A New and Stereoselective Synthetic Route to an Amaryllidaceae Alkaloid, (±)-Lycorine

Osamu HOSHINO,* Miyuki ISHIZAKI, Keisuke KAMEI, Minoru TAGUCHI, Takashi NAGAO, Kiyoshi IWAOKA, Shohei SAWAKI, Bunsuke UMEZAWA, and Yoichi IITAKA[†]

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo 162 †Department of Biological Sciences, Nishi Tokyo University, Uenohara Kitatsurugun, Yamanashi 409-01

Formal and total syntheses of an Amaryllidaceae alkaloid, (\pm) -lycorine, were achieved by a new synthetic route via (\pm) -3-(phenylseleno)-seco-dihydro-B-norlycorin-5-one.

An amaryllidaceae alkaloid, lycorine (1), is an attractive target for exploring new synthetic methodology because of the stereostructure bearing four continuous asymmetric centers arranged in all-anti relationship and a double bond in ring C of 1. Although many investigations 1) on its synthesis have been reported so far, all of them except one elegant method 1 f) involve construction of an α -lycorane skeleton (e.g. 2) followed by introduction of functional groups. In this paper, we wish to report a synthesis of (\pm)-3-(phenylseleno)-seco-dihydro-B-norlycorin-5-one (3) having functional groups similar to those of 1, with proper stereochemistry, and formal and total syntheses of (\pm)-1 from 3.

The key compound (3) was prepared as follows. Intramolecular Diels-Alder reaction of 42) gave cis- δ -lactone (5)2) (mp 128-129 °C) (86%) and the trans-isomer (6)2) (mp 151.5-152.5 °C) (4.8%). Reduction of 5 followed by oxidation³⁾ afforded the isomeric δ -lactone (7)2) (mp 139-140 °C) (98%), which was converted to iodo- γ -lactone (8)2) (oil) in

the usual manner. Protection⁴⁾ of the hydroxymethyl group in 8, successive dehydroiodation and deprotection gave the unsaturated γ -lactone (9)²⁾ (mp 139-140 °C) (50% from 7).

In order to convert the hydroxymethyl group to an amino one, Jones oxidation of 9 followed by Curtius rearrangement⁵) was carried out to give carbamoyl- γ -lactone (10)²) (mp 213-215 °C) (42%). Acid treatment of 10 and cyclization with base afforded readily the desired γ -lactam (11)²) (mp 147-148.5 °C) (98%).

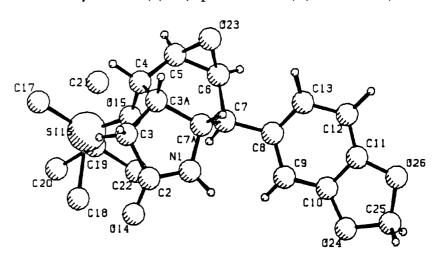


Fig. 1. The molecular structure of 14.

To introduce *anti*-oriented vicinal hydroxyl groups and a double bond, epoxidation and isomerization of the epoxy group were performed. While epoxidation of acetoxy- γ -lactam (12)²) failed,⁶) silyloxy- γ -lactam (13)²) (mp 158-159 °C) could be epoxidized to give 5α , 6α -epoxy- γ -lactam (14)²) (mp 145-145.5 °C) (98%), stereochemistry of which was confirmed by X-ray crystallographic analysis⁷) (Fig. 1). Isomerization of the epoxy group in 15 was performed by base treatment to produce, after acetylation, the isomeric 4β , 5β -epoxy- γ -lactam (16)²) (mp 180-181 °C) (61%) accompanied by epoxide (15)²) (mp 238-240 °C) (6%). Phenylselenenylation of 16 gave the key compound (3)²) (mp 84-86 °C) (99%). Acetylation and successive oxidation of 3 proceeded smoothly to give the unsaturated γ -lactam (17)²) (mp 206-208 °C) (84%) having functional groups similar to those of 1. Furthermore, stereostructure of 3 was characterized by its transformation to (\pm)-1,2-diacetyllycorin-5-one (18) (mp 242-244 °C; lit.^{1d}) mp 244-245 °C), which is led to (\pm)-lycorine (1).

Although conversion of 17 to (\pm) -lycorine (1) was unsuccessful, reduction of 3 followed by cyclization⁸) gave the cyclized product $(19)^2$ (mp 99-100 °C) (44%). Finally, 19 was oxidized to afford (\pm) -lycorine (1), diacetate (mp 216-217 °C; lit.^{1d}) mp 217-218 °C) (41% from 19) of which was identical with that of natural 1 by comparison of their spectra (¹H-NMR, IR). Thus, stereoselective formal and total syntheses of (\pm) -lycorine (1) were accomplished by a new synthetic route via (\pm) -seco-dihydro-B-norlycorin-5-one (3).

The authors are grateful to Dr. Yoshinori Hamada and Dr. Katsumi Kotera, Shionogi Reasearch Laboratories, Shionogi & Co., Ltd., for their generous gift of (-)-1,2-diacetyllycorine and to Professor Takehiro Sano, Showa College of Pharmaceutical Sciences, for his kind supply of ¹H-NMR spectrum of (±)-1,2-diacetyllycorin-5-one. Thanks are also due to Mr. Michiaki Furue, Mr. Masahiko Ikeda, Miss Noriko Shinohara, and Miss Emiko Ishioka for

Reaction conditions: i) *o*-Cl₂C₆H₄, 235 °C, sealed tube: ii) LiAlH₄, THF, reflux; Ag₂CO₃-Celite,³⁾ C₆H₆, reflux: iii) K₂CO₃, MeOH, H₂O, reflux; I₂, KI, aq. K₂CO₃, MeOH, rt: iv) DHP, CH₂Cl₂, H⁺, rt; DBU, C₆H₆, reflux; MeOH, CH₂Cl₂, H⁺, rt: v) CrO₃, H₃O⁺, acetone, 0 °C: vi) DPPA,⁵⁾ Et₃N, *t*-BuOH, reflux: vii) TFA, CH₂Cl₂, rt; 5% NaOMe, MeOH, rt: viii) Ac₂O, pyridine, rt: ix) *t*-BuMe₂SiCl, imidazole, DMF, rt: x) MCPBA, CH₂Cl₂, rt: xi) Bu₄NF, THF, rt: xii) 5% aq. K₂CO₃, MeOH, rt: xiii) Ph₂Se₂, NaBH₄, EtOH, reflux: xiv) 35% formalin, THF, K₂CO₃ (cat.), rt; TFA, CH₂Cl₂, rt: xv) NaIO₄, THF, MeOH, H₂O, 40 °C: xvi) Na(MeOCH₂CH₂O)₂AlH₂, toluene, reflux; Me₂N⁺=CH₂I⁻, 8) THF, reflux.

their skillful technical assistance, to Miss Noriko Sawabe and Mrs. Fumiko Hasegawa, this faculty, for their ¹H-NMR and mass spectral measurements, and to Sankyo Co., Ltd. for elementary analyses.

References

- 1) a) Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, H. Irie, H. Tanaka, S. Takagi, M. Yamaki, and M. Murata, J. Chem. Soc., Chem. Commun., 1975, 933; Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, S. Takagi, M. Yamaki, M. Murata, H. Irie, and H. Tanaka, J. Chem. Soc., Perkin Trans. 1, 1979, 1358; b) O. Møller, E.-M. Steinkerg, and K. Torssell, Acta Chem. Scand., Ser. B, 32, 98 (1978); c) B. Umezawa, O. Hoshino, S. Sawaki, Y. Sashida, and K. Mori, Heterocycles, 12, 1475 (1979); B. Umezawa, O. Hoshino, S. Sawaki, H. Sashida, K. Mori, Y. Hamada, K. Kotera, and Y. Iitaka, Tetrahedron, 40, 1783 (1984); d) T. Sano, N. Kashiwaba, J. Toda, Y. Tsuda, and H. Irie, Heterocycles, 14, 1097 (1980); e) S. F. Martin and C.-Y. Tu, J. Org. Chem., 46, 3764 (1981); S. F. Martin, C.-Y. Tu, M. Kimura, and S. H. Simonsen, ibid., 47, 3634 (1982); f) R. K. Boeckman, Jr., S. W. Goldstein, and M. A. Waters, J. Am. Chem. Soc., 110, 8252 (1988).
- 2) All new compounds gave satisfactory spectral and analytical data.
- 3) M. Fétizon, M. Golfier, and J.-M. Louis, Chem. Commun., 1969, 1118.
- 4) Reaction of 8 with DBU in boiling benzene gave (±)-5,6-epoxide (mp 168-169 °C)²) (94%) of δ -lactone (8).
- 5) T. Shioiri, K. Ninomiya, and S. Yamada, J. Am. Chem. Soc., 94, 6203 (1972).
- 6) T. Sano et al. 1d) have reported the similar findings in epoxidation to ours.
- 7) Crystallographic data for **14:** monoclinic, space group, $P2_{1/n}$; Z=4, a=22.937 (12), b=6.957 (7), c=14.406 (15) Å, $\beta=111.62$ (6)°, V=2137 Å³, $D_X=1.254$ gcm⁻³, R=0.11.
- 8) J. Schreiber, H. Maag, N. Hashimoto, and A. Eschenmoser, *Angew. Chem., Int. Ed. Engl.*, 10, 330 (1971).

(Received May 15, 1991)