Synthesis of New Quinolone Antibiotics Utilizing Azetidine Derivatives Obtained from 1-Azabicyclo[1.1.0]butane

Yoshifumi Ikee, ${ }^{a}$ Kana Hashimoto, ${ }^{a}$ Mai Kamino, ${ }^{a}$ Masaaki Nakashima, ${ }^{a}$ Kazuhiko Hayashi, ${ }^{b}$ Shigeki Sano, ${ }^{*, a}$ Motoo Shiro, ${ }^{c}$ and Yoshimitsu NAGAO*,a
${ }^{a}$ Graduate School of Pharmaceutical Sciences, The University of Tokushima; Sho-machi, Tokushima 770-8505, Japan:
${ }^{b}$ College of Pharmacy, Kinjo Gakuin University; 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan: and ${ }^{\text {c Rigaku }}$ Corporation; 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan.
Received December 25, 2007; accepted January 8, 2008; published online January 10, 2008

Abstract

A series of 3-sulfenylazetidine derivatives 5a-f were synthesized via the ring-opening reactions of 1-azabicyclo[1.1.0]butane (ABB, 3) with thiols 4 - f in $50-92 \%$ yields. Treatment of ABB (3) with aromatic amines $9 \mathrm{a}-\mathrm{e}$ and dibenzylamine (9f) in the presence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ afforded the corresponding 3-aminoazetidine derivatives $10 \mathrm{a}-\mathrm{f}$ in $24-65 \%$ yields. N-Benzyl-3-bromoazetidine (13), which was obtained by the reaction of ABB (3) with benzyl bromide, gave 3 -aliphatic amino-substituted azetidine derivatives $15 \mathrm{a}, \mathrm{b}$. Novel fluoroquinolones 7a-f, 11a-f, 16a, b and 25a-c were obtained by the introduction of these azetidine derivatives into the C7 position of a quinolone nucleus 6 and N1-heterocyclic quinolones $21 \mathrm{a}-\mathrm{c}$ in $21-83 \%$ yields. Some of them exhibited a greater antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in comparison with that of clinically used fluoroquinolone, levofloxacin (LVFX).

Key words azabicyclobutane; azetidine; new quinolone; antibacterial agent; methicillin-resistant Staphylococcus aureus

Although 1-azabicyclo[1.1.0]butane (ABB, 3) proved to be the unique molecule bearing the highly strained bicyclic structure, little attention has been paid to the unusual ring system. ${ }^{1-10)}$ Specifically, the synthetic utility of ABB (3), which must be useful for the preparation of various 1,3disubstituted and 3-monosubstituted azetidines, ${ }^{1,9,10 \text {) has }}$ scarcely reported because of its synthetic difficulty due to the remarkably strained structure. These azetidine moieties have often been found in many natural products ${ }^{11)}$ and biologically active compounds such as carbapenems ${ }^{1)}$ and new quinolone antibiotics. ${ }^{12-15)}$ 1,3,3-Trinitroazetidine (TNAZ), ${ }^{16,17)}$ an insensitive high explosive, was also synthesized by using ABB (3). In recent years, we established an efficient method for synthesis of ABB (3) starting from allylamine (1) via 2,3-dibromopropylamine hydrobromide (2), and reported its application to the synthesis of several azetidine derivatives, as shown in Chart $1 .{ }^{9}$) We also reported a practical synthesis of 1-(1,3-thiazolin-2-yl)azetidine-3-thiol as the fascinating pendant moiety of a new oral 1β-methylcarbapenem antibiotic, L-084 by starting from $\mathrm{ABB}(3) .{ }^{1)}$ This expeditious construction method for 3-monosubstituted azetidine derivatives employing ABB (3) seemed to be useful also for developing new quinolone antibiotics.

Fluoroquinolones have been developed and are widely used clinically. This is because they have potent, a broad spectrum of antibacterial activities, and few side effects. ${ }^{18-22)}$ However, increasingly multidrug-resistant pathogens, especially methicillin-resistant Staphylococcus

$\mathrm{E}-\mathrm{Nu}: \mathrm{HX}(\mathrm{X}=$ halogen $), \mathrm{AcSH}, \mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}$, etc.

[^0]aureus (MRSA), have become a serious problem particularly during the last decade. ${ }^{23)}$ The resistance levels to quinolones are as yet relatively low but are steadily increasing. ${ }^{24)}$ Therefore new antibacterial agents have become increasingly urgent. This prompted us to develop new quinolones utilizing the azetidine derivatives, in which the C7 substituents of fluoroquinolone carboxylic acids play important antibacterial roles. ${ }^{18-22)}$ Previously, we communicated synthesis and antibacterial activities of new quinolone derivatives utilizing ABB (3). ${ }^{10}$

We now describe, in detail, a convenient method of synthesizing several 3 -sulfenyl- and 3 -aminoazetidine derivatives utilizing ABB (3), and we discuss the synthesis and antibacterial activities of new quinolone antibiotics incorporating these azetidine derivatives to the C7 position. Although several examples of 7 -azetidinylquinolones have been reported, ${ }^{12-15)}$ there have been not many prominent quinolone antibiotics bearing the azetidinyl substituent groups thus far. We envisaged that the introduction of azetidine derivatives onto the C7 position of the quinolone nucleus might enhance their antibacterial activities against MRSA.

Results and Discussion

A tetrahydrofuran (THF) solution of ABB (3), obtained by treatment of 2,3-dibromopropylamine hydrobromide (2) with n-BuLi at $-78^{\circ} \mathrm{C}$ in THF followed by codistillation with THF, ${ }^{1)}$ was employed for the synthesis of 3-sulfenyl- and 3amino azetidine derivatives $5 \mathbf{a}-\mathbf{f}$ and $\mathbf{1 0 a}-\mathbf{f}{ }^{10)}$ The synthesis of the fluoroquinolones bearing 3 -sulfenylazetidine derivatives was performed in a following manner. Namely, the ring-opening reaction of small excess ABB (3) with several heterocyclic thiols $\mathbf{4 a}-\mathbf{e}$ and p-toluenethiol (4f) was carried out in THF at room temperature. The reaction proceeded smoothly to furnish the desired corresponding 3 -sulfenylazetidine derivatives $5 \mathbf{a}-\mathbf{f}$ in $50-92 \%$ yields, as shown in Table 1. Compounds $5 \mathbf{c}$ - \mathbf{f} were purified as the hydrochlorides by treatment of the crude products with 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}$ because of their instability during chromatographic purifica-

Table 1. Synthesis of 3-Sulfenylazetidines 5a-f and New Quinolone Derivatives $\mathbf{7 a}-\mathbf{f}$

	Ar	Yield (\%) ${ }^{\text {a }}$ of $\mathbf{5 a - f}$		Yield (\%) ${ }^{\text {a }}$ of $\mathbf{7 a - f}$	
a	$\begin{aligned} & N_{N-N}^{N-N} \\ & N_{-N} \end{aligned}$	5a	83	7 a	49
b	$\stackrel{M}{\mathrm{Me}} \underset{N}{N-N}$	5b	50	7b	21
c		5c	$65^{\text {b) }}$	7 c	50
d		5d	$88^{\text {b) }}$	7d	66
e	$\mathrm{N}_{-} Y^{\xi}$	5e	$92^{\text {b) }}$	7e	51
f		5 f	$75^{\text {b) }}$	7 f	58

a) Isolated yield. b) Isolated yield as the HCl salt.
tion on a silica gel column. The structures of 3-sulfenylazetidine derivatives $5 \mathbf{a}-\mathbf{f}$ were determined by their characteristic ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and high-resolution MS analysis (see Experimental). In all the sulfenylation reactions, ABB (3) must play an important role as a base [e.g., 3-phenyl-1-azabicyclo[1.1.0]butane: $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=7.3$, benzenethiol: $\left.\mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.6\right]^{7,25)}$ to heterocyclic thiols and benzenethiols. The resulting anionic thio group can smoothly attack the C3 position of ABB (3) followed by cleavage of the highly strained N1-C3 σ-bond to furnish each corresponding 3sulfenylazetidine derivative. Subsequently, we chose readily accessible compound 6 as a quinolone nucleus, obtained from the Grohe-Heitzer reaction procedure ${ }^{26-30)}$ employing 2,3,4,5-tetrafluorobenzoic acid and cyclopropyl amine, because the cyclopropyl group was widely used as an N1 substituent for the quinolone antibiotics, which generally provided wide and potent antibacterial activities. ${ }^{22)}$ The compound 6 was treated with 3-sulfenylazetidine derivatives 5a-f in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in MeCN under reflux to give the corresponding 7-(3-sulfenylazetidin-1-yl)fluoroquinolone carboxylic acids $7 \mathbf{a}-\mathbf{f}$ in $21-66 \%$ yields (Table 1). The structure of product 7b was precisely determined by X-ray crystallographic analysis (Fig. 1). ${ }^{31)}$ Other products were shown to be structures $7 \mathbf{a}$ and $7 \mathbf{c}-\mathbf{f}$, based on the spectroscopic and elemental analyses in comparison with those of $\mathbf{7 b}$.

To determine the azetidine ring's effect on antibacterial activity in comparison with that of 7a, sulfenyl-C7-substituted fluoroquinolone 8 was prepared by similar treatment of the compound 6 with 5-mercapto-1-methyltetrazole (4a) in the presence of DABCO in MeCN under reflux, as shown in Chart 2.

Subsequently, we attempted the similar ring-opening reaction of ABB (3) with aniline (9a) without an additive to the

Fig. 1. Computer-Generated Drawing from X-Ray Coordinates of Compound 7b

Chart 2. Synthesis of 7-Sulfenylquinolone $\mathbf{8}$

Table 2. Reaction of ABB (3) with Aniline in the Presence of Various Lewis Acids

Entry	Lewis acid	Time (h)	Yield $(\%)^{a, b)}$	Recovery (\%) of aniline
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	3	29	51
2	TMSOTf	3	38	25
3	$\mathrm{Zn}(\mathrm{OTf})_{2}$	1	61	20
4	$\mathrm{Mg}(\mathrm{OTf})_{2}$	2	59	25
5	$\mathrm{Cu}(\mathrm{OTf})_{2}$	3	52	15
6	$\mathrm{Yb}(\mathrm{OTf})_{3}$	2	57	18
7	$\mathrm{Hf}(\mathrm{OTf})_{4}$	2	36	16
8	${\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}}_{3}^{3}$	57	13	
9	${\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}}^{\mathrm{LiClO}_{4}}$	3	61	21
10	MgCl_{2}	3	1	97
11	24	7	85	
12	TiCl_{4}	24	11	89
13	AlCl_{3}	24	18	71

a) Based on aniline. b) Determined by HPLC analysis.
case of thiols $\mathbf{4 a - f}$, but the desirable reaction did not proceed even under the reflux conditions. Then, we tried activation of ABB (3) with Brønsted acids (CSA, TFA) in the presence of aniline ($9 \mathbf{9}$), but an unknown polymer was obtained instead of the desired 3 -anilinoazetidine (10a). Thus, we examined in detail the ring-opening reaction of ABB (3) with aniline ($\mathbf{9 a}$) in the presence of various Lewis acids, as shown in Table 2.

When $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or trimethylsilyl trifluoromethanesulfonate (TMSOTf) was employed, a polymer was formed together with 3 -anilinoazetidine (10a) in 29 or 38% yield (Entries 1, 2). The similar reaction was attempted using $\mathrm{Zn}(\mathrm{OTf})_{2}$ in THF at $0^{\circ} \mathrm{C}$ for 1 h to give 3-anilinoazetidine (10a) in 61% yield (Entry 3). However, the results using other Lewis acids such as $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{Mg}(\mathrm{OTf})_{2}, \mathrm{Cu}(\mathrm{OTf})_{2}$, $\mathrm{Yb}(\mathrm{OTf})_{3}, \mathrm{Hf}(\mathrm{OTf})_{4}, \mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and LiClO_{4} were not improved (Entries 4-10). Lewis acids having chloride anion such as $\mathrm{MgCl}_{2}, \mathrm{TiCl}_{4}$, and AlCl_{3} decreased the yield of $\mathbf{1 0 a}$ as opposed to the case of $\mathrm{Zn}(\mathrm{OTf})_{2}$ or $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ (Entries 3,

Table 3. Synthesis of 3-Aminoazetidines 10a-f and New Quinolone Derivatives 11a-f

(\%an
a) Isolated yield. b) Reaction was carried out using 1.2 mol eq. of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ in MeCN as a cosolvent.

9, 11-13). After detailed investigation, $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ was shown to be relatively suitable for the ring-opening reactions of ABB (3) with aniline (9a). Thus, we chose $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ as the additive for the ring-opening reaction of ABB (3) with several amines because of its good solubility in THF, fewer by-products, and low cost.

A small amount of excess ABB (3) was allowed to react with aromatic amines $\mathbf{9 a}-\mathbf{e}$ and dibenzylamine (9f) in the presence of 2.0 mol eq of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ in THF at $0^{\circ} \mathrm{C}$ for 3 24 h to furnish the corresponding 3-aromatic aminoazetidines 10a-e in $24-53 \%$ yields and 3-dibenzylaminoazetidine (10f) in 38% yield, respectively, as shown in Table 3. When the ring-opening reaction was carried out employing a reduced amount (1.2 mol eq) of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ and MeCN as a cosolvent, the yields of $\mathbf{1 0 a}, \mathrm{b}$ were improved ($\mathbf{1 0 a}$: 65% yield, 10b: 61% yield). Unfortunately, the ring opening reaction of ABB (3) with aliphatic amines in the presence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ resulted in production of an unknown polymer. The structures of 10a-f were assigned by their characteristic ${ }^{1} \mathrm{H}$ NMR spectra and other spectroscopic analyses (see Experimental). Then, compounds $\mathbf{1 0 a}-\mathbf{f}$ were treated with compound 6 in the presence of DABCO in MeCN under reflux to afford the corresponding 7-(3-aminoazetidinyl)fluoroquinolone carboxylic acids 11a-f in $62-83 \%$ yields, as shown in Table 3. The structures of 11a-f were assigned by the spectroscopic and elemental analyses in comparison with those of 7b.

The reaction of ABB (3) with cyclic aliphatic amines was investigated as follows. Since the desirable reaction did not proceed under the same conditions as described in Table 3, we focused on N-benzyl-3-bromoazetidine (13) ${ }^{8)}$ which can be exploited to synthesize various azetidine derivatives via suitable nucleophilic substitution reaction. The compound 13

Reagents and conditions: (a) $48 \% \mathrm{HBr}, 0^{\circ} \mathrm{C}$ to r.t., $30 \mathrm{~min}, 61 \%$; (b) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $3.5 \mathrm{~h}, 39 \%$; (c) BnBr , reflux, $6 \mathrm{~h}, 61 \%$

Chart 3. Synthesis of N-Benzyl-3-bromoazetidine 13

Table 4. Reaction of $\mathbf{1 3}$ with Cyclic Aliphatic Amines

Entry	n	Base	Solvent	Yield (\%) ${ }^{a)}$
1	1	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	62
2	1	KHCO_{3}	MeCN	41
3	1	NaHCO_{3}	MeCN	59
4	1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeCN	73
5	1	CsCO_{3}	MeCN	55
6	1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	DMF	60
7	1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	DMF/H2O	52
8	1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	THF	9
9	2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeCN	66

a) Isolated yield.

Reagents and conditions: (a) $\mathrm{n}=1$: i) $2 \mathrm{~N} \mathrm{HCl} /$ ether, MeOH , r.t., 20 min , ii) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$, r.t., 50 h , or $\mathrm{n}=2: \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (b) 6, DABCO, MeCN, reflux, $2 \mathrm{~h}, \mathrm{n}=1: 61 \%$ from $14 a, n=2: 63 \%$ from 14b

Chart 4. Synthesis of New Quinolone Derivatives 16a, b
was obtained via two steps of reactions involving the ringopening reaction of $\mathrm{ABB}(3)$ with HBr to give 3-bromoazetidine hydrobromide (12) followed by benzyl protection of the N1 group, but this reaction procedure resulted in a low yield (24% total yield). We carefully examined the reaction conditions to obtain 13 from ABB (3) by one step of reaction. Thus, treatment of $\mathrm{ABB}(3)$ with benzyl bromide under reflux afforded the desired compound 13 in 61% yield (Chart $3)$.

Several reactions of $\mathbf{1 3}$ with pyrrolidine were carried out in the presence of various bases in some solvents under reflux, as shown in Table 4. We realized that $\mathrm{K}_{2} \mathrm{CO}_{3}$ was a good reagent for this substitution reaction (Entry 4) in comparison with other bases (Entries 1-3, 5). Based on screening the reaction solvents, MeCN seemed to be suitable (Entries 4, 6-8).

Thus, compounds $\mathbf{1 4 a}, \mathbf{b}$ were subjected to hydrogenolysis of the benzyl group on $\operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ to give $\mathbf{1 5 a}, \mathbf{b}$, which were
allowed to react with 6 to afford the corresponding 7 -azetidinyl quinolones 16a, \mathbf{b} in 61% yield from $\mathbf{1 4 a}$ and in 63% yield from 14b, respectively, as shown in Chart 4. The structures were shown to be $\mathbf{1 6 a}, \mathbf{b}$ on the basis of their spectroscopic data.

Kuramoto et al. reported that the potency order of C7 substituent for 1-cyclopropyl quinolones was as follows: pyrrolidine>piperazine, azetidine. ${ }^{32)}$ On the other hand, the order for 1-aminodifluorophenyl and 1-aminodifluoropyridyl quinolones was reverse to that for 1-cyclopropyl quinolones: azetidine $>$ piperazine, pyrrolidine. ${ }^{32)}$ In addition, 1-aminodifluorophenyl and 1-aminodifluoropyridyl quinolones caused mild phototoxicity, despite the substitution of a halogen atom at the C8 position. ${ }^{33)}$ Therefore, we attempted syntheses of N1-heterocyclic quinolones, as shown in Chart 5. Namely, 2,3,4,5-tetrafluorobenzoic acid 17 was converted to the known compound 19 via β-keto ester 18 by exploiting known reactions. ${ }^{34)}$ The crude product 19 was treated with various amines, such as 2 -aminothiazole, 2 -aminopyrimidine, 4-amino-1-methylcytosine, and benzylamine in EtOH or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the corresponding enamines 20a-d. Treatment of the crude enamines 20a-d with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) afforded cyclized products 21a-d in $43-63 \%$ yields. Hydrolysis of 21a-c in 6 N HCl and AcOH at $100^{\circ} \mathrm{C}$ gave the corresponding carboxylic acids $\mathbf{2 2 a}-\mathbf{c}$ in $67-95 \%$ yields. Reaction of 22a-c with 3-(4-
methoxyanilino)azetidine (10b) in the presence of DABCO in MeCN under reflux afforded decarboxylated products 23a-c in $54-83 \%$ yields. This easy decarboxylation outcome of 22a-c can be explained in terms of fairly strong electron-withdrawing effect of the heterocyclic N1 moiety. Although we attempted the nucleophilic substitution reactions of 22a-c without decarboxylation by derivatizing to their boron difluoride intermediates or by the method in the presence of $\mathrm{LiCl},{ }^{15}$) desirable products 25a-c have never been obtained. On the other hand, treatment of 21a-c with 3-(4-methoxyanilino)azetidine (10b) at room temperature or $40^{\circ} \mathrm{C}$ in MeCN afforded 7 -azetidinylquinolone ethyl esters $\mathbf{2 4 a}-\mathbf{c}$ in $56-78 \%$ yields. Alkaline hydrolysis of 24a-c followed by acidification with AcOH provided the desired N1-heterocyclic-7-azetidinyl quinolones 25a-c in 48-80\% yields, as shown in Chart 5.

Since any quinolone antibiotic bearing the sulfonamide or carbamate moiety at the N1 position has been unknown, we have done such an attempt as follows. The benzyl (Bn) group of compound 21d (see Chart 5) was removed by hydrogenolysis on Pd / C at room temperature to give compound 26 in 98% yield. Treatment of $\mathbf{2 6}$ with p-toluenesulfonyl chloride, methanesulfonyl chloride, N, N-dimethylsulfamoyl chloride, and ethyl chloroformate gave compound 27a-d in 54\%quantitative yields instead of N1-substituted products 28ad, as shown in Chart 6.

Reagents and conditions: (a) $(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 18 h ; (b) Ethylhydrogen malonate, n - BuLi , THF, $-78{ }^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}, 1 \mathrm{~h}, 68 \%$ (from 17); (c) $\mathrm{HC}(\mathrm{OEt})_{3}, \mathrm{Ac}_{2} \mathrm{O}, 135^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (d) $\mathrm{R}^{1} \mathrm{NH}_{2}\left(\mathrm{R}^{1}=\right.$ thiazol-2-yl, pyrimidin-2-yl, 1-methylcytosin-4-yl, benzyl), EtOH or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $1-25$ h; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, r.t., $15-22 \mathrm{~h}$, 21a: 58%, 21b: 63%, 21c: 43%, 21d: 53% (3 steps); (f) $6 \mathrm{~N} \mathrm{HCl}, \mathrm{AcOH}, 100^{\circ} \mathrm{C}$, 30 min-2 h, 22a: 77\%, 22b: 95\%, 22c: 67\%; (g) 10b, DABCO, MeCN, reflux, 0.5 h-16 h, 23a: 65\%, 23b: 54\%, 23c: 83\%; (h) 10b, $\mathrm{DABCO}, \mathrm{MeCN}$, r.t. or $40^{\circ} \mathrm{C}, 9-45 \mathrm{~h}, \mathbf{2 4 a}: 63 \%, 24 \mathrm{~b}$: $78 \%, 24 \mathrm{c}: 67 \%$; (i) (1) $\mathrm{NaOH}, \mathrm{EtOH}$, r.t. or $\mathrm{LiOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (2) $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$, r.t., $2-6$ h, 25a: 80%, 25b: $62 \%, 25 \mathrm{c}$: 48%

Chart 5. Synthesis of N1-Heterocyclic Quinolones

21d $\xrightarrow{(a)}$

Reagents and conditions: (a) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, r.t., $20 \mathrm{~h}, 98 \%$; (b) $\mathrm{RCl}(\mathrm{R}=p$-toluenesulfonyl, methanesulfonyl,
N, N-dimethylsulfamoyl, ethoxycarbonyl), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5-3 \mathrm{~h}, \mathbf{2 7 a}$: quant, 27b: quant, 27c: $54 \%, 27 \mathrm{~d}: 94 \%$
Chart 6. Reaction of $\mathbf{2 1 d}$ with p-Toluenesulfonyl Chloride and the Related Chlorides

The structure of product 27a was precisely determined by X-ray crystallographic analysis, as represented in Fig. 2. Other products 27b-d were determined as the aromatized quinoline structures based on their spectroscopic analyses in comparison with those of 27a. ${ }^{35)}$

The minimum inhibitory concentrations (MICs) of the synthesized compounds $\mathbf{7 a - f}, \mathbf{8}$, and 11a, \mathbf{f} against several representative Gram-positive and Gram-negative bacteria utilizing a conventional agar dilution procedure ${ }^{36)}$ are listed in Table 5, along with the data for levofloxacin (LVFX) for comparison. ${ }^{37,38)}$ The compounds $7 \mathbf{a}-\mathbf{f}$ bearing 3 -sulfenylazetidines as the C 7 substituent of $\mathbf{6}$ exhibited moderate antibacterial activities against each species of bacteria. The antibacterial activities (except for those against Escherichia coli) of 7a, b and 7e are somewhat potent among the 7-(3-sulfenyl-azetidin-1-yl)fluoroquinolone series compounds $7 \mathbf{a}-\mathbf{f}$. The antibacterial activities of 7e against methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA species (S. aureus $1-4$ in Table 5), some of which have amino acid mutation in GyrA of DNA gyrase and ParC of topoisomerase IV, were shown to be superior to those of LVFX. However,

Fig. 2. Computer-Generated Drawing from X-Ray Coordinates of Compound 27a

Table 5. Antibacterial Activity of 7-Azetidinylquinolones and Levofloxacin

Strain	Characteristics ${ }^{\text {a }}$	Amino acid mutation		$\mathrm{MIC}^{\text {b }}(\mu \mathrm{g} / \mathrm{ml})$									
		DNA gyrase	Topoisomerase IV	7 a	7b	7c	7d	7 e	7f	11a	11f	8	LVFX ${ }^{\text {c }}$
S. aureus ATCC29213	MSSA			0.125	0.125	0.5	1	0.063	2	0.016	>64	16	0.25
S. aureus 1	MRSA			0.125	0.25	1	1	0.063	2	0.031	>64	16	0.5
S. aureus 2	MRSA	GyrA; E88K	ParC; S80F	2	4	4	2	1	32	0.5	>64	>16	8
S. aureus 3	MRSA	GyrA; S84L	ParC; S80Y	2	2	4	2	1	32	0.5	>64	>16	4
S. aureus 4	MRSA	$\begin{aligned} & \text { GyrA; S84L, } \\ & \text { E88K } \end{aligned}$	$\begin{aligned} & \text { ParC; S80F, } \\ & \text { E84K } \end{aligned}$	>32	>16	32	32	32	>32	32	>64	>16	>128
E. faecalis ATCC19433				1	1	4	2	0.25	16	0.25	>64	>16	2
E. faecium ATCC19434				4	8	32	32	4	>32	4	>64	>16	4
S. pneumoniae 1	PSSP			2	2	4	2	1	32	0.5	>64	>16	2
S. pneumoniae 2	PRSP	GyrA; wt	ParC; wt	2	2	2	2	1	32	0.5	>64	>16	2
H. influenzae Rd		GyrA; wt	ParC; wt	0.031	0.016	1	1	0.031	2	0.016	16	0.125	0.016
H. influenzae 1	Δ acrB	GyrA; wt	ParC; wt	≤ 0.008	≤ 0.008	0.5	0.5	≤ 0.008	0.25	≤ 0.008	8	0.125	≤ 0.008
H. influenzae 2	BLNAR			0.031	0.016	1	1	0.031	0.5	0.016	32	0.25	0.016
M. catarrhalis				0.063	0.125	0.5	0.5	0.063	2	0.031	>64	4	0.063
K. pneumoniae				2	2	32	8	2	>32	1	>64	16	0.125
E. coli 1				1	2	16	8	1	32	1	>64	8	0.063
E. coli 2				1	1	8	8	1	32	0.5	>64	16	0.063
E. coli 3	Δ acrAB			0.125	0.25	8	8	1	32	0.5	64	1	0.031
P. aeruginosa PAO1				8	8	>32	>32	8	>32	8	>64	>16	0.5
P. aeruginosa 1		GyrA; T83I		>32	>16	>32	>32	>32	>32	>128	>64	>16	16
P. aeruginosa 2		GyrA; T83I	ParC; S87L	>32	>16	>32	>32	>32	>32	>128	>64	>16	64
P. aeruginosa 3		GyrA; T83I, D87G	ParC; S87L	>16	>16	>32	>32	>32	>32	>128	>64	>16	>128

Table 6. Antibacterial Activity of 7-Azetidinylquinolones and Levofloxacin

Strain	Characteristics ${ }^{\text {a }}$	Amino acid mutation		$\mathrm{MIC}^{\text {b }}(\mu \mathrm{g} / \mathrm{ml})$					
		DNA gyrase	Topoisomerase IV	11a	11b	11c	11d	11e	LVFX ${ }^{\text {c }}$
S. aureus 1	MRSA			0.016	0.031	0.031	0.063	0.031	0.5
S. aureus 3	MRSA	GyrA; S84L	ParC; S80Y	0.5	0.25	0.25	0.5	1	4
S. aureus 4	MRSA	GyrA; S84L, E88K	GyrA; S80F, E85K	>64	16	16	16	>16	>128
E. faecalis ATCC19433				0.5	0.25	0.5	1	2	2
E. faecium ATCC19434				8	4	8	16	16	4
S. pneumoniae R6				0.25	0.063	0.5	0.5	0.125	1
S. pneumoniae 3	PSSP	GyrA; S81F	ParC; D83N	2	0.5	2	4	1	16
S. pneumoniae 4	PRSP	GyrA; S81F	ParC; wt	2	0.25	4	4	1	8
S. pneumoniae 5		GyrA; S81L	ParC; K137L	0.25	0.125	0.25	0.5	1	16
S. pneumoniae 6		GyrA; wt	ParC; S79F	0.5	0.125	0.5	1	0.125	2
S. pneumoniae 7		GyrA; S81F	ParC; S79F	4	0.5	8	16	1	16
H. influenzae Rd		GyrA; wt	ParC; wt	0.016	0.016	0.031	0.063	0.031	0.016
H. influenzae 1	$\Delta \mathrm{acrB}$	GyrA; wt	ParC; wt	≤ 0.008	0.016				
H. influenzae 3		GyrA; S84L		0.5	0.5	1	1	0.5	0.125
H. influenzae 4		GyrA; S84L	ParC; S84R, E88K	1	0.5	2	4	2	0.5
H. influenzae 5		GyrA; S84L, D88A	ParC; S84R	32	8	>16	>16	>16	4
M. catarrhalis				0.016	0.031	0.031	0.063	0.125	0.063
K. pneumoniae				1	1	2	4	16	0.125
E. coli 2				0.25	0.25	0.5	1	2	0.063
E. coli 3	Δ acrAB			0.031	0.031	0.063	0.125	0.25	0.016
P. aeruginosa PAO1				4	4	16	>16	>16	0.5
P. aeruginosa 1		GyrA; T83I		>64	>16	>16	>16	>16	16
P. aeruginosa 3		GyrA; T83I, D87G	ParC; S87L	>64	>16	>16	>16	>16	>128

a) MSSA: methicillin-susceptible Staphylococcus aureus, MRSA: methicillin-resistant Staphylococcus aureus, PSSP: penicillin-susceptible Staphylococcus pneumoniae, PRSP: penicillin-resistant Staphylococcus pneumoniae b) MIC: minimum inhibitory concentration against microorganisms. c) LVFX: levofloxacin.

Table 7. Antibacterial Activity of 7-Azetidinylquinolones and Levofloxacin

Strain	Characteristics ${ }^{\text {a }}$	Amino acid mutation		$\mathrm{MIC}^{\text {b }}(\mu \mathrm{g} / \mathrm{ml})$						
		DNA gyrase	Topoisomerase IV	16a	16b	25a	25b	25c	11b	LVFX ${ }^{\text {c }}$
S. aureus ATCC29213	MSSA			0.25	0.12	4	>64	16	≤ 0.008	0.25
S. aureus 1	MRSA			0.25	0.25	16	>64	16	0.016	0.25
S. aureus 2	MRSA	GyrA; E88K	ParC; S80F	8	4	>64	>64	>64	0.12	8
S. aureus 3	MRSA	GyrA; S84L	ParC; S80Y	4	2	>64	>64	>64	0.25	4
S. aureus 4	MRSA	GyrA; S84L, E88K	ParC; S80F, E84K	>64	>64	>64	>64	>64	16	>64
E. faecalis ATCC19433				2	1	64	>64	>64	0.12	2
E. faecium ATCC19434				16	8	>64	>64	>64	2	4
S. pneumoniae 1	PSSP			2	2	>64	>64	>64	0.12	1
S. pneumoniae 2	PRSP	GyrA; wt	ParC; wt	1	0.5	32	>64	>64	0.03	0.5
S. pneumoniae 3	PSSP	GyrA; S81F	ParC; D83N	16	8	>64	>64	>64	0.25	16
S. pneumoniae 4	PRSP	GyrA; S81F	ParC; wt	32	16	>64	>64	>64	0.25	8
S. pneumoniae 8		GyrA; S81Y		32	32	>64	>64	>64	1	32
H. influenzae Rd		GyrA; wt	ParC; wt	0.016	≤ 0.008	2	>64	4	0.016	0.016
H. influenzae 1	Δ acrB	GyrA; wt	ParC; wt	≤ 0.008	≤ 0.008	0.12	>64	0.5	≤ 0.008	≤ 0.008
H. influenzae 5		GyrA; S84L, D88A	ParC; S84R	16	8	>64	>64	>64	8	4
H. influenzae 6		GyrA; 85Adelete, D88Y	ParC; S84R	16	8	>64	>64	>64	8	4
M. catarrhalis				0.06	0.06	4	>64	16	0.03	0.06
E. coli 2				0.25	0.06	>64	>64	>64	0.25	0.06
E. coli 3	Δ acrAB			≤ 0.008	≤ 0.008	4	>64	8	0.016	0.016
P. aeruginosa PAO1				4	1	>64	>64	>64	2	0.5
P. aeruginosa 1		GyrA; T83I		64	64	>64	>64	>64	>64	16
P. aeruginosa 3		GyrA; T83I, D87G	ParC; S87L	>64	>64	>64	>64	>64	>64	>64

a) MSSA: methicillin-susceptible Staphylococcus aureus, MRSA: methicillin-resistant Staphylococcus aureus, PSSP: penicillin-susceptible Staphylococcus pneumoniae, PRSP: penicillin-resistant Staphylococcus pneumoniae b) MIC: minimum inhibitory concentration against microorganisms. c) LVFX: levofloxacin.

Compounds 16a, b and 25a-c together with 11b and LVFX were subjected to the antibacterial screening test, as shown in Table 7. The compounds $\mathbf{1 6 a}, \mathbf{b}$ exhibited comparable antibacterial activities with those of LVFX against both Gram-positive and Gram-negative bacteria. The antibacterial
activities of $\mathbf{1 6 a}, \mathbf{b}$ seemed to be similar to those of $\mathbf{1 1 b}$ against Gram-negative bacteria and to be 4-64 times lower than those of 11b against Gram-positive bacteria. On the other hand, N1-heterocyclic quinolones 25a-c did not show activities.

In conclusion, this work demonstrated a convenient synthesis of 3-sulfenylazetidine derivatives $\mathbf{5 a}$ - \mathbf{f} and 3aminoazetidine derivatives $\mathbf{1 0 a}-\mathbf{f}$ utilizing ABB (3). N-Ben-zyl-3-bromoazetidine (13) was readily prepared by treatment of $\mathbf{3}$ with benzyl bromide, and exploited for the synthesis of 3-pyrrolidine and 3-piperidine-substituted azetidine derivatives $\mathbf{1 5 a}, \mathbf{b}$. Several azetidine derivatives were successfully introduced into fluoroquinolone carboxylic acid 6 to give the corresponding fluoroquinolone antibiotics $\mathbf{7 a - f}, 11 \mathbf{a}-\mathbf{f}$, and $\mathbf{1 6 a}, \mathbf{b}$. Most of the series of fluoroquinolones exhibited more potent activity profiles versus Gram-positive bacteria than versus Gram-negative bacteria. In particular, compounds $11 \mathbf{a}-\mathbf{e}$ exhibited the fairly potent activities against quinolone-susceptible and intermediate MRSA in comparison with the activities of a clinically used fluoroquinolone, LVFX. Although we synthesized 7 -azetidinylquinolones 25a-c bearing N1-heterocyclic groups, their antibacterial activities were remarkably weak.

Experimental

All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR420 IR Fourier transform spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-AL300 (300 MHz) or JEOL JNM-AL400 $(400 \mathrm{MHz})$ spectrometer. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM-AL300 $(75 \mathrm{MHz})$ or JEOL JNM-AL400 $(100 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are given in δ values (ppm) using tetramethylsilane (TMS) as an internal standard. Electron impact (EI)-MS and FAB-MS were recorded on a JEOL JMS SX-120A spectrometer. Electron spray ionization (ESI)-MS were recorded on a Waters LCT Premier spectrometer. Elementary combustion analyses were determined by a Yanaco CHN CORDER MT5. All reactions were monitored by TLC employing $0.25-\mathrm{mm}$ silica gel plates (Merck 5715; $60 \mathrm{~F}_{254}$). Column chromatography was carried out on silica gel [Kanto Chemical 60N (spherical, neutral); 63-210 $\mu \mathrm{m}$] or basic alumina (Merck 1076; 90 active basic). X-Ray crystal structure data were collected using a Rigaku RAXIS-RAPID diffractometer. All reagents were used as purchased.
Procedure (A) for the Preparation of 3-Sulfenylazetidines 5 To a solution of 5-mercapto-1-methyltetrazole ($\mathbf{4 a}, 141.1 \mathrm{mg}, 1.21 \mathrm{mmol}$) in THF $(5 \mathrm{ml})$ was added dropwise $\mathrm{ABB}(\mathbf{3}, c a .0 .1 \mathrm{~mol} / 1$ in THF, 14.5 ml , $c a$. $1.45 \mathrm{mmol})^{1)}$ at $-5^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1$, v / v) to afford $\mathbf{5 a}(173.0 \mathrm{mg}, 83 \%)$ as a colorless oil.

3-(1-Methyltetrazol-5-yl)thioazetidine (5a): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 2.10(\mathrm{brs}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 33.3,39.3,54.1,153.0$; EI-MS Calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{~S}$ MW 171.0579, Found $m / z 171.0580\left(\mathrm{M}^{+}\right)$.

3-(4-Methyl-4H-1,2,4-triazol-5-yl)thioazetidine (5b): Pale yellow oil. ${ }^{1} \mathrm{H}-$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 4.44$ $(\mathrm{m}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 32.11,32.13,41.0$, 54.9, 147.6, 151.0; EI-MS Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}$ MW 170.0626, Found m / z $170.0615\left(\mathrm{M}^{+}\right)$.
Procedure (B) for the Preparation of 3-Sulfenylazetidines 5 To a solution of 2-mercaptobenzothiazole ($4 \mathbf{c}, 203.6 \mathrm{mg}, 1.22 \mathrm{mmol}$) in THF (5 ml) was added dropwise $\operatorname{ABB}(\mathbf{3}, c a .0 .1 \mathrm{~mol} / 1 \mathrm{in} \mathrm{THF}, 14.5 \mathrm{ml}, c a .1 .45 \mathrm{mmol})^{1)}$ at $-5^{\circ} \mathrm{C}$. After being stirred at room temperature for 24 h , the reaction mixture was added dropwise to 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ with stirring. The precipitate was collected by filtration and washed subsequently with THF, CHCl_{3}, and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{5 c}(204.2 \mathrm{mg}, 65 \%)$ as a white powder.

3-(Benzo[b]thiazol-2-yl)thioazetidine Hydrochloride (5c): White powder $(\mathrm{MeOH}), \mathrm{mp} 124-125.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 4.25-4.40$ $(\mathrm{m}, 2 \mathrm{H}), 4.58-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.91(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.86-7.97(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 37.9,53.5,122.5$, 122.7, 126.0, 127.5, 136.3, 154.1, 164.7; IR (KBr) 2942, 1426, $1310 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{~S}_{2}$ MW 223.0360, Found $m / z 223.0364$ $\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$.
3-(Benzo[b]oxazol-2-yl)thioazetidine Hydrochloride (5d): White powder (MeOH); mp 138-139.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 4.34-4.49$ $(\mathrm{m}, 2 \mathrm{H}), 4.58-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.85(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 2 \mathrm{H})$,
7.53-7.71 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 36.7,53.2,111.2$, 119.7, 125.9, 126.0, 142.6, 153.1, 163.2; IR (KBr) 2855, 1600, 1504, $1454 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}$ MW 207.0604, Found m / z $207.0592\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$.
3-(Pyrimidin-2-yl)thioazetidine Hydrochloride (5e): Pale yellow powder (MeOH); mp 118- $120^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 4.11-$ $4.29(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.74(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 1 \mathrm{H}), 8.60-8.66(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 35.8,53.3,119.1,159.3$ 171.3; IR (KBr) 2958, 2291, 1596, $1518 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~S}$ MW 168.0605, Found $m / z 168.0595\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$.

3-p-Tolylthioazetidine Hydrochloride (5f): White powder (MeOH); mp $123.5-124.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.86-4.13$ $(\mathrm{m}, 2 \mathrm{H}), 4.14-4.44(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 9.36 (br s, 1H); IR (KBr) 2970, 2360, 1894, 1496, $1435 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NS}$ MW 180.0854, Found $m / z 180.0847\left(\mathrm{M}^{+}-\mathrm{Cl}\right)$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14}$ ClNS: C, 55.67; H, 6.54; N, 6.49. Found: C, 55.76; H, 6.54; N, 6.40.

Typical Procedure for the Preparation of New Quinolone 7 To a solution of 1-cyclopropyl-4-oxo-6,7,8-trifluoro-1,4-dihydroquinoline-3-carboxylic acid ($\mathbf{6}, 207.0 \mathrm{mg}, 0.73 \mathrm{mmol}$) and $5 \mathbf{5}(150.0 \mathrm{mg}, 0.88 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{ml})$ was added $\mathrm{DABCO}(245.7 \mathrm{mg}, 2.19 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 22 h and cooled in an ice bath. The precipitate was collected by filtration and washed subsequently with $\mathrm{H}_{2} \mathrm{O}$, EtOH , and $\mathrm{Et}_{2} \mathrm{O}$ to afford $7 \mathbf{7 a}(155.1 \mathrm{mg}, 49 \%)$ as colorless needles.

1-Cyclopropyl-6,8-difluoro-7-[3-(1-methyltetrazol-5-ylthio)azetidine-1-yl]-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (7a): Colorless needles (THF-MeOH-CHCl ${ }_{3}$); mp 249-249.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $1.07-1.39(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 4.47-4.64(\mathrm{~m}, 2 \mathrm{H})$, $4.65-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.11(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=1.5,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.70(\mathrm{~s}, 1 \mathrm{H}), 14.74(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2650, 1723, 1627, $1474 \mathrm{~cm}^{-1}$; FABMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$ MW 435.1041, Found $\mathrm{m} / \mathrm{z} 435.1051$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 49.55 ; \mathrm{H}, 3.76 ; \mathrm{N}, 19.14$. Found: C, 49.77; H, 3.71; N, 19.35.

1-Cyclopropyl-6,8-difluoro-7-[3-(4-methyl-4H-1,2,4-triazol-5-ylthio)aze-tidine-1-yl]-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (7b): Colorless prisms (THF-MeOH-CHCl $)_{3}$; mp $255-256.5^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.05-1.34(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.99(\mathrm{~m}, 1 \mathrm{H})$, $4.40-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.92-5.12(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 14.80(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2503, 1712, 1620, $1466 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}$ S MW 434.1119, Found $m / z 434.1098\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$: C, 52.48; H, 3.94; N, 15.99. Found: C, 52.65; H, 3.95; N, 16.16.

7-[3-(Benzo[b]thiazol-2-ylthio)azetidine-1-yl]-1-cyclopropyl-6,8-diflu-oro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (7c): Colorless powder (THF-MeOH-CHCl ${ }_{3}$); mp 246- $247^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $1.09-1.31(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.90$ $(\mathrm{m}, 1 \mathrm{H}), 4.97-5.14(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.93(\mathrm{~m}, 3 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 14.80(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2876, 1725, 1626, $1456 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ MW 486.0786, Found m / z 486.0758 ($\left.\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 56.69 ; \mathrm{H}, 3.67 ; \mathrm{N}$, 8.35. Found: C, 56.90 ; H, 3.53; N, 8.65.

7-[3-(Benzo[b]oxazol-2-ylthio)azetidine-1-yl]-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (7d): Colorless needles (THF-MeOH-CHCl ${ }_{3}$); mp $253.5-254{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $1.02-1.35(\mathrm{~m}, 4 \mathrm{H}), 3.79-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.88$ $(\mathrm{m}, 1 \mathrm{H}), 4.96-5.17(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.54-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 14.79(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2720, 1719, 1627, $1461 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ MW 470.0972, Found $m / z 470.0986\left(\mathrm{M}^{+}+\mathrm{H}\right) ;$ Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ S: C, 58.64; H, 3.72; N, 8.80. Found: C, 58.84; H, 3.65; N, 8.95.

1-Cyclopropyl-6,8-difluoro-4-oxo-7-[3-(pyrimidin-2-ylthio)azetidine-1-yl]-1,4-dihydroquinoline-3-carboxylic Acid (7e): Pale yellow needles (THF-MeOH- CHCl_{3}); mp $210{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $1.05-1.38(\mathrm{~m}, 4 \mathrm{H}), 3.85-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.72$ $(\mathrm{m}, 1 \mathrm{H}), 4.90-5.11(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=1.6,12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.49-8.63(\mathrm{~m}, 2 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 14.84(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2718, 1724, $1626 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ MW 431.0965, Found m / z $431.0989\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$: C, 55.53 ; H, 3.79; N, 12.82. Found: C, $55.81 ;$ H, 3.75 ; N, 13.02 .

1-Cyclopropyl-6,8-difluoro-4-oxo-7-(3-p-tolylthioazetidine-1-yl)-1,4-di-hydroquinoline-3-carboxylic Acid (7f): Colorless needles (acetone- $\mathrm{Et}_{2} \mathrm{O}$); $\mathrm{mp} 211.5-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.03-1.31(\mathrm{~m}, 4 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.46(\mathrm{~m}, 2 \mathrm{H})$,
$4.78-4.92(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (dd, $J=1.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 14.84(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{IR}(\mathrm{KBr}) 2681,1724$, 1620, $1462 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ MW 443.1253, Found $m / z 443.1241\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.31$; H, 4.55; N, 6.33. Found: C, 62.43 ; H, 4.56; N, 6.33.
1-Cyclopropyl-6,8-difluoro-7-(1-methyltetrazol-5-yl)-4-oxo-1,4-dihy-droquinoline-3-carboxylic Acid (8) To a solution of 1-cyclopropyl-4-oxo-6,7,8-trifluoro-1,4-dihydroquinoline-3-carboxylic acid $\quad(6,141.6 \mathrm{mg}$, 0.50 mmol) and 5-mercapto-1-methyltetrazole $(58.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{MeCN}(7 \mathrm{ml})$ was added DABCO ($336.5 \mathrm{mg}, 1.50 \mathrm{mmol}$) at room temperature. The mixture was refluxed for 20 h and cooled in an ice bath. The precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$. The crude solid was recrystallized from $\mathrm{THF}-\mathrm{MeOH}-\mathrm{CHCl}_{3}$ to afford $10(100.3 \mathrm{mg}, 53 \%)$ as a white powder. $\mathrm{mp} 218-218.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.23-1.35(\mathrm{~m}, 4 \mathrm{H}), 4.02-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~s}$, $3 \mathrm{H}), 8.14(\mathrm{dd}, J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 13.99(\mathrm{~s}, 1 \mathrm{H})$; ESI-MS Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ MW 380.0629, Found $m / z 380.0631\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$: C, 47.49; H, 2.92; N, 18.46. Found: C, 47.39; H, 3.21; N, 18.16.

Typical Procedure for the Preparation of 3-Amino Azetidine 10 To a solution of aniline $(0.09 \mathrm{ml}, 1.00 \mathrm{mmol})$ and $\mathrm{ABB}(\mathbf{3}, c a .0 .1 \mathrm{~mol} / 1 \mathrm{in} \mathrm{THF}$, 10.3 ml , ca. 1.2 mmol$)^{1)}$ in THF was added a suspension of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ $(446.4 \mathrm{mg}, 2.00 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, 6 \mathrm{~N} \mathrm{NaOH}$ was added to the reaction mixture and then extracted with CHCl_{3}. The organic layer was washed with brine and then dried over anhydrous MgSO_{4}. Evaporation in vacuo afforded a crude product, which was purified by column chromatography on basic alumina with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ $(10: 1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 0 a}(78.6 \mathrm{mg}, 53 \%)$ as a pale yellow amorphous powder.

3-Anilinoazetidine $(\mathbf{1 0 a})^{39}$: Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.05(\mathrm{brs}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.82-4.00(\mathrm{~m}$, $2 \mathrm{H}), 4.03(\mathrm{brs}, 1 \mathrm{H}), 4.26-4.59(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.84$ $(\mathrm{m}, 1 \mathrm{H}), 7.07-7.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 48.13,55.0$, $112.8,117.7,129.1,146.4 ;$ IR (KBr) 2933, 1602, 1498, $1317 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2}$ MW 148.1002, Found $m / z 148.1000\left(\mathrm{M}^{+}\right)$.

3-(4-Methoxyanilino)azetidine (10b): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.91(\mathrm{brs}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.92(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 49.3,55.4,55.7,114.4,115.0,140.7,152.5 ;$ IR $(\mathrm{KBr}) 3255,2931,1508,1251,1166,1039,821 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ MW 178.1106, Found $m / z 178.1088\left(\mathrm{M}^{+}\right)$.

3-(p-Tolylamino)azetidine (10c): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.79(\mathrm{brs}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.92$ $(\mathrm{m}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 32.1,32.1,41.0,54.9,147.6,151.0$; IR (KBr) 3289, 2931, 1878, 1619, 1525, 1261, 985, $808 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$ MW 162.1157, Found $m / z 162.1166\left(\mathrm{M}^{+}\right)$.
3-(4-Chloroanilino)azetidine (10d): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.79($ br s, 1 H$), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H})$, $4.30(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{brs}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 48.5,55.1,114.1,122.5,129.2,145.2$; IR $(\mathrm{KBr}) 3289,2946,1872,1596,1490,1259,985,815 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClN}_{2}$ MW 182.0611, Found $m / z 182.0597\left(\mathrm{M}^{+}\right)$.

3-(4-Ethoxycarbonylanilino)azetidine (10e): Pale yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.36(\mathrm{t}, 3 \mathrm{H}), 1.79(\mathrm{brs}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}$, $2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H); IR (neat) $3357,2950,1693,1604,1527,1274,1174,1105 \mathrm{~cm}^{-1}$; EIMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ MW 220.1212, Found $m / z 220.1193\left(\mathrm{M}^{+}\right)$.
3-Dibenzylaminoazetidine (10f): Pale yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 1.61-2.05(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.57(\mathrm{~m}, 6 \mathrm{H})$, $3.57-3.69(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.42(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $52.9,55.1,57.9,127.0,128.1,129.0,138.6$; IR (neat) 3289, 3060, 2943, 2866, 1603, 1493, 1454, $1367 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$ MW 253.1705 , Found $m / z 253.1706\left(\mathrm{M}^{+}\right)$.

Typical Procedure for the Preparation of New Quinolone 11 To a solution of 1-cyclopropyl-4-oxo-6,7,8-trifluoro-1,4-dihydroquinoline-3-carboxylic acid ($\mathbf{6}, 120.2 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\mathbf{1 0 a}(62.9 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{ml})$ was added DABCO $(142.8 \mathrm{mg}, 1.27 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 0.5 h and cooled in an ice bath. The precipitate was collected by filtration and then washed with $\mathrm{H}_{2} \mathrm{O}$, EtOH , and $\mathrm{Et}_{2} \mathrm{O}$ to afford 11a ($130.9 \mathrm{mg}, 76 \%$) as a pale yellow powder.
7-(3-Anilinoazetidin-1-yl)-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic Acid (11a): Pale yellow powder (THF-MeOHCHCl_{3}); mp $278{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.05-1.33(\mathrm{~m}$, $4 \mathrm{H}), 3.84-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.41-$
$4.54(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.95(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.87(\mathrm{~m}, 1 \mathrm{H})$, $7.17-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.79$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 14.87$ (s, 1H); IR (KBr) 2642, 1724, 1624, $1466 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 412.1485, Found $m / z 412.1473\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}$, 64.23; H, 4.66; N, 10.21. Found: C, 64.10; H, 4.96; N, 10.12.

1-Cyclopropyl-6,8-difluoro-7-[3-(4-methoxyanilino)azetidine-1-yl]-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (11b): White powder (DMF); mp 261-262 ${ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, ~ D M S O) ~ \delta: 1.09-1.21(\mathrm{~m}$, $4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 2 \mathrm{H})$, $5.93(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.73(\mathrm{~m}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3407, 2360, 1725, 1629, $1517 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ MW 442.1578, Found $m / z 442.1549$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.33 ; \mathrm{H}, 4.92 ; \mathrm{N}$, 9.33. Found: C, 61.60; H, 4.86; N, 9.50.

1-Cyclopropyl-6,8-difluoro-4-oxo-7-[3-(p-tolylamino)azetidine-1-yl]-1,4-dihydroquinoline-3-carboxylic Acid (11c): White powder (DMF); mp 253$255{ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.10-1.28(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H})$, $6.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~m}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$, $14.88(\mathrm{~s}, 1 \mathrm{H})$; IR $(\mathrm{KBr}) 3361,1722,1629,1525,1471 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 426.1629, Found $m / z 426.1639\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
7-[3-(4-Chloroanilino)azetidine-1-yl]-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (11d): Pale yellow powder (DMF); mp $286-288^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO) $\delta: 1.10-1.20(\mathrm{~m}$, $4 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~m}, 3 \mathrm{H})$, $7.15(\mathrm{~d}, 2 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 15.01(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3409, 3048, 2360, 1722, $1629 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 446.1083, Found $m / z 446.1083\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 59.27; H, 4.07; N, 9.42. Found: C, 58.98; H, 4.28; N, 9.50.

1-Cyclopropyl-6,8-difluoro-7-[3-(4-ethoxycarbonylanilino)azetidine-1-yl]-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (11e): White powder (DMF); mp 261-263 ${ }^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.12-1.29$ $(\mathrm{m}, 4 \mathrm{H}), 1.37(\mathrm{t}, 3 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.38(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.73$ $(\mathrm{m}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 14.86(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3369, 2979, 2360, 1729, $1698 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$ MW 484.1684, Found $m / z 484.1646\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}: \mathrm{C}, 62.11 ; \mathrm{H}, 4.80$; N, 8.69. Found: C, 61.82; H, 4.79; N, 8.72.

1-Cyclopropyl-7-(3-dibenzylaminoazetidin-1-yl)-6,8-difluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (11f): Pale yellow powder (THFMeOH) $; \mathrm{mp} 213-215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.08-1.29(\mathrm{~m}$, $4 \mathrm{H}), 3.60(\mathrm{~s}, 4 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.27(\mathrm{~m}$, $2 \mathrm{H}), 4.34-4.45(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.77(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.69(\mathrm{~s}, 1 \mathrm{H}), 14.90(\mathrm{~s}, 1 \mathrm{H})$; FAB-MS Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 516.2084, Found $m / z 516.2099\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 69.89; H, 5.28; N, 8.15. Found: C, 69.59; H, 5.52; N, 8.08.

Synthesis of \boldsymbol{N}-Benzyl-3-bromoazetidine 13 To $\mathrm{ABB}(\mathbf{3}, c a .0 .1 \mathrm{~mol} / \mathrm{l}$ in THF, 100 ml , ca. 10 mmol$)^{1)}$ was added dropwise a $\mathrm{HBr}\left(48 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}$, $3.6 \mathrm{ml}, 32 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . The reaction mixture was evaporated in vacuo to give a residue, which was washed with CHCl_{3} and crystallized from $\mathrm{MeOH}-\mathrm{AcOEt}$ to give compound 12 ($1.4 \mathrm{~g}, 61 \%$) as colorless needles.

Method (A): To a solution of $\mathbf{1 2}(506.7 \mathrm{mg}, 2.36 \mathrm{mmol})$ and potassium carbonate $(678 \mathrm{mg}, 4.9 \mathrm{mmol})$ in DMF $(2.3 \mathrm{ml})$ was added benzyl bromide $(278 \mathrm{ml}, 2.36 \mathrm{mmol})$ at room temperature. After being stirred at room temperature for 3.5 h , the reaction mixture was treated with water and then extracted with CHCl_{3}. The extract was dried over anhydrous MgSO_{4}. Evaporation in vacuo afforded a crude product, which was purified by column chromatography on silica gel with n-hexane-AcOEt ($4: 1, \mathrm{v} / \mathrm{v}$) to yield 13 ($205.4 \mathrm{mg}, 39 \%$) as a colorless oil.

Method (B): To ABB (3, ca. $0.1 \mathrm{~mol} / 1 \mathrm{in} \mathrm{THF}, 125 \mathrm{ml}, c a .12 .5 \mathrm{mmol})^{1)}$ was added dropwise benzyl bromide $(1.5 \mathrm{ml}, 12.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred under reflux for 6 h . The reaction mixture was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with n-hexane-AcOEt ($4: 1, \mathrm{v} / \mathrm{v}$) to yield $\mathbf{1 3}$ $(1.72 \mathrm{~g}, 61 \%)$ as a colorless oil.

3-Bromoazetidine Hydrobromide (12): Colorless needles, mp $119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 4.26(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 4.8-5.0(\mathrm{~m}, 1 \mathrm{H})$; IR (KBr) 3003, 2881, 2630, 1441, 1338, 1269, $1229 \mathrm{~cm}^{-1}$. EI-MS Calcd for $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NBr}$ MW 134.9684, $\mathrm{M}+2$ 136.9663, Found $m / z 134.9684\left(\mathrm{M}^{+}\right)$, $136.9684\left(\mathrm{M}^{+}+2\right)$. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NBr}_{2}: \mathrm{C}, 16.61 ; \mathrm{H}, 3.25 ; \mathrm{N}, 6.46$. Found: C, 16.60; H, 3.21; N, 6.47.
N-Benzyl-3-bromoazetidine (13): Colorless oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 7.21-$
$7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 34.4,63.5,64.8,127.2,128.1$, 128.3, 128.3, 128.6, 137.3; ESI-MS Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2}$ MW 226.0231, Found $m / z 226.0224\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Reaction of 13 with Aliphatic Amines To a solution of $\mathbf{1 3}$ (989 mg , $4.37 \mathrm{mmol})$ and potassium carbonate $(1.8 \mathrm{~g}, 13.1 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{ml})$ was added pyrrolidine $(1.1 \mathrm{ml}, 13.1 \mathrm{mmol})$ at room temperature. After being stirred at $80^{\circ} \mathrm{C}$ for 6 h , the reaction mixture was evaporated in vacuo to give an oily residue, which was purified by column chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1, \mathrm{v} / \mathrm{v})$ to yield $\mathbf{1 4 a}(689 \mathrm{mg}, 73 \%)$ as a pale yellow oil.

1-Benzylazetidin-3-ylpyrrolidine ($\mathbf{(1 4 a})^{40,41)}$: Pale yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.76-1.80(\mathrm{~m}, 4 \mathrm{H}), 2.39-2.41(\mathrm{~m}, 4 \mathrm{H}), 3.00-3.12$ $(\mathrm{m}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 23.4,51.3,54.6,59.6,63.8,126.9,128.3,128.5,138.2$; ESI-MS Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2}$ MW 217.1705, Found $m / z 217.1707\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

1-Benzylazetidin-3-ylpiperidine ($\mathbf{1 4 b})^{40}$: Pale yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.37-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 4 \mathrm{H}), 1.84-2.05(\mathrm{~m}$, $1 \mathrm{H}), 2.05-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, $2 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 23.3,24.6,49.7$, 50.1, 50.7, 52.7, 57.2, 58.1; IR (neat) 3062, 3027, 2952, 2873, 2823, 2696, 1706, 1606, 1494, 1475, $1454 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2}$ MW 231.1861, Found $m / z 231.1867\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

1-Cyclopropyl-6,8-difluoro-4-oxo-7-(3-pyrrolidinoazetidin-1-yl)-1,4-dihydroquinoline-3-carboxylic Acid (16a) To a solution of 14a (358.8 $\mathrm{mg}, 1.66 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{ml})$ was added 2 N HCl in $\mathrm{Et}_{2} \mathrm{O}(0.8 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ with stirring. The precipitate was collected by filtration under argon to afford $\mathbf{1 4 a} \cdot \mathrm{HCl}(318.6 \mathrm{mg})$ as a yellow amorphous powder. This amorphous powder was dissolved in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 7)(4 \mathrm{ml})$ and hydrogenated over $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(31 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w})$ at $50^{\circ} \mathrm{C}$ for 50 h with stirring. The catalyst was filtered out, and evaporation in vacuo afforded $\mathbf{1 5 a}(256.4 \mathrm{mg})$ as a yellow solid. To a solution of the yellow solid 15 a (256.4 mg) and 6 $(356.8 \mathrm{mg}, 1.26 \mathrm{mmol})$ in $\mathrm{MeCN}(18 \mathrm{ml})$ was added DABCO $(424 \mathrm{mg}$, 3.78 mmol) at room temperature. The mixture was refluxed for 2.5 h and cooled in an ice bath. The precipitate was collected by filtration and then washed with $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 6 a}$ ($300.1 \mathrm{mg}, 61 \%$ in two steps) as pale yellow needles. $\mathrm{mp} 240^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO) $\delta: 1.16(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~m}, 4 \mathrm{H}), 2.47(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 4.00-$ $4.08(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.52(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 8.58$ ($\mathrm{s}, 1 \mathrm{H}$), $15.01(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3083, 2933, 2784, 1722, 1627, 1529, 1475, 1417, 1326, $1160 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 390.1629, Found $m / z 390.1626\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
1-Cyclopropyl-6,8-difluoro-4-oxo-7-(3-piperidinoazetidin-1-yl)-1,4-di-hydroquinoline-3-carboxylic Acid (16b) A solution of 14b $\mathbf{~} 724 \mathrm{mg}$, $3.1 \mathrm{mmol})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(2: 7)(9 \mathrm{ml})$ was hydrogenated over 20% $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(70 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w})$ at $50^{\circ} \mathrm{C}$ for 24 h with stirring. The catalyst was filtered out, and evaporation in vacuo afforded $\mathbf{1 5 b}(377.1 \mathrm{mg})$ as a pale yellow oil. To a solution of the yellow oil $\mathbf{1 5 b}(105.4 \mathrm{mg}, c a .0 .67 \mathrm{mmol})$ and $6(212.9 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeCN}(11 \mathrm{ml})$ was added DABCO (253 mg , 2.25 mmol) at room temperature. The mixture was refluxed for 2.5 h and cooled in an ice bath. The precipitate was collected by filtration and then washed with $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{1 6 b}$ ($218.4 \mathrm{mg}, 63 \%$ in two steps) as colorless needles. mp $242{ }^{\circ} \mathrm{C}$ (dec.) (THF); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta: 1.16(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.60(\mathrm{~m}$, $4 \mathrm{H}), 2.15-2.38(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.26(\mathrm{~m}$, $2 \mathrm{H}), 4.40-4.52(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 15.01(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3083, 2933, 2807, 2360, 1727, 1629, 1550, 1494, 1461, $1324 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 404.1786, Found $m / z 404.1787$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 62.52 ; \mathrm{H}, 5.75 ; \mathrm{N}, 10.42$. Found: C, 62.39; H, 5.82; N, 10.35.
Typical Procedure for the Preparation of 21 To a solution of 2,3,4,5tetrafluorobenzoic acid $(5.8 \mathrm{~g}, 30 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{ml})$ was added oxalyl chloride $(2.8 \mathrm{ml})$. The mixture was treated with few drops of dry DMF and stirred at room temperature for 18 h . Concentration, a toluene chase, and reconcentration gave the crude acid chloride. According to literature, ${ }^{34)}$ ethyl hydrogen malonate $(7.9 \mathrm{~g}, 60 \mathrm{~mol})$ was converted to the dilithium salt in THF (120 ml) with $n-\operatorname{BuLi}(1.56 \mathrm{~mol} / 1,76.9 \mathrm{ml}, 120 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred at $-5^{\circ} \mathrm{C}$ for 1 h , the acid chloride (prepared above) in THF $(16 \mathrm{ml})$ was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and poured into 1 N HCl . The water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over anhydrous MgSO_{4}. Evaporation in vacuo afforded a crude product, which was purified by column chromatography on silica gel with n -hexane-AcOEt $(9: 1, \mathrm{v} / \mathrm{v})$ to obtain $\mathbf{1 8}(5.35 \mathrm{~g}, 68 \%)$ as a white solid.

Triethyl orthoformate $(6.8 \mathrm{ml}, 40.9 \mathrm{mmol})$ and acetic anhydride $(7.2 \mathrm{ml}$, 76.3 mmol) was added to $\mathbf{1 8}$ ($7.2 \mathrm{~g}, 27.3 \mathrm{mmol}$). After being stirred under re-
flux for 5 h , the reaction mixture was concentrated in vacuo to give a yellow oil 19. To a solution of $\mathbf{1 9}$ in $\mathrm{EtOH}(9.9 \mathrm{ml})$ was added 2-aminothiazole $(346.5 \mathrm{mg}, 3.46 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 25 h , the reaction mixture was concentrated in vacuo to give an enamine 20. Potassium carbonate ($509.6 \mathrm{mg}, 3.69 \mathrm{mmol}$) was added to the solution of $\mathbf{2 0}$ in dioxane $(10 \mathrm{ml})$. After being stirred at room temperature for 18 h , the reaction mixture was poured into cold water and acidified with 1 N HCl . The organic layer was extracted with CHCl_{3} and dried over anhydrous MgSO_{4}. Evaporation in vacuo afforded a crude product, which was purified by column chromatography on silica gel with $\mathrm{AcOEt}-\mathrm{CHCl}_{3}(1: 3, \mathrm{v} / \mathrm{v})$ to yield 21a $(326.6 \mathrm{mg}, 29 \%$ in three steps) as colorless plates.

Ethyl 6,7,8-Trifluoro-4-oxo-1-(thiazol-2-yl)-1,4-dihydroquinoline-3-carboxylate (21a) ${ }^{27,42)}$: Colorless plates (THF); $\mathrm{mp} 177{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 1.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3434, 3033, 1722, 1729, 1619, 1575, 1481, $1348 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ S MW 354.0286, Found $m / z 354.0317\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 50.85$; H, 2.56; N, 7.91. Found: C, 50.73 ; H, 2.70; N, 7.87.

Ethyl 6,7,8-Trifluoro-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinoline-3carboxylate (21b): Colorless needles (THF); mp $209^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{m}, 1 \mathrm{H}), 8.12(\mathrm{~m}, 1 \mathrm{H}), 8.88(\mathrm{~d}, 2 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3073, 1695, $1629,1575,1515,1486,1402 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 349.0674, Found $m / z 349.0704\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 55.02 ; H, 2.89; N, 12.03. Found: C, 54.89; H, 3.42; N, 11.87.

Ethyl 6,7,8-Trifluoro-1-(1-methyl-2-oxo-1,2-dihydropyrimidin-4-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (21c): Pale peach powder (THF); $\mathrm{mp} 249^{\circ} \mathrm{C}$ (dec.); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{dd}, 1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}), 8.11(\mathrm{~m}$, $1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3097, 2992, 1718, 1685, 1619, 1536, 1486, 1405, $1348 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ MW 380.0858, Found $m / z 380.0876\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.20$; H, 3.28; N, 10.95. Found: C, 53.38; H, 3.55; N, 10.79.

Ethyl 1-Benzyl-6,7,8-trifluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (21d): Colorless needles (THF); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.42(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, 2 \mathrm{H}), 7.34$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3072, 2992, 1729, 1677, 1656, 1614, $1484 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ MW 361.0926, Found $m / z 361.0904\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.16 ; \mathrm{H}$, 3.89; N, 3.88. Found: C, 63.08; H, 3.89; N, 3.81.

Typical Procedure for the Preparation of 22 To a solution of 21a $(94.0 \mathrm{mg}, 0.27 \mathrm{mmol})$ in acetic acid $(0.5 \mathrm{ml})$ was added $6 \mathrm{~N} \mathrm{HCl}(0.27 \mathrm{ml})$. After being stirred at $100^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was poured into cold water. The precipitate was collected by filtration and then washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford $22 \mathrm{a}(67.7 \mathrm{mg}, 77 \%)$ as a pale amorphous yellow powder.

6,7,8-Trifluoro-4-oxo-1-(thiazol-2-yl)-1,4-dihydroquinoline-3-carboxylic Acid (22a): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.64(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~m}, 1 \mathrm{H}), 8.81(\mathrm{~s}$, $1 \mathrm{H}), 13.76$ (br s, 1H); IR (KBr) 3060, 2717, 2358, 1743, 1614, 1571, 1492, 1444, 1421, 1326, 1253, 1174, 1108, $1037 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ MW 348.9871, Found $m / z 348.9863\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

6,7,8-Trifluoro-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinoline-3-carboxylic Acid (22b): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.50(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, 9.22 (s, 1H), 13.87 (br s, 1H); IR (KBr) 3064, 2740, 1722, 1617, 1581, 1560, 1496, 1461, 1411, 1328, 1255, 1184, 1112, $1043 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$ MW 322.0440, Found $m / z 322.0418\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

6,7,8-Trifluoro-1-(1-methyl-2-oxo-1,2-dihydropyrimidin-4-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic Acid (22c): Pale peach amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.74(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~m}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H}), 13.68(\mathrm{brs}, 1 \mathrm{H})$; IR (KBr) $3070,2830,2358,1735,1587,1506,1388,1321,1290,1249,1186,1103$, $890,804 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$ MW 352.0545, Found m / z $352.0528\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Typical Procedure for the Preparation of 23 To a solution of 22a $(120.2 \mathrm{mg}, 0.42 \mathrm{mmol})$ and 3-aminoazetidine (11b) $(62.9 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{ml})$ was added 1,4-diazabicyclo[2.2.0]octane ($142.8 \mathrm{mg}, 1.27$ $\mathrm{mmol})$. After being stirred under reflux for 0.5 h , the resulting precipitate was collected by filtration and then washed with $\mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{2 3 a}(130.9 \mathrm{mg}, 76 \%)$ as a yellow amorphous powder.

6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-1-(thiazol-2-yl)quino-lin- $4(1 H)$-one (23a): Yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta: 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.01-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.32(\mathrm{~m}$, $1 \mathrm{H}), 4.60-4.67(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.70(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 1 \mathrm{H})$; IR (KBr) 3110, 3035, 2360, 1720, 1621, 1575, 1481, 1405, 1348, $1299 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ MW 441.1197, Found $m / z 441.1183\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-1-(pyrimidin-2-yl)-quinolin- $4(1 \mathrm{H})$-one (23b): Yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.78$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$; IR (KBr) 3318, 2940, 2871, 1617, 1571, 1523, 1479, 1409, 1344, $825 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}$ MW 436.1585, Found $m / z 436.1597\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-1-(1-methyl-2-oxo-1,2-dihydropyrimidin-4-yl)quinolin-4(1H)-one (23c): Yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{brs}$, $1 \mathrm{H}), 4.07-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.75(\mathrm{~m}, 2 \mathrm{H}), 6.2-$ $6.3(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.78(\mathrm{~m}$, $2 \mathrm{H}), 8.05(\mathrm{~m}, 1 \mathrm{H})$; IR (KBr) 3342, 2950, 1670, 1612, 1515, 1467, 1419, 1340, $1257 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}$ MW 466.1691, Found $m / z 466.1696\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Typical Procedure for the Preparation of 24 To a solution of 21a ($200.5 \mathrm{mg}, 0.57 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{ml})$ was added 10 b ($201.7 \mathrm{mg}, 1.13$ mmol). After being stirred at room temperature for 9 h , the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel with $\mathrm{AcOEt}-\mathrm{CHCl}_{3}(1: 3, \mathrm{v} / \mathrm{v})$ to yield $\mathbf{2 4 a}(179.6 \mathrm{mg}$, 63%) as a pale yellow powder.

Ethyl 6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(thiazol-2-yl)-1,4-dihydroquinoline-3-carboxylate (24a): Pale yellow powder $\left(\mathrm{CHCl}_{3}\right) ; \mathrm{mp} 186-187^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.37(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 1 \mathrm{H})$, $4.58-4.69(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~m}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3295 , $3079,2360,1619,1579,1508,1467,1428,1342,1251,1147$, $821 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ MW 513.1408 Found m / z $513.1396\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 58.59 ; \mathrm{H}, 4.33 ; \mathrm{N}$, 10.93. Found: C, $58.26 ; \mathrm{H}, 4.16 ; \mathrm{N}, 10.67$.

Ethyl 6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(pyrimi-din-2-yl)-1,4-dihydroquinoline-3-carboxylate (24b): Pale yellow crystals $\left(\mathrm{CHCl}_{3}\right) ; \mathrm{mp} 208-209{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.39(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.02-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.38$ (q, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.59-4.69(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 1 \mathrm{H}), 8.83(\mathrm{~m}, 3 \mathrm{H})$; IR (KBr) 3866, 3338, 3052, 2696, 2832, 1731, 1697, 1616, 1515, 1467, $1407 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$ MW 508.1796 Found $m / z 508.1747\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 61.53; $\mathrm{H}, 4.57$; $\mathrm{N}, 13.80$. Found: C, $61.48 ; \mathrm{H}$, 4.82; N, 13.46.

Ethyl 6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(1-methyl-2-oxo-1,2-dihydropyrimidin-4-yl)-1,4-dihydroquinoline-3-carboxylate (24c): This compound was not isolated.
Typical Procedure for the Preparation of 25 To a solution of 24a ($22.3 \mathrm{mg}, 0.0435 \mathrm{mmol}$) in EtOH was added $1 \mathrm{~N} \mathrm{NaOH}(0.3 \mathrm{ml})$. After being stirred at room temperature for 5 h , the reaction mixture was poured into cold water. The precipitate was collected by filtration and then washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and $\mathrm{Et}_{2} \mathrm{O}$ to afford 25a as sodium salt $(31.3 \mathrm{mg})$. This salt was dissolved in water and acetic acid ($10 \mu 1,0.16 \mathrm{mmol}$), and then stirred at room temperature for 4 h . The reaction mixture was poured into cold water and the precipitate was collected by filtration and then washed with $\mathrm{H}_{2} \mathrm{O}$, EtOH , and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{2 5 a}$ ($24.8 \mathrm{mg}, 97 \%$).

6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(thiazol-2-yl)-1,4-dihydroquinoline-3-carboxylic Acid (25a): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.21(\mathrm{~m}, 2 \mathrm{H})$, $4.25-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.78(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=2.2 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{dd}, J=2.2 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.76$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3363, 2948, 2360, 1671, 1619, 1513, 1467, 1428, 1294, 1257, 1141, 1118, $1033 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ MW 485.1095 Found $m / z 485.1075\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(pyrimidin-2-yl)-1,4-dihydroquinoline-3-carboxylic Acid (25b): Pale yellow amorphous powder; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.02-4.16(\mathrm{~m}, 2 \mathrm{H})$, $4.21-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.72(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=2.2,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (dd, $J=2.2,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 8.89(\mathrm{~m}, 2 \mathrm{H}), 10.05(\mathrm{~s}$, 1H); IR (KBr) 3338, 3052, 2969, 2832, 2360, 1733, 1697, 1619, 1573, 1515,
$1469,1407 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}$ MW 480.1483 Found $m / z 480.1467\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
6,8-Difluoro-7-[3-(methoxyanilino)azetidin-1-yl]-4-oxo-1-(1-methyl-2-oxo-1,2-dihydropyrimidin-2-yl)-1,4-dihydroquinoline-3-carboxylic Acid (25c): Pale yellow powder ($\mathrm{EtOH}-\mathrm{CHCl}_{3}$); mp $228^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.36(\mathrm{~m}$, $1 \mathrm{H}), 4.68-4.76(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=2.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 6.80$ (dd, $J=2.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~m}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3334, 2942, 2360, 1664, 1617, 1531, 1459, 1344, 1294, 1236, 1126, $825 \mathrm{~cm}^{-1}$; ESI-MS Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}$ MW 510.1589 Found m / z $510.1582\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}: \mathrm{C}, 58.94 ; \mathrm{H}, 4.15 ; \mathrm{N}$, 13.75. Found: C, 58.65; H, 4.45; N, 13.47.

Ethyl 6,7,8-Trifluoro-4-hydroxyquinoline-3-carboxylate (26) A solution of 21d $(203.4 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{EtOH}(5.6 \mathrm{ml})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(67.8 \mathrm{mg}, 30 \% \mathrm{w} / \mathrm{w})$ at room temperature for 20 h with stirring. The catalyst was filtered out, and the filtrate was concentrated to afford 26 $(149.2 \mathrm{mg}, 98 \%)$ as a white powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.49(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.54(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}), 12.46(\mathrm{~s}$, 1H); IR (KBr) 3077, 2996, 2360, 1714, 1581, 1498, $1378 \mathrm{~cm}^{-1}$; FAB-MS Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NO}_{3}$ MW 272.0535, Found $m / z 272.0518\left(\mathrm{M}^{+}+\mathrm{H}\right)$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{3}$: C, 53.15; H, 2.97; N, 5.16. Found: C, 53.11; H, 3.09; N, 5.18.

Typical Procedure for the Preparation of 27 To a solution of 26 $(500 \mathrm{mg}, 1.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{ml})$ was added p-toluenesulfonyl chloride $(527 \mathrm{mg}, 2.77 \mathrm{mmol})$ and triethylamine $(0.5 \mathrm{ml}, 3.69 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 1.5 h , the reaction mixture was poured into water. The organic layer was extracted with CHCl_{3} and dried over anhydrous MgSO_{4}. Evaporation in vacuo afforded a crude product, which was purified by column chromatography on silica gel with n -hexane-AcOEt ($2: 1, \mathrm{v} / \mathrm{v}$) to yield $\mathbf{2 7 a}(739.5 \mathrm{mg}$, quant.) as a colorless plates.
Ethyl 4-Tosyloxy-6,7,8-trifluoroquinoline-3-carboxylate (27a): Colorless plates (THF); mp $149-151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.45(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3446, 1731, 1648, 1596, $1508 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}$, 53.65 ; H, 3.32; N, 3.29. Found: C, 53.62; H, 3.37; N, 3.18.

Ethyl 4-Mesyloxy-6,7,8-trifluoroquinoline-3-carboxylate (27b): Colorless needles (THF); mp $118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.47(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~m}, 1 \mathrm{H}), 9.40(\mathrm{~s}$, 1 H); IR (KBr) 3025, 1727, 1606, 1504, 1442, $1274 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ MW 349.0232, Found $m / z 349.0223\left(\mathrm{M}^{+}\right)$.
Ethyl 4-Dimethylsulfamoyloxy-6,7,8-trifluoroquinoline-3-carboxylate (27c): Colorless plates (THF); mp $115-116^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 1.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 4.49(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.87$ $(\mathrm{m}, 1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 2985, 1735, 1648, 1608, 1511, $1373 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ MW 378.0497, Found $m / z 378.0490\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C, 44.45; H, 3.46; N, 7.40. Found: C, 44.50; H, 3.41; N, 7.36.

Ethyl 4-Ethoxycarbonyloxy-6,7,8-trifluoroquinoline-3-carboxylate (27d): Colorless needles (THF); mp $86-86.5{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $1.38-1.50(\mathrm{~m}, 6 \mathrm{H}), 4.37-4.50(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 9.43(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr) 3081, 2981, 1770, 1722, 1652, 1508, $1398 \mathrm{~cm}^{-1}$; EI-MS Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{5}$ MW 343.0668, Found $m / z 343.0699\left(\mathrm{M}^{+}\right)$.
In Vitro Antibacterial Activity The minimum inhibitory concentrations (MICs) were determined using the agar dilution method as described by the Japan Society of Chemotherapy. ${ }^{36)}$ The MIC was defined as the lowest drug concentration of the test compound that prevented visible growth on the plate.

Acknowledgments This work was supported in part by a Grant-in-Aid for Scientific Research (B) (2) (No. 14370723 and 16390008) from the Japan Society for the Promotion of Science.

References and Notes

1) Hayashi K., Sato C., Hiki S., Kumagai T., Tamai S., Abe T., Nagao Y., Tetrahedron Lett., 40, 3761-3764 (1999).
2) Funke W., Angew. Chem., Int. Ed. Engl., 80, 70-71 (1969).
3) Funke W., Chem. Ber., 102, 3148-3158 (1969).
4) Hortmann A. G., Robertson D. A., J. Am. Chem. Soc., 94, 2758-2765 (1972).
5) Marchand A. P., Rajagopal D., Bott S. G., J. Org. Chem., 60, 49434946 (1995).
6) Dave P. R., J. Org. Chem., 61, 5453-5455 (1996).
7) Bartnik R., Marchand A. P., Synlett, 1997, 1029—1039 (1997).
8) Hayashi K., Ikee Y., Goto S., Shiro M., Nagao Y., Chem. Pharm. Bull., 52, 89-94 (2004).
9) Hayashi K., Hiki S., Kumagai T., Nagao Y., Heterocycles, 56, 433442 (2002).
10) Ikee Y., Hashimoto K., Nakashima M., Hayashi K., Sano S., Shiro M., Nagao Y., Bioorg. Med. Chem. Lett., 17, 942-945 (2007).
11) Pinder A. R., Nat. Prod. Rep., 9, 491-504 (1992)
12) Frigola J., Parés J., Corbera J., Vañó D., Mercè R., Torrens A., Más J., Valentí E., J. Med. Chem., 36, 801-810 (1993).
13) Frigola J., Torrens A., Castrillo J. A., Mas J., Vañó D., Berrocal J. M., Calvet C., Salgado L., Redondo J., García-Granda S., Valentí E., Quintana J. R., J. Med. Chem., 37, 4195-4210 (1994).
14) Frigola J., Vañó D., Torrens A., Gómez-Gomar A., Ortega E., GarcíaGranda S., J. Med. Chem., 38, 1203-1215 (1995).
15) Kuramoto Y., Ohshita Y., Yoshida J., Yazaki A., Shiro M., Koike T., J. Med. Chem., 46, 1905-1917 (2003).
16) Archibald T. G., Gilardi R., Baum K., George C., J. Org. Chem., 55, 2920-2924 (1990).
17) Hayashi K., Kumagai T., Nagao Y., Heterocycles, 53, 447-452 (2000).
18) Domagala J. M., J. Antimicrob. Chemother., 33, 685-706 (1994).
19) Drlica K., Curr. Opin. Microbiol., 2, 504-508 (1999).
20) Hooper D. C., Clin. Infect. Dis., 32, S9—S15 (2001).
21) Peterson L. R., Clin. Infect. Dis., 33, S180-S 186 (2001).
22) Mitscher L. A., Chem. Rev., 105, 559-592 (2005).
23) Hooper D. C., Lancet. Infect. Dis., 2, 530-538 (2002).
24) Li X.-Z., Int. J. Antimicrob. Agents, 25, 453-463 (2005).
25) Lide D. R., "CRC Handbook of Chemistry and Physics," 81st ed., CRC Press, Boca Raton, Florida, 2000, pp. 8/44-8/56.
26) Grohe K., Heitzer H., Liebigs. Ann. Chem., 1987, 29-37 (1987).
27) Domagala J. M., Heifetz C. L., Hutt M. P., Mich T. F., Nichols J. B., Solomon M., Worth D. F., J. Med. Chem., 31, 991-1001 (1988).
28) Sanchez J. P., Bridges A. J., Bucsh R., Domagala J. M., Hagen S. E., Heifetz C. L., Joannides E. T., Sesnie J. C., Shapiro M. A., Szotek D. L., J. Med. Chem., 35, 361-367 (1992).
29) Ronald J. C., Thomas A. C., Gregory L. K., James W., Synthesis, 1993,

290-292 (1993).
30) Wentland M. P., Lesher G. Y., Reuman M., Gruett M. D., Singh B., Aldous S. C., Dorff P. H., Rake J. B., Coughlin S. A., J. Med. Chem., 36, 2801-2809 (1993).
31) X-Ray data for 7b: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$, MW $=433.43$, colorless block, monoclinic, Space group $P 2_{1} / n(\# 14), a=16.030(3) \AA, b=7.443(2) \AA$, $c=16.844(4) \AA, \quad \beta=112.74(2)^{\circ}, \quad V=1853.4(7) \AA^{3}, \quad Z=4, \quad R=0.063$, $R w=0.061$. CCDC-623357 (7b) contains the supplementary crystallographic date for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Date Centre via www.ccdc.cam.ac.uk/date_request/cif.
32) Kuramoto Y., Medchem News, Vol. 17, No. 2, 2-7 (2007).
33) Hayashi N., Nakata Y., Yazaki A., Antimicrob. Agents Chemother., 48, 799-803 (2004).
34) Barnick J. W. F. K., Van Der Baan J. L., Bickelhaupt F., Synthesis, 1979, 787-788 (1979).
35) X-Ray data for $27 \mathrm{a}: \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}, \mathrm{MW}=425.38$, colorless platelet, monoclinic, Space group $P 2_{1} / a$ (\#14), $a=6.9392$ (3) $\AA \AA, b=24.051$ (7) \AA, $c=11.538(3) \AA, \beta=104.193(12)^{\circ}, V=1866.9(9) \AA^{3}, Z=4, R=0.0822$, $R w=0.1333$. CCDC-671163 (27a) contains the supplementary crystallographic date for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Date Centre via www.ccdc.cam.ac.uk/date_request/cif.
36) Japan Society of Chemotherapy, Chemotherapy, 29, 76-79 (1981).
37) Hayakawa I., Atarashi S., Yokohama S., Imamura M., Sakano K., Frukawa M., Antimicrob. Agents Chemother., 29, 163-164 (1986).
38) Atarashi S., Yokohama S., Yamazaki K., Sakano K., Imamura M., Hayakawa I., Chem. Pharm. Bull., 35, 1896-1902 (1987).
39) Suzuki Y., Tsukamoto K., Hasegawa Y., Hiramatsu Y., Japan Kokai Tokkyo Koho, JP S49-109369 (1974).
40) Chen Z., Kolb H. C., Richardson P., Hung Z., PCT Int. Appl. WO 2000063168 (2000).
41) Luzzio M. J., Marx M. A., Yong B. V., PCT Int. Appl. WO 2001094353 (2001).
42) Tomita K., Tsuzuki Y., Shibamori K., Tashima M., Kajikawa F., Sato Y., Kashimoto S., Chiba K., Hino K., J. Med. Chem., 45, 5564-5575 (2002).

[^0]: Chart 1. Synthetic Route for ABB (3) and Its Reaction Mode with Reagent E-Nu

