechanism 
requires the condition that L»2 and that at 
least one of the values of A be greater than unity. 
If L = 1, and at least one A> 1, then 6. 1 cannot 
be zero; if all the coefficients A = 1 (i.e., in the 
absence of linear rupture), then ~l is ahvays 
equal to zero (even if L=l) and the stationary 
regime becomes impossible. In a recent paper 
J ost and M liffling 7 give a scheme for hydrogen 
oxidation where the transition from a finite sta­
tionary reaction rate to an infinite one does not 
require linear ruptures and can proceed with a 
quadratic rupture alone. As far as I am aware, 
this idea is quite new, but it has no physical 
meaning in the case of the rapidly proceeding 
low temperature inflammation of hydrogen. 8 

This is easily understood. It suffices to modify 
the scheme slightly, assuming that, upon the 
reaction of the center nl, the centers n2 and n3 do 

7 W. lost and L. v. Muffing, Zeits. f. physik. Chemic 
183, 43 (1938). 

8 Other statements appear to be open to criticism as for 
instance the statement that the determinant of a complex 
linear chain reaction scheme cannot be represented in the 
form of the difference jj- 0 (0 being the probability of 
branching and jj that of the chain being broken), or the 
statement that my fundamental conceptions are contra­
dicted by the presence in the denominator of the expression 
for the raction rate in schemes with a quadratic rupture 
of the square of Ijj- Ii I. Furthermore, the authors are 
examining a homogeneous system, where all the no values 
are equal to zero and they do not consider the physical 
complications occasioned by neglecting no. 
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not appear simultaneously, either one or the 
other being produced at a time. 9 

In the system of Eqs. (III), the term K 1n1 in 
the second equation will be multiplied by the 
fraction a = K u/ K 1, and by the fraction 
b=K12/K1 in the third equation, where K1 
=Kll+K12 (the sum of the reaction rates 
characterizing one or the other alternatives). 
The sum of a and b is equal to unity. 

In the diagrams of the schemes these alter­
natives are shown by dotted lines (the place of 
the quadratic branching being marked by a cross 
X). Fig. 13 represents the scheme for L= 2. 
Here it is obvious that the reaction of the center 
n1 along the second cycle will be equivalent to a 
linear rupture with respect to the first cycle. 
And, therefore, in the case of a strong pronounced 
quadratic rupture which reduces the action of 
the second cycle to nothing, the stationary re­
action will take place even for A 1 = A 2 = A a = 1, 
and then the transition from a stationary to a 
nonstationary regime becomes possible. 

In this case the determinant 

-1 2 1 
.1= a -1 0 =b+Za-1=a 

b 0-1 

and the determinant 

-1 Z 
.11= =l-Za. 

a -1 

Whence, from (9) and (10) 

KaA Kaa KaKu 
na=--

BAl B(l-Za) B(K12 -Kll)' 

Ka2A K32a Ka2KlKll 
Klnl=--=---

A12B B(l-a) B(Kl2 -Ku )2' 
K32Ku2 

K 2n2= , 
B(K12-Ku)2 

I.e, 
w~R/(K12-Kll)~. 

Upon a change of the temperature or the pres­
sure, l-La becomes either greater or less than 1, 
and thus, for L?:- 1, the transition from a sta-

9 Thus, in the reaction O+H 2 =OH+H, the centers OH 
and H occur simultaneously. On the other hand, in the 
reactions H+02+H 2 =H 20+OH and H+02+M=H02 
+M, either the center OH or the center H02 arises. 

x 
FIGS. 13 and 14. 

tionary to a nonstationary regime becomes pos­
sible in the absence of linear ruptures. The 
physical meaning of the above is clear only in 
the case of a very low stationary reaction rate, 
i.e., when Ka2/B is small, which, as has already 
been pointed out, is hardly the case in the oxida­
tion of hydrogen. 

In conclusion let us reproduce J ost's scheme 
determined by the following chemical equations: 

1. OH+H2 =H20+H, 
2. H+02 =OH+O, 
3. H 2+O=OH+H, 
4. H+02+M=H02 +M, 
S. ZH02 =H20 2+02, 

6. H02+H2 =H 20 2+H, 
7. H 20 2+H=H20+OH. 

It may be noticed that the last equation is not 
at all characteristic of the scheme; the same 
results can be obtained without it, assuming that 
the H 20 2 transforms into H 20 according, for 
instance, to the reaction ZH 20 2 = 2H 20+02 • 

The system of the first six reactions is shown by 
the diagram of Fig. 14 representing a polycyclic 
system consisting of a group of linear cycles and 
of one cycle possessing an alternative bond and 
containing a quadratic rupture. This system 
does not differ in principle from the case ex­
amined. Indeed, if we write down the deter­
minant A together with the determinant A1 of 
the group of linear cycles, then, with the aid of 
(9) and (10), we obtain the concentration of the 
active centers and the reaction rate. The results 
are of course similar to those obtained by J ost, 
except that in place of K4 we get (K4+K2), since 
Jost did not take into account the water pro­
duced in the first reaction. If I take the liberty 
of reproducing these results, it is because expres­
sions (9) and (10), as well as the diagram of the 
scheme, allow of a more concrete interpretation 
of the physical meaning of the relations to which 
schemes of this kind are leading. . 
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§ 4. MUTUAL PROMOTING ACTION OF THE CHAINS. 

QUADRATIC BRANCHING 

Out of the great number of cases of this kind, 
we shall examine only one, where the develop­
ment of the fundamental chain is due to two 
active centers and the resulting intermediate 
product ns perishes in two different ways: either 
reacting at a reaction rate K4nS up to a certain 
final product (perishing without having con­
tributed towards the development of the funda­
mental chain), or reacting up to another final 
product the reaction rate being proportional to 
the square of ns (Ksns2) , and producing at the 
same time an active center of the fundamental 
chain. We shall assume that Ksns«K4 and it is 
obvious that, throughout the reaction, ns cannot 
become greater than N, the number of molecules 
of the combustible in the initial mixture. 

To illustrate this case let us examine the 
scheme for the oxidation of carbon disulphide: 

1. C5+02=C05+0} . 
2. 0+C52= C5+50 fundamental cham. 

l' C5+C52+02 = (C5)2+S02t 
2' 0+02+M=Os+M . 
1" C5+wall rupture of cham. 

2/1 O+wall 
3. 50+50=502+5; 5+CS2=S2+CS 

(quadratic branching). 
4. SO+02=50s*; SOs*+02+C52= 2S02+C05 

(destruction of the intermediate product). 

The spontaneous production of the active 
centers is due to the extremely slow reaction 
CS2+02=CS+S02. The resulting C05 can be 
gradually oxidized in an independent way ac­
cording to the scheme 

The constants Kl, K 2, K s, Kl' etc. are func­
tions of the molecular concentrations of the 

10 Professor Kondratiew of our Institute, when studying 
the cold-flame oxidation of CS, by the method of absorption 
spectra, showed that large amounts of CS radicals and SO 
molecules are formed in the course of reaction. The 
amount of CS radicals exceeds by many times the equi­
librium concentration at the given temperature. The CS 
radicals possess a lifetime of several minutes at room tem­
perature and do not react noticeably with the oxygen. The 
latter fact gives rise to some doubt as to whether the CS 
radicals can be centers of the fundamental chain. This 
will be clear only after the examination of their interaction 
with oxygen at temperatures of the order of 100°C. The 
final products consist of CO, SO, and a considerable 
amount of COS. Kondratiew's paper has just gone to press. 

reactant gases. In the case of the above scheme 
the corresponding relations are Kl = Kl(02); 
K2 = K2(CS2) ; Ks = KS; K4 = K4(02) , Kl' = M(CS2) (02) ; 

K 2' = M2(02)(M). 
When the probability f is close to unity, that 

the active center will perish on striking the wall, 
then K1/l and K2/1 are of the same order as 
D o/d2p, while in the case of very low values of f, 

they will be of the same order as w/4d. In these 
relations d is the diameter of the containing 
vessel, u the velocity of the center due to thermal 
motion, Do the coefficient of diffusion at p = 1 
mm, p the total pressure, Kl, 2, 3,4 the constants 
of the bimolecular, and Ml, 2 that of the tri­
molecular reaction. If the development of the 
fundamental chain, its branching and the de­
struction of the intermediate products proceed 
by bimolecular reactions, and the rupture of the 
chains in the volume proceed by a trimolecular 
reaction, then, irrespective of the chemical 
mechanism of the process, we may assume that 
K 1, K2 and K4 are proportional to p, and that 
Kl' and K 2' are proportional to p2, K3 being 
independent of the pressure. With regard to K/' 
and K 2/1, they may be assumed either to be 
independent of, or inversely proportional to p 
(according to the particular value of f). 

The corresponding equations have the form 

dnI/dt=no-AlKlnJ+LK2n2+K3n32, 
dn2/ dt = K Inl - A 2K2n2, 
dn,/dt=K2n2 - K4nS - K3n32, 

where 

K1+K1'+K/' 
A 1=------

K~+K2' +K2/1 
A 2=------

the determinant of the fundamental chain being 
.11=A 1A 2-L; let us denote by .1, the quantity 
1+L-A 1A 2• 

In all cases concerned, .1 and .11 are >0. If 
.11 ~ 0, we are dealing with a non stationary re­
action, even in the absence of quadratic branch­
mg. 

Let us first examine the stationary solutions. 
We have 

no 2 
and n3=--' , 

K4.111±(1-p)t 
(2) 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  130.70.241.163 On: Mon, 22 Dec 2014 09:26:53



KINETICS OF COMPLEX REACTIONS 695 

4noKaLl 
p=---

K42Ll1
2 

where (3) 

For low values of no, the value of p is equally low. 
For very low values of no, one of the two roots is 

(4) 

the corresponding reaction rate (proportional to 
K lnl or to K4na) being no! Ll l . This solution does 
not differ from that which would be obtained 
in the absence of quadratic branching. This is 
the required root. The second root 

(5) 

having an entitely different physical meaning, 
will be discussed later. 

Thus, in order to obtain a stationary solution, 
in (2) the sign + should be taken. Upon the 
decrease of Lll, or the increase of no, the value of 
p increases, until it can be no longer neglected 
in (2). In this case the concentrations nl, n2 and 
na and the corresponding reaction rates Klnl 
and K4na do not increase in the same proportion 
as no (at a given LlI) but more rapidly. This 
appears to be the case in the photochemical 
reaction H 2 +Cl 2 , with intense illumination 
(Kokotschaschwili). Recent and more detailed 
unpublished investigations of Lavrov and co­
workers (Leningrad) show that since the increase 
of the reaction rate with the light intensity I 
(in the case of .intense illumination) is greater 
than that required by the law of proportionality, 
the reaction cannot be explained by the heating 
of the mixture and in fact it takes place even 
under isothermal conditions. There is some rea­
son to believe that we are dealing here with a 
mutual promoting action of the chains.u 

Upon a further increase of p, at the expense of 
the increase of no or of the increase of tempera­
ture, resulting in a decrease of LlI, a value greater 
than 1 can be. obtained. The expression under 
the radical sign in (2) acquires an imaginary 

11 It can be assumed that the mechanism of quadratic 
branching is connected with a reaction between chlorine 
and the HCI* molecule which is extremely rich in energy 
and is formed in the reaction H + Cb = H CI * + CI according 

. CI 
/ 

to the scheme HCI*+CI 2 =H-CI . A branching 

"" CI 
process of the following form can be imagined to proceed 
upon collision of the two not very stable HCla molecules: 
HCh+HCI 3 =2 HCI+CI.+CI+C1. 

value, a stationary solution being impossible. 
From p = 1 upwards, the reaction accelerates 
with time. In the absence of quadratic branch­
ing, the condition for the transition to a non­
stationary regime (the condition for inflamma­
tion) would be 

(6) 

If the rupture proceeds in the volume and on 
the surface according to the above scheme, con­
dition (6) would. determine the "peninsula of 
inflammation" with its upper and lower limits. 
In the case of a reaction of a linear type, the 
boundaries of this region are independent of no. 

Now, if a quadratic branching must also be 
accounted for, the condition (6) can be replaced 
by another, namely, p= 1 which according to (3) 
becomes 

(7) 

This means that the inflammation proceeds more 
readily (i.e., the temperature of the inflammation 
falls) and further that the boundaries of the 
region of inflammation become dependent on no; 
the peninsula of inflammation shifts towards 
lower temperatures, if the number of initial 
centers is inEreased by some artificial means 
(illumination). The latter effect is characteristic 
of the mutual promoting action of the chains 
but it must be convincingly proved that the 
effect is not due to a heating of the gas. Experi­
mental evidence appears to show that such is 
the case for a low temperature reaction of hydro­
gen inflammation. 

At the limit of inflammation, i.e., for p= 1, we 
have according to (2) 

na*=2no/K4Lll and (Klnl*)~w*=Cno/LlJ, (8) 

where C is of the order of 2. 
Thus, in the case of quadratic branching, the 

maximum value of the stationary concentration 
and that of the reaction rate only twice exceed 
the corresponding values characterizing the same 
process at the same temperature in the absence 
of quadratic branching. In the latter case, for a 
great number of oxidation processes of the type 
of chain reactions, the reaction rate no! Lll 
=no!({3- 0) rises very slowly with the tempera­
ture, and only close to the self-inflammation 
limit (where (3- 0 approaches 0), does this in­
crease become rapid. For these simple linear 
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schemes the quantum yield, equal to 1/.:11, is 
low over the whole range of temperatures, except 
those which are close to the region of self­
inflammation. In the case of quadratic branching, 
for high values of nOt the region of self-inflamma­
tion shifts considerably towards lower tempera­
tures, while the reaction rate and the quantum 
yield on the boundary of the new region are 
almost the same as in the absence of quadratic 
branching, i.e., very low. This is characteristic 
of this type of reaction. 

V 
12 

10 

8 
I. i=IOOOml/ • 
2.£=500"0 

J. i=150" A 

2 

~·~~--~--q~fO--~~q~30~~~~~J,rO~~-*~7~0~T~~ 
FIG. 15. 

The same characteristic features are displayed 
by hydrogeh-oxygen mixtures near the region of 
low-temperature inflammation, as has first been 
shown by Dubovitzkyl2 and later by Nalbandjan 
of our Institute. At the very boundary, the 
length of the chain II, equal to half of the quan­
tum yield, does not exceed 10. Fig. 15 gives 
some of the curves obtained by N albandjan 
showing the variation of the quantum yield with 
the temperature up to the region of inflammation 
(which depends on no). Curve 1 refers to the 
maximum illumination (in arbitrary units i), 
curve 2 to a twice fainter illumination, and 
curve 3 corresponds to experiments where the 
degree of illumination was 7 times less. la • 14 

12 F. 1. Dubovitzky, Acta Phisicochim. U.S.S.R. 2, 761 
(1935). 

13 It is no easy matter to image a scheme for the reaction 
H 2+02 which would account for quadratic branching. 
One of the possible solutions is: 

1. H+02=OH+O; 2. O+H2=OH+H; 
1'. H+02+M+H02+M; 2'. O+02+M=03+M 
or O+H2+M=H20+M; 1". H+wall; 2". O=wall; 
3. OH+OH=H02+H; 3'. OH+H 2 =H20+H; 
4. OH+02+H 2 =H20+H02• 

Satisfying certain conditions similar to those 
of §2 especially (11), but in which Ka is substi­
tuted by Kana, the scheme (1) can be solved ap­
proximately, putting dnI/dt = dn2/dt = 0, whence 

no+Kana2 K l nl 
K1nl K 2n2=--, 

6t/A 2 A2 
(9) 

dna no .:1 
-=--K4na+-Kana2=a-bna+cna2. 
dt.:11 .:11 

In the case of a nonstationary solution, i.e., 
when p=4ac/b2 >1 

n2=2a/h/q cot h/q/2)t+bJ 
where q=4ac-b2>0 (10) 

and the reaction rate 

Klnl,,-,Kan 3
2. 

According to expression (10) the reaction 
proceeds at first more slowly with a prolonged 
induction period and afterwards much more 
rapidly than would follow from the e<pt l.aw 
characteristic of a chain reaction with linear 
branching. 

The oxidation of hydrocarbons in the cold­
flame region bears a similar kinetic character, 
which has led Professor Neumann (of our Insti­
tute) and co-workersl5 to suppOiie that here also 
we have to deal with a quadratic branching of 
chains and has led him to give this hypothesis a 
chemical interpretation. He w'as also able to 
show that the addition of small amounts of 
peroxides brings down the temperature at which 
the cold flame appears, the effect being the more 
pronounced, the greater the amount of peroxide 
added. This would be in accord with the theory 
of mutual action, since the peroxides are playing 
the role of the active intermediate product. 

The difficulty is that the reaction rate for (3') must be 
assumed of the same order as for (3), if not of a still lower 
order. The H02 molecules can perish on' the walls. At high 
pressures (above the upper limit) the reaction H02+H 20 
=H20 2+OH can become noticeable; the latter scheme 
together with (4) might explain the chain of slow hydrogen 
oxidation at high pressures. As has been shown by N. 
Chirkov (reference 14). 

14 N. Chirkov, Acta Phisicochim. U.S.S.R. 6, 915 (1937). 
This reaction proceeds at a rate· proportional to (H 20), 
so that, in the absence of water, it will be very slow. It is 
strange that the other workers who tried to find a mecha­
nism for the slow oxidation of hydrogen have overlooked 
this circumstance. 

16 M. B. Neumann and co-workers, Acta Phisicochim. 
U.S.S.R. 4, 575 (1936); 6, 279 (1937); 9, 861 (1938); 9, 827 
(1938). 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  130.70.241.163 On: Mon, 22 Dec 2014 09:26:53



KINETICS OF COMPLEX REACTIONS 697 

1.. 
FIG. 16. 

A direct proof in favor of the theory of mutual 
action has been obtained by Voronkov, Popilsky 
and myself in the oxidation of carbon disulphide. 

Let us examine Eq. (9) and the physical 
meaning of the second root of (nah in expression 
(5). The variation of dna/dt with na for increasing 
p can be illustrated by curves similar to those in 
Fig. 16. Curve I corresponds to p<1 or b2 >4ac, 
curve 2 to p=1 or b2 =4ac, curve 3 to p>l or 
b2 < 4ac. Stationary solutions are obtained only 
for p < 1. The points of in tersection yield the two 
roots: (nah and (nah = b / c. The first of these 
roots is stable, the second being unstable. Indeed, 
if an instantaneous concentration na be produced 
just slightly less than (nah, the concentration 
will continue to decrease automatically until it 
falls to (na)l. A concentration slightly above 
(na)2 will automatically grow to infinity, so that 
a nonstationary state will be obtained, though 
b2 is still greater than 4ac. The physical meaning 
is that inflammation will set in if the experiment 
is conducted far from the temperature of self­
inflammation, when b2 >4ac and p<1, when the 
stationary concentration is established and the 
reaction rate becomes practically zero, and if the 
instantaneous concentration na of the inter­
mediate product is brought artificially to a value 
equal or greater than (na)2=b/c. 

Accordingly, a mixture of carbon disulphide 
and air was introduced into a long tube, one end 
being heated to a temperature sufficient for 
self-inflammation, while the remaining part of 
the tube was maintained at a much lower con­
stant temperature. In the presence of mutual 
promoting action, the flame produced in the hot 
part will propagate along the cold part of the 

tube at the expense of the mutual action of the 
intermediate products which diffuse from the 
flame zone, attaining in the un burnt gas a con­
centration equal to na~ (nah=b/c. Since we used 
poor mixtures (0.03 percent CS2) which, even in 
the case of adiabatic combustion, are able to 
raise the temperature by no more than some 15 0

, 

we had to deal with the influence of the possible 
heating of the mixture, and thus prove the iso­
thermal nature of the propagation of the flame. 
It was shown that, under the above conditions, 
the flame travels at a constant rate, its tempera­
ture being lower by 100 0 than that required for 
the self-inflammation of the mixture in the 
same tube. Fig. 17 shows (1) the region of self­
infl.ammation and (2) the region of the flame 
expanding in an air mixture (0.03 percent of 
CS2) in a glass tube 20 mm in diameter. 

Because of considerable mathematical diffi­
culties, I did not succeed in developing an exact 
theory of the propagation of the flame through 
diffusion of the active product responsible for 
the quadratic branching. I therefore made use of 
an expression given by Frank-Kamenetzky of 
our Institute for the diffusional propagation of 
the flame when the quadratic autocatalysis is 
caused, not by the intermediate, but by the 
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final product. It would be easy to show that this 
expression can be used as an approximate solution 
of the problem at hand. According to this 
expression, the rate at which the flame travels is 

where, as before b = K4 and 

K3~(CS2)O 
f=c(CS)o=---. 

~l 

(11) 

D=Do/p, the coefficient of the diffusion of the 
centers is inversely proportional to the total 
pressure p. (CS2)O is the number of CS2 molecules 
in the initial mixture. ~=1+L-AIA2 and 
~l=AlA2-1. Assuming that the rupture of the 
chain takes place only at the first link (i.e., 
A 2 = 1), which means that the oxygen atom 
begins to react as soon as K 2 + K 2' + K 2/1 / K 2'" 1 
and thatL= 1, wehave~= 2-A land ~l=Al-1; 

~ 2-(Kl+K1'+Kl/l)/K1 Kl-K1'-Kl/l 

~l (K 1+Kl'+Kl/l)/K 1 -1 

On the assumption that the fundamental 
chains are sufficiently long (Kl»K/+K 1/l), we 
obtain 

f =K1K a(CS2)o/(Kl' +K2/1) ; (13) 

considering the relation between the coefficients 
K and (CS2)o and the pressure, and putting 
~'«:1, we obtain 

(13') 

where A, C and B depend on the temperature, 
being independent of the pressure, and 

(14) 

The limits of the flame propagation are de­
termined from (11) and the condition f = 2b or, 
substituting (13) into (14), from the equation 

(15) 

which determines the boundaries of the peninsula­
shaped region in which the flame expands, con­
sidering that g, c A and B depend on the tem­
perature according to a law of the type e-E1RT . 
At some distance from the end-point of the 
peninsula, the upper and the lower limits of 
propagation ar~ determined from the expressions 

2gB A 
Pl=- and P2- (16) 

A 2gc 
or 

pl=Pe+E1RT and p2QrEIRT. (17) 

The experimental data for the upper limit fit 
extremely well into (17), as may' be seen from 
Fig. 18 where the averaged experimental values 
are shown by circles. It will be easy to express 
the rate of propagation of the flame in any point 
inside the peninSUla by the limits of propagation. 

Since D=Do/p, where Do depends on the 
temperature and since g depends on the tem­
perature as v!Te-E1RT, we obtain 

According to experimental evidence, E::::cO and 
b depends on the partial pressure (02) in a 
mixture of oxygen and nitrogen, K o=Ko'(02/P). 
For To=410oK, K'm has been found equal to 56, 
whence 
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KINETICS OF COMPLEX REACTIONS 699 

The above expression shows the influence of 
the pressure and that of the temperature on the 
propagation of the flame, the first in an explicit 
form, the other through the limits PI and P2. 

It must be noted that the theoretical expres­
sions (11) and (19), similar to those for the 
velocity of thermal propagation of the flame, do 
not conform to experiment; indeed, at the limit 
of propagation, the velocity has a finite value, 
while theoretically it should be zero. In the case 
of the thermal theory, this discrepancy is due to 
the fact that no account has been taken of the 
heat transfer to the walls; in our case it is due to 
the special simplifications which had to be made 
when using the expression given by Frank­
Kamenetzky. All the values of the limits PI and P2 
for (19) must therefore be found by extrapolating 
to zero-velocity the experimental curves showing 
the relationship between wand p. This operation 
does not present any difficulties in the case of 
the upper limit, the extrapolated values exceed­
ing by some 10 percent the corresponding experi­
mental values. In the case of the lower limit, the 
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steepness of the curves renders the extrapolation 
doubtful, and PI is usually calculated from (19) 
from the maximum of the w-p curves and the 
experimental value of h. The values of PI thus 
calculated have been found to fit quite well into 
(17), allowing the computation of P and E. 

With the aid of the 5 constants Q, E 2 , P, EI 
and K4lO it becomes possible to calculate the 

PmmHg 
o 100 200 JOO ~oo 500 

FIG. 20. 

absolute values of the boundaries of the in­
flammation peninsula, as well as the velocities of 
the propagation of the flame, for any P and T 
inside the region of the flame expansion for 
mixtures with a 0.03-percent content of carbon 
disulphide with varying amount of oxygen and 
nitrogen. The two curves of Figs. 19 and 20 
illustrate the good agreement between the experi­
mental values of the velocity (marked by black 
circles) and those calculated (marked by white 
circles); one refers to a mixture of SO percent 
O2+50 percent N 2+O.03 percent CS2 at T= 134°, 
the other to the same mixture at T = 216°C; the 
quantity v/K is plotted on the abscissae. K in 
the first case is 28, in the second KI it is 33.5. 

In the case of carbon disulphide, the theory is 
thus seen to be supported by experimental evi­
dence, both from a qualitative and a quantita­
tive point of view.1 6 

16 In this brief note I must refrain from examining some 
extremely interesting and not yet fully explained phe­
nomena concerning the lack of reproducibility; in some 
particular tubes (in no way different from others), the 
projecting part of the peninsula of inflammation appears 
as if it had been cut by a vertical line, which means that, 
at low temperatures, the flame does not expand. For higher 
temperatures, the upper and the lower limits, as well as 
the reaction rate, show the same numerical values as in 
normal tubes. Sometimes, a hitherto normal tube suddenly 
becomes erratic. 
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