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ABSTRACT: Enantioselective epoxidation of β,β-disubsti-
tuted enamides with aqueous hydrogen peroxide and a novel
manganese catalyst is described. Epoxidation is stereospecific
and proceeds fast under mild conditions. Amides are disclosed
as key functional groups to enable high enantioselectivity.

Chiral epoxides are useful building blocks for a number of
transformations of interest in organic synthesis.1 Because

of that, methods for asymmetric epoxidation have been actively
investigated and are currently known, covering a large range of
olefin typology.2 Still, a few classes of substrates such as acyclic
β,β-disubstituted enones constitute standing problems. Meth-
ods for epoxidizing asymmetrically β-unsubstituted and β-
monosubstituted α,β-unsaturated carbonyl compounds are
very well stablished2e,f,3 because of their importance in
synthetic organic chemistry,4 but the introduction of a second
substituent at the β position of acyclic systems makes
asymmetric epoxidation notoriously difficult. Weitz−Scheffer-
type epoxidation, which is the common methodology for
asymmetric epoxidation of enones, is not suitable because the
β-carbon of the olefin is sterically protected and also because
steric congestion between the β substituent and the carbonyl
moiety promotes fast epimerization at this carbon after
peroxide attack, producing diastereomeric mixtures.5 Two
previous successful examples operate in β-trifluoromethyl-β,β-
disubstituted chalcones and rely on phase-transfer catalysts6

(Scheme 1a). In this specific class of substrates, the
electrophilicity of the olefin is accentuated by the strong
electron-withdrawing character of the trifluoromethyl group.
Both (Z)- and (E)-β-trifluoromethyl-substituted enones
produce the same epoxide, in which the carbonyl and the
CF3 are trans to each other (Scheme 1a). Electrophilic
oxidations may offer valuable alternatives, but examples remain
scarce and exhibit limited substrate scope (Scheme 1b,c).7,8

Biologically inspired reactions based on iron and manganese
coordination complexes as catalysts and peroxides (especially
hydrogen peroxide) produce electrophilic oxidants and are
interesting because of the availability of these metals and
hydrogen peroxide combined with their low environmental
impact.3c,9 The structural versatility of this class of catalysts10

makes them a potential solution for the asymmetric
epoxidation of classes of olefins that remain a problem.11

Herein we disclose a novel manganese catalyst that enables
highly enantioselective epoxidation of β,β-disubstituted
enamides employing aqueous hydrogen peroxide as the oxidant
(Scheme 2). The combination of epoxide and amide groups
makes these products valuable chiral building blocks that are
currently unavailable by other methods.9v,w,12,13

Asymmetric epoxidation of β,β-disubstituted model sub-
strates S1 and S2 (Table 1) was initially tested with a series of
complexes LN4M of general formula [M(CF3SO3)2(L

N4)] (M
= Fe, Mn) based on chiral tetradentate bis(amino)bis-
(pyridine) ligands (LN4) (Figure 1). The study was initially
focused on bipyrrolidine-based complexes bearing electron-
donating groups on the pyridine (Me2Npdp),9n,14 and
complexes bearing bulky triisopropylsilyl (tips) substituents15

(tipspdp), all of which have found recent use in asymmetric
oxidation reactions. In addition, a new catalyst based on a
chiral 1,1′,2,2′,3,3′,4,4′-octahydro-1,4′-biisoquinoline16 (Ohq)
was also considered.
An analysis of the envisioned structures of the complexes

[M(CF3SO3)2(
Me2NOhq)] reveals several stereogenic elements.

First, each of the isoquinoline rings contains one stereogenic
carbon and one stereogenic nitrogen center. In addition, the
paddlewheel-like structure of the biisoquinoline may be
regarded as an element of axial chirality.17 Finally, the
complexes are chiral at the metal (Δ and Λ).10 In principle,
metalation may result in multiple isomers. Remarkably, only a
single complex is observed in the 1H NMR spectrum of
Me2NOhq-Fe, and according to the number of signals it exhibits
twofold symmetry.

Received: February 26, 2019

Letter

pubs.acs.org/OrgLettCite This: Org. Lett. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.orglett.9b00729
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

O
C

C
ID

E
N

T
A

L
 C

O
L

G
 o

n 
M

ar
ch

 1
9,

 2
01

9 
at

 0
1:

59
:0

8 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b00729
http://dx.doi.org/10.1021/acs.orglett.9b00729


The crystal structure of Me2NOhq-Mn is shown in Figure 1
and is consistent with the 1H NMR spectrum of the iron
analogue, further supporting the above analysis. The complex
adopts an octahedral coordination geometry with a character-
istic C2-symmetric cis-α topology,10 in which the two pyridine
rings are trans to each other and two labile triflate ligands are
cis- ligated.
The set of catalysts were applied in the asymmetric

epoxidation of the synthetically versatile Weinreb amide S1.
In a standard reaction, 2 equiv of aqueous hydrogen peroxide
was delivered by syringe pump during 30 min to an acetonitrile
solution of the substrate, the catalyst (1−2 mol %), and a
carboxylic acid (2-ethylhexanoic acid (2-eha), 1.4−14 equiv) at
0 °C under air, and after this time, the catalysis was further

stirred for another 30 min. The results are collected in Table 1.
Epoxidation of S1 with the electron-rich catalysts Me2Npdp-Fe
and Me2Npdp-Mn proceeds in good yields (73−74%) with
good enantioselectivities, with the manganese catalyst being
more enantioselective (70 and 77% ee, respectively; entries 1
and 2). Use of sterically hindered tipspdp-Fe and tipspdp-Mn
produced less satisfactory yields (25 and 57%, respectively)
and enantioselectivities (−57 and −32% ee, respectively)
(entries 3 and 4). This observation led us to explore alternative
catalysts obtained by introducing modifications to the nature
of the chiral diamine backbone while preserving the electron-
rich nature of the ligands. Toward this end, the novel
bis(isoquinoline)-based and electron-rich catalysts Me2NOhq-
Mn (entry 5) and Me2NOhq-Fe (entry 6) were then
considered.
While Me2NOhq-Fe performs worse than Me2Npdp-Fe in

terms of yield and enantioselectivity (compare Table 1, entries
1 and 5), the data reveal excellent performance of Me2NOhq-
Mn in terms of enantioselectivity at the expense of providing a
modest yield of epoxide (59% yield, 82% ee; entry 6).
Epoxidation was then tested by replacing 2-eha by different

Scheme 1. Previous Examples of Asymmetric Epoxidation of
β,β-Disubstituted Enones

Scheme 2. Characteristics of the Current System

Table 1. Epoxidation of β,β-Disubstituted Model
Substratesa

entry substrate catalyst acidb conv. (yield) (%)c ee (%)d

1 S1 Me2Npdp-Fe 2-eha 90 (73) 70

2 Me2Npdp-Mn 2-eha 86 (74) 77

3 tipspdp-Fe 2-eha 52 (25) −57
4 tipspdp-Mn 2-eha 100 (57) −32
5 Me2NOhq-Fe 2-eha 83 (53) 68

6 Me2NOhq-Mn 2-eha 70 (59) 82

7 Me2NOhq-Mn pva 100 (79) 69

8 Me2NOhq-Mn eba 95 (78) 77

9 Me2NOhq-Mn aca 27 (25) 69

10 Me2NOhq-Mn chca 92 (73) 65

11e Me2NOhq-Mn 2-eha 82 (80) 88

12 S2 Me2NOhq-Mn 2-eha 57 (52) 59

13 Me2NOhq-Fe 2-eha 93 (55) 38
aFor experimental details, see the Supporting Information. bAbbrevia-
tions: 2-eha, 2-ethylhexanoic acid; pva, pivalic acid; eba, 2-
ethylbutanoic acid; chca, cyclohexyl carboxylic acid; aca, 1-
adamantanecarboxylic acid. cEpoxide yields and substrate conversions
were determined by 1H NMR analyses. dDetermined by HPLC with a
chiral stationary phase. eThe reaction was conducted at −40 °C using
3 equiv of 2-eha.

Figure 1. Structures of the [M(CF3SO3)2(L
N4)] catalysts and ORTEP

diagram (50% probability level) of (S,S)-Me2NOhq-Mn.
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carboxylic acids (entries 7−10). However, none of these
improved the enantioselectivity provided by 2-eha. More
effectively, lowering the temperature of the reaction to −40 °C
and using 3 equiv of H2O2 proved to be effective in improving
the yield (80%) while delivering high enantioselectivity (88%
ee) (entry 11). Most remarkably, the reactions proceeded
stereospecifically, and epimerized epoxides were not detected.
It is noteworthy that epoxidation of ester S2 (entries 12 and
13) proceeds with lower yields and ee’s, irrespective of the
catalyst (Me2NOhq-Mn or Me2NOhq-Fe), suggesting that the
amide moiety is key in eliciting high enantioselectivity.
The latter observation led us to explore a series of β,β-

disubstituted enamides (Table 2). Effectively, their epoxidation
with (S,S)-Me2NOhq-Mn proceeds in good to excellent yields
with extraordinarily high enantioselectivity. Epoxidation of
N,N-dimethylamide S3 provides the corresponding epoxide in
72% isolated yield with 94% ee (entry 1). Moreover, an
increase in the size of the N-alkyl groups in the order Me to Et
to i-Pr (S3−S5) translates into a systematic increase in the
enantioselectivity (94 to 97% ee) while also improving the
product yield (72 to 87%) (entries 1−3). Somewhat along this
trend, the highest enantioselectivity of the series was obtained
for dibenzyl-substituted S6 (99% ee, 90% yield; entry 4).
Piperidine-substituted S7 is also epoxidized with high
enantioselectivity (90% ee) but modest product yield (25%)
(entry 5). Instead, the oxidation of N,N-diphenyl-substituted
amide S8 (entry 6) produces multiple nonidentified products.
On the other hand, N-cyclohexyl-N-phenyl-substituted S9 is
epoxidized in good yield (83%) and enantioselectivity (84%
ee) (entry 7). Moreover, this system can also be applied to
monosubstituted enamides (entries 8−11). Oxidation of
isopropyl (S10) and benzyl enamide (S11) provides the
corresponding epoxides in satisfactory yields (78 and 62%,
respectively) and enantioselectivities (88 and 92% ee,
respectively). Epoxidation of phenyl enamide S12 also
proceeds with high enantioselectivity (90% ee) in moderate
yield (57%).
Finally, the sterically congested adamantyl-substituted S13 is

oxidized to the corresponding epoxide (30% yield, 82% ee)
and the epoxide where the adamantane has been also

hydroxylated (EO13) (43% yield, 84% ee) (Figure 2). In
this case, the sterically congested olefinic site competes for the
oxidizing species with the tertiary C−H bonds of adamantane.

The versatility of the reaction was then further evaluated in
the epoxidation of β,β-disubstituted dibenzyl enamides having
different substituents at the β position (Table 3). The crowded
nature of the olefin in these substrates makes them particularly
challenging. Epoxidation of enamides where the β-methyl
group has been replaced by larger substituents such as ethyl
(S14) or isopropyl (S15) proceeds with different outcomes.
The former is epoxidized with high enantiomeric excess (99%
ee) and yield (84%) (entry 1). However, for the bulkier
isopropyl substituted S15, the yield dropped substantially
(33%, 85% ee; entry 2), presumably reflecting the increase in
steric constraints in the olefin, which prevents attack by the
catalyst. Cyclic β,β substituents are also well-tolerated:
substrate S16 (entry 3) containing the 3,4-dihydronaphthyl
substituent is epoxidized with high ee (91%) and yield (62%),
but epoxidation occurs in combination with oxidation of a
benzylic methylenic site, producing epoxide EK16 (Figure 2).
Substituents in the aromatic ring also have distinct effects.
While ortho substitution (S17) completely inhibits the activity
of the catalyst (entry 4), meta and para substituents are well-
tolerated, and epoxide products are obtained in good yields
(64 and 74%, respectively) with excellent enantioselectivity
(98 and 99% ee, respectively) (entries 5 and 6). Presumably,
ortho substituents exert steric protection of the olefinic site that
prevents its oxidation. Epoxidation of substrates having
substituents with different electronic characters on the phenyl
group (S19−S22) proceeded smoothly in good yields with
excellent enantioselectivity (97−99% ee; entries 6−9). None-
theless, the large naphthyl group at the β position in S23 had a

Table 2. Epoxidation of β,β-Disubstituted Enamides Using (S,S)-Me2NOhq-Mna

entry R1 R2 enamide conv. (yield) (%)b ee (%)c isolated yield (%)

1d,e Me Me S3 100 (80) 94 72
2d Et Et S4 95 (87) 96 78f

3d i-Pr i-Pr S5 90 (87) 97 87
4d Bn Bn S6 99 (90) 99g 90
5 Piph − S7 96 (43) 93 25i

6 Ph Ph S8 52 (0) − −
7 Ph Cy S9 94 (90) 84 83
8 i-Pr H S10 96 (87) 89 78
9e Bn H S11 100 (87) 92 62
10e Ph H S12 100 (57) 90 57
11e Adamj H S13 72 (38 + 43k) 82/84 30 + 43k

aFor experimental details, see the Supporting Information. bEpoxide yields and substrate conversions were determined by 1H NMR analyses.
cDetermined by HPLC with a chiral stationary phase. d5 equiv of 2-eha. e4 equiv of H2O2.

f84:16 E:Z. gAn absolute configuration of (2R,3S) was
determined by X-ray crystallography. hPiperidine. iIsolated on a 1 mmol scale. j1-adamantyl. kProduct EO13 (Figure 2).

Figure 2. Oxidation products in which oxidation of an aliphatic C−H
bond is observed.
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counterproductive effect on the yield of the product (entry
10). Finally, aliphatic enones also appear to be suitable
substrates for the system, although some limitations arise.
Cyclohexyl-substituted S24 is epoxidized in modest yield
(20%) and enantioselectivity (65%) (entry 11), presumably
reflecting again a high steric demand at the olefin. Instead, less-
demanding isopentyl (S25, entry 12) and benzyl (S26, entry
13) substituted enamides are epoxidized with high enantiose-
lectivities (95 and 98% ee, respectively), albeit in moderate
yields (51 and 35%, respectively). Benzylic oxidation (19%) to
form K26 (Figure 2) competes with olefin epoxidation in S26.
Finally, β-ethyl-β-phenyl-substituted S27, in which the
aromatic ring is cis with respect to the carbonyl moiety,
proved to be unreactive.
In conclusion, highly enantioselective epoxidation of β,β-

disubstituted enamides is accomplished with a novel
manganese catalyst and hydrogen peroxide. The system
operates under mild experimental conditions, is stereospecific,
and affords highly enantiomerically enriched epoxides in
moderate to excellent product yields, providing a reliable
methodology for this class of substrates. The stereospecific
nature of the reaction and the positive role of the carboxylic
acid in the product yields and enantioselectivities are
congruent with recent mechanistic studies in related catalysts,
suggesting that a highly electrophilic MnV−oxo−carboxylate
species is responsible for the epoxidation.18 The positive role
of the amide moiety in securing the high enantioselectivity,
while yet not elucidated, provides a useful handle that may find
utility in other oxidation reactions of difficult substra-
tes.13,15b,19 Furthermore, the work further extends the portfolio
of highly enantioselective oxidation catalysts, showcasing the

powerful reach of this class of systems to address standing
problems in organic synthesis.
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