December 2012

Advanced NiMoO₄/g-C₃N₄ Z-scheme heterojunction photocatalyst for efficient conversion of CO₂ to valuable products

Nguyen Thi Thanh Truc, Thanh-Dong Pham, Minh Viet Nguyen, Doan Van Thuan, Do Quang Trung, Phuong Thao, Hoang Thu Trang, Van Noi Nguyen, Dinh Trinh Tran, Dang Nhat Minh, Nguyen Thi Hanh, Ha Minh Ngoc

PII: S0925-8388(20)32224-6

DOI: https://doi.org/10.1016/j.jallcom.2020.155860

Reference: JALCOM 155860

To appear in: Journal of Alloys and Compounds

Received Date: 7 January 2020

Revised Date: 27 May 2020

Accepted Date: 29 May 2020

Please cite this article as: N.T. Thanh Truc, T.-D. Pham, M.V. Nguyen, D. Van Thuan, D.Q. Trung, P. Thao, H.T. Trang, V.N. Nguyen, D.T. Tran, D.N. Minh, N.T. Hanh, H.M. Ngoc, Advanced NiMoO₄/ g-C₃N₄ Z-scheme heterojunction photocatalyst for efficient conversion of CO₂ to valuable products, *Journal of Alloys and Compounds* (2020), doi: https://doi.org/10.1016/j.jallcom.2020.155860.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

Contributions of authors

Nguyen Thi Thanh Truc: Performed experiments, analyzed data and wrote the paper. Minh Viet Nguyen and Thanh-Dong Pham: Supervised the research, analyzed data and revised the paper Doan Van Thuan: Synthesized materials, analyzed data and co-wrote the paper. Do Quang Trung and Phuong Thao: Synthesized materials, conducted conversion experiments Hoang Thu Trang and Van Noi Nguyen: Synthesized materials and analyzed data Dinh Trinh Tran and Dang Nhat Minh: Analyzed data and conducted conversion experiments Nguyen Thi Hanh and Ha Minh Ngoc: Conducted recycling experiments

Journal Prest

Single photocatalysts

J.

Z direct scheme heterojunction

Juunai Liu-Di	U	O.

1	Advanced NiMoO ₄ /g-C ₃ N ₄ Z-scheme heterojunction photocatalyst for efficient
2	conversion of CO ₂ to valuable products
3	Nguyen Thi Thanh Truc ¹ , Thanh-Dong Pham ^{2,3,*} , Minh Viet Nguyen ^{2,3,*} , Doan Van Thuan ^{4,5} , Do Quang
4	Trung ³ , Phuong Thao ³ , Hoang Thu Trang ³ , Van Noi Nguyen ^{2,3} , Dinh Trinh Tran ^{2,3} , Dang Nhat Minh ^{2,3} ,
5	Nguyen Thi Hanh ⁶ , Ha Minh Ngoc ^{2,3}
6	¹ Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
7	² VNU Key Laboratory of Advanced Materials for Green Growth, University of Science, Vietnam National University,
8	Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
9	³ Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan,
10	Hanoi, Vietnam
11	⁴ NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
12	⁵ Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh
13	⁶ Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai,
14	Thanh Xuan, Hanoi, Vietnam
15	
16	*Corresponding Authors:
17	E-mail addresses: nguyenthithanhtruc@tdtu.edu.vn (Nguyen Thi Thanh Truc); dong2802@vnu.edu.vn
18	(Thanh-Dong Pham); nguyenminhviet@hus.edu.vn (Minh Viet Nguyen)
19	
20	ABSTRACT
21	Herein, $g-C_3N_4$ and NiMoO ₄ , which are moderate energy band gap semiconductors, have been
22	effectively hybridized to create Z scheme heterojunction for successful visible-light
23	photocatalytic converting CO_2 into valuable products including CH_4 , CO , O_2 and HCOOH.
24	$Ni(NO_3)_2 \cdot 6H_2O$ and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ were used as precursors to synthesize
25	NiMoO ₄ photocatalyst, which was continuously mixed with melamine before calcinating at 520
26	o C for 6 h to get NiMoO ₄ /g-C ₃ N ₄ Z scheme heterojunction. We explored that NiMoO ₄ intimately
27	contacted with g-C ₃ N ₄ . These band positions of the NiMoO ₄ were also perfectly matched with

29 easily travel to h^+ on valence band of the g-C₃N₄ (recombination); thereby, minimize h^+ and e^-

28

those of the g-C₃N₄. Therefore, these photo-induced e^- on conduction band of the NiMoO₄ could

recombination in each material. Therefore, the NiMoO₄/g-C₃N₄ direct Z-scheme heterojunctions 30 could produce significant available h^+ on the valence band of the NiMoO₄ and e^- on the 31 conduction band of the g- C_3N_4 . These e^{-}/h^+ have suitable redox potential to effectively convert 32 CO_2 . Finally, the optimized g- C_3N_4 mole ratio for maximum enhancing photocatalytic efficiency 33 of the NiMoO₄/g-C₃N₄ heterojunction was 60 %. When the g-C₃N₄ content increased to 70 %, 34 the excess g-C₃N₄ amount would entirely cover NiMoO₄ surface leaded to form dense and closed 35 shell. The formed closed shell decreased contact between NiMoO₄ and CO₂ as well as the 36 interface charge transfer, which reduced the e^{-} and h^{+} separation and transfer leading to decrease 37 in photocatalytic conversion efficiency. 38

39

40 Keywords: Z scheme heterojunction; NiMoO₄; g-C₃N₄; Photocatalytic CO₂ conversion;
41 Valuable products

42

43 1. Introduction

Currently, CO₂ has been considered as one of the main pollutants contributing to the climate 44 45 change and greenhouse effects, which responds for various global problems [1]. Development of suitable method utilizing CO_2 as an efficient source to form valuable products, including formic 46 acid (HCOOH), methanol (CH₃OH) and methane (CH₄), etc., has recently received extensive 47 attention in scientists. The utilization not only aims to reduce atmospheric CO₂ levels but also 48 extend available carbon resources for chemical industry production chain [2, 3]. Various 49 techniques, such as chemical reduction (involving photo- and electro- reduction), thermocatalytic 50 hydrogenation and biological conversion, have been conducted for the purpose [4]. Among them, 51 photocatalysis for CO₂ conversion has received great consideration because of its environmental 52 friendliness and its potential in utilizing solar energy [5-9]. In the photocatalytic CO_2 conversion, 53

the used photocatalyst could utilize solar or artificial light as sources of photon energy to accelerate photo-reactions to convert CO_2 into carbohydrates. Various photocatalysts, such as metal oxides (ZnO, TiO₂, WO₃), metal phosphides, nitrides or sulfides (Ta₃N₅, CdS, ZnS, GaP) and binary-metal oxides (Bi₂WO₆, ZnGa₂O₄, Cu₂V₂O₇, NiWO₄, Zn₂SnO₄ and Zn₂GeO₄), have been successfully applied for photocatalytic CO₂ conversion [10-13]. Nevertheless, most of them could be used only under ultraviolet irradiation and suffered from high photogenerated charge recombination, low conversion efficiency and photocorrosion during photocatalytic reactions,

which are huge challenges hindering commercial applications in this field [14].

61

Recently, several transition metal molybdates including NiMoO₄, FeMoO₄, Bi₂MoO₆, 62 CoMoO₄ and CuMoO₄ have significantly attracted scientists' attention to apply them in many 63 fields including photocatalysis, dehydrogenation, and energy storage/conversion [15, 16]. 64 Among them, NiMoO₄ has been used as catalyst for oxidative dehydrogenation 65 of propane and *n*-butane [17]. More recently, NiMoO₄ has been considered as an emerging 66 visible light photocatalyst because of its moderate energy band gap (~2.4 eV) and good electrical 67 conductivity [18]. The synthesized NiMoO₄ materials have been successfully used for 68 photocatalytic organic pollutant removal as well as bacterial inactivation [19, 20]. However, the 69 application of NiMoO₄ photocatalyst for CO₂ conversion is limited because its conduction band 70 potential is quite low and rapid recombination of their photo-excited e^- and h^+ . Another emerging 71 photocatalyst, which has recently gained significant attention of global scientists, is g-C₃N₄ [21-72 23]. The photocatalyst also has moderate band gap energy and high stability. The conduction 73 band potential of the g-C₃N₄ is around -1.20 V. Therefore, the generated e⁻ existing on the 74 conduction band of the g-C₃N₄ would have high potential to reduce CO₂ into many valuable 75 hydrocarbon products [24-26]. Nevertheless, the $g-C_3N_4$ photocatalytic efficiency is still away 76 from satisfactory due to the high recombination rate of photo-excited charges and low surface 77

area, which are usually considered as major barriers of the single component semiconductor 78 photocatalyst [27]. Recently, Z-scheme heterojunctions, which have been formed from 79 combination of g-C₃N₄ with another narrow band gap photocatalyst has been widely studied [28-80 31]. In the formed Z scheme heterojunction, the $g-C_3N_4$ and the combined photocatalyst could be 81 simultaneously excited by suitable incident light. Then, the photo-excited e⁻ of the combined 82 component could transfer to the g-C₃N₄ to combine with h^+ on its valence band (recombination). 83 Therefore, residual photo-excited e^{-} of the g-C₃N₄ would exhibit strong reduction capacity while 84 85 the h⁺ in coupled photocatalyst present strong oxidation capacity. Consequently, the formed Zscheme heterojunction could show great photocatalytic performance [32, 33]. To effectively 86 form a Z-scheme heterojunction, the conduction band potential of the combined photocatalyst 87 should be more positive than the conduction band potential of the g-C₃N₄ while the valence band 88 potential of the $g-C_3N_4$ should be more negative than that of the coupled photocatalyst. Thus, the 89 NiMoO₄ is considered as perfectly suitable photocatalyst for combination with g-C₃N₄ to create 90 Z-scheme heterojunction. However, until now, there was no reported study combining $g-C_3N_4$ 91 and NiMoO₄ to form Z-scheme heterojunction (NiMoO₄/g-C₃N₄). Thus, the study aims to 92 combine NiMoO₄ and g-C₃N₄ to create NiMoO₄/g-C₃N₄ Z-scheme heterojunction. The formed 93 heterojunction is expected to greatly prevent disadvantages of each single component to exhibit 94 novel photocatalytic performance for efficiency CO₂ conversion to valuable products. 95

96

98 2.1. Material preparation

99 Ni $(NO_3)_2 \cdot 6H_2O$ and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ were precursors for synthesis of 100 Ni MoO_4 photocatalyst. In a typical experiment, these precursors were dissolved in deionized 101 water to obtain 1 M solutions. Then, these obtained solutions were mixed by drop wise under

magnetic stirring condition. Citric acid (0.1 M) with double molar weight of Ni²⁺ used as 102 chelating agent. Then, the suspension was neutralized by ammonium hydroxide (0.1 M). The 103 104 obtained greenish yellow precipitate was centrifuged to collect and washed adequately with water/ethanol. Then, the washed precipitate was dried at 80 °C for a half day. The obtained dried 105 greenish yellow powder was mixed with melamine. The obtained mixture was robustly mixed in 106 order to achieve a homogeneous mixture, which was continuously transported to a crucible. The 107 crucible was continuously calcinated at 520 °C for 6 h with 5 °C min⁻¹ heating rate to achieve 108 $NiMoO_4/g-C_3N_4$ Z-scheme heterojunction. The melamine amounts were calculated to synthesize 109 series of heterojunction photocatalysts, which were labeled as NiMoO₄/g-C₃N₄-X (X represented 110 the mole ratios of $g-C_3N_4$ in the heterojunction photocatalysts, X = 50, 60, and 70 %). A parallel 111 experiment without adding melamine was also carried out to synthesize NiMoO₄. Melamine was 112 also calcinated at 520 °C for 6 h to obtain g- C_3N_4 . 113

114

115 2.2. Conversion experiments

These photocatalytic CO₂ conversion tests have been carried out in a continuous model 116 containing a reactor with volume of 40 mL (Fig. S1 in the supplementary material). Quartz was 117 used to make bottom and top of the reactor placing in the center of a 24 L cask. The cask has 118 dark cover to use as a reaction chamber. A 30 W Duhalled (SBNL-830) bulb was hanged from 119 the ceiling and another was put on the bottom of the reaction chamber were used as light sources 120 generating visible light in range from 400 to 700 nm. The calculated power density of the 121 provided visible light was approximately 0.15 W/cm². 0.1 g synthesized materials was uniformly 122 spread onto floor of the reactor to photocatalyze for CO2 conversion. For photocatalytic CO2 123 conversion, high purity CO₂ gas (99.9 %) was constantly supplied with flow rate of 30 mL/min. 124 Before reaching to the reactor, the CO₂ flow was oriented passing water (25 °C) to produce a 125

mixture of CO₂ and H₂O. By this condition, relative humidity of inlet gas reaching to photocatalyst was around 60 %. Finally, the products of conversion processes were determined by a gas chromatography (GC) system (Agilent 7890 B), which equipped with both a flame ionization detector (FID) and a thermal conductivity detector (TCD). 100 μ L gaseous products was automatically injected into the GC system at intervals of 20 min. Ar gas was used as a carrier gas. Standard curves of CO, CH₄ HCOOH and O₂ have been built to calculate the concentration of produced gases.

133

134 3. Results and discussion

135 3.1. Material characteristics

136 3.1.1. Morphology, microstructure and surface areas

A Tecnai G2 F30 transmission electron microscopy (TEM) has been used to determine 137 microstructures and morphologies of these synthesized NiMoO₄, g-C₃N₄ and NiMoO₄/g-C₃N₄ 138 materials. As presented in the Fig. 1A, the synthesized $g-C_3N_4$ existed as lamella. The 139 synthesized NiMoO₄ were nano-particles, which average size was approximately 170 nm (Fig. 140 1B). In case of the synthesized NiMoO₄/g-C₃N₄ material, the g-C₃N₄ lamellar entirely twined 141 these NiMoO₄ particles (the dark part). More TEM images of the NiMoO₄/g-C₃N₄ materials have 142 been additional provided in the supplementary material to clearly show the distribution of the 143 NiMoO₄ on the g-C₃N₄ lamella (**Fig. S2** in the supplementary material). The obtained high 144 resolution TEM image presented a lattice fringe of 0.397 nm, which corresponded to the (220) 145 plane of the NiMoO₄, while another lattice plane space of 0.32 nm was compatible with (002) 146 147 planes of the $g-C_3N_4$ [34-36]. The obtained high resolution TEM image proved strong hybridizing between g-C₃N₄ and NiMoO₄. Nitrogen adsorption desorption isotherms combining 148 with BET equations were used to determine surface areas of the synthesized NiMoO₄, g-C₃N₄ 149

and NiMoO₄/g-C₃N₄ heterojunctions. These obtained results shown in the Table 1 indicated that the surface areas of these NiMoO₄/g-C₃N₄ heterojunctions were greater than those of NiMoO₄ and g-C₃N₄ single components. The distribution of NiMoO₄ on the g-C₃N₄ diversified pore size and increased pore number leading to increase in the surface area of the NiMoO₄/g-C₃N₄ as compared to those of both NiMoO₄ and g-C₃N₄ (**Fig. S3** in the supplementary material). The increase in surface areas of the NiMoO₄/g-C₃N₄ heterojunction would effectively enhance their CO₂ absorption leading to increase in conversion efficiency (if any).

157

159

Fig. 1. TEM images of the $g-C_3N_4$ (A), NiMoO₄ (B), NiMoO₄/ $g-C_3N_4$ heterojunctions (C) and

3.1.2. Phase structure 160

A Bruker AXS D8 Advance diffractometer was used to obtain X-ray diffraction (XRD) 161 patterns of these synthesized materials. These XRD patterns of these NiMoO4/g-162 C_3N_4 heterojunctions with different g- C_3N_4 contents have been shown in Fig. 2 together with 163 these patterns of the pristine NiMoO₄ and g-C₃N₄. The major diffraction peaks observed from the 164 NiMoO₄ XRD pattern were well indexed to monoclinic structure of α -NiMoO₄ (JCPDS Card No. 165 86-0361) [37, 38]. The g-C₃N₄ XRD pattern presented two typical peaks appearing at 13.2° and 166 167 27.4°, which corresponded to (100) and (002) lattice planes of the g-C₃N₄, respectively [39]. These diffraction peaks related to the g-C₃N₄ as well as the monoclinic structure NiMoO₄ could 168 be seen from XRD patterns of these synthesized NiMoO₄/g-C₃N₄ heterojunction. No impurity 169 diffraction peaks and noticeable peak shift were detected in the XRD patterns of these 170 synthesized NiMoO₄/g-C₃N₄ heterojunction indicating that the distribution of NiMoO₄ on the g-171 C_3N_4 has not affected crystallinity of both NiMoO₄ and g- C_3N_4 . 172

173

174

Fig. 2. The XRD patterns of NiMoO₄, g-C₃N₄ and NiMoO₄/g-C₃N₄ heterojunctions.

175 *3.1.3. Elemental states*

The elemental status of nickel and nitrogen in these g-C₃N₄, NiMoO₄ and NiMoO₄/g-C₃N₄ 176 were determined using an X-ray photoelectron spectrometer (XPS). First, the Gaussian fitted 177 XPS spectrum of N of g-C₃N₄ presented three peaks at 398.4, 399.8 and 401.1 eV (**Fig. 3**). The 178 fitted peak at 398.4 eV can be attributed to nitrogen in C-N=C while the obtained peak at 179 399.8 eV corresponded to N in N-(C)₃ (bridging N atoms) building the fundamental g-180 C₃N₄ structure [40, 41]. The peak at 401.1 eV could be corresponded to N positive charge of 181 182 heptazine rings resulted from incomplete thermal polycondensation process [42]. In contrast, N peaks of the NiMoO₄/g-C₃N₄ heterojunctions shifted to 398.6, 400.1 and 401.6 eV. The 401.6 183 peak intensity of the NiMoO₄/g-C₃N₄ heterojunction also significantly decreased as compared to 184 the peak of the g-C₃N₄. The results indicated that chemical bonds occurred between the 185 NiMoO₄ and $g-C_3N_4$ [43-47]. 186

The XPS spectrum of Ni of the NiMoO₄ presented four peaks, which included two major 187 peaks accompanying with their satellite peaks (Fig. 3). The major peak (at 854.7 eV) and its 188 shakeup type peak (at 862.1 eV) corresponded to Ni 2p_{3/2} orbital while the major peak (at 189 872.5 eV) and its shakeup type peak (at 880.3 eV) corresponded to Ni $2p_{1/2}$ orbital [48-51]. The 190 Ni $2p_{3/2}$ and Ni $2p_{1/2}$ peaks were separated by 17.8 eV showing the nickel state in the NiMoO₄ 191 was Ni²⁺. However, these Ni 2p_{1/2} and Ni 2p_{3/2} peaks of the NiMoO₄/g-C₃N₄ heterojunction 192 shifted a little. The Gaussian fitting analysis deconvoluted the 2p spectrum into peaks indicating 193 the co-existence of both Ni²⁺ and Ni³⁺ in the synthesized NiMoO₄/g-C₃N₄ heterojunction [51-53]. 194 In detail, these peaks at 856.3 and 874.4 eV could be appointed to $Ni^{3+} 2p_{3/2}$ and $Ni^{3+} 2p_{1/2}$ status, 195 respectively; while these peaks at 854.7 and 872.5 eV still corresponded to $Ni^{2+} 2p_{3/2}$ and 196 $Ni^{2+} 2p_{1/2}$ status, respectively. The new occurrence of Ni^{3+} state in the NiMoO₄/g-C₃N₄ 197 heterojunction confirmed the existence of chemical bonding (Ni and N) between NiMoO₄ and g-198

199 C_3N_4 . The XPS analysis of C also confirmed that NiMoO₄ and g-C₃N₄ were not just connected 200 physically, but forming a tight interface via chemical bonding (C-O) between C of the g-C₃N₄ 201 and O of the NiMoO₄ (**Fig. S4** in the supplementary material).

202

Fig. 3. XPS spectra of N 1s in $g-C_3N_4$ and NiMoO₄/ $g-C_3N_4$ (A) and XPS spectra of Ni 2p of

204

NiMoO₄ and NiMoO₄/g-C₃N₄ (B).

205 *3.1.4. Optical properties*

The UV–Vis absorbance of these synthesized $g-C_3N_4$, NiMoO₄ and NiMoO₄/ $g-C_3N_4$ heterojunctions were presented in **Fig. 4**. In pristine NiMoO₄, the coordination environments of Ni²⁺ and Mo⁶⁺ responded for its optical absorption [54]. First, the absorption in region of 205 to 400 nm was due to the electron transfers from nonbonding ligand orbitals to antibonding metal orbitals (from O^{2-} 2p to Mo^{6+} 5d) [55]. Secondly, the d-d transitions ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ of the nickel in octahedral symmetry and charge transfers from these occupied Ni 3d orbitals to these unoccupied anti-bonding Mo 5d orbitals responded for absorption in region of 400 to 550 nm [56]. Finally, the optical absorption in region of 600–800 nm centered at 700 nm was attributed to Ni²⁺ (O_h) species [57].

215

216

217

heterojunctions.

The UV–Vis absorption of the g-C₃N₄ presented an absorption edge at 460 nm. As compared to these NiMoO₄ and g-C₃N₄ samples, these synthesized NiMoO₄/g-C₃N₄ heterojunctions presented great increase in visible-light absorbance. The energy band gap (E_{bg}) of g-C₃N₄ and NiMoO₄, which were estimated via Kubelka-Munk functions, were 2.68 and 2.45 eV, respectively (**Fig. S6** in the supplementary material). The estimated E_{bg} of these synthesized NiMoO₄/g-C₃N₄ heterojunctions were great lower than those of single components (**Table 1**).

	Surface areas (m ² /g)	$\begin{array}{c} E_{bg} \\ (eV) \end{array}$	Production rates $(\mu mol. g^{-1}cat. h^{-1})$				Efficient used charges (e ⁻ or h ⁺)
			CH ₄	СО	O_2	нсоон	$(\mu \text{mol. g}^{-1}\text{cat. h}^{-1})$
g-C ₃ N ₄	68.5	2.68	0	0	0	0	0
NiMoO ₄	10.4	2.45	0	0	0	0	0
NiMoO4/g-C3N4 - 50	97.5	2.37	512	349	1449	578	5950
NiMoO4/g-C3N4 - 60	98.7	2.31	635	432	1853	647	7238
NiMoO ₄ /g-C ₃ N ₄ - 70	96.2	2.34	567	414	1637	625	6614

Table 1. Surface areas, E_{bg} , production rates and efficient used charges (e⁻ or h⁺) of the NiMoO₄, g-C₃N₄ and NiMoO₄/g-C₃N₄ heterojunction.

226

227 The visible-light absorption increase and the E_{bg} decrease of these synthesized NiMoO₄/g-C₃N₄ heterojunctions as compared to single components were attributed to direct Z scheme 228 effects. The Mott-Schottky plots were applied to determine these maximum valence bands 229 (MVB) and minimum conduction bands (MCB) of these g-C₃N₄ and NiMoO₄ in order to clearly 230 explain the direct Z-scheme mechanism of these NiMoO₄/g-C₃N₄ heterojunctions (Fig. S7 in the 231 supplementary material). These determined MVB and MCB of the g-C₃N₄ were 1.64 and 232 -1.04 V, respectively; while these determined MVB and MCB of the NiMoO₄ were 2.57 and 233 0.12 V, respectively. In addition, g-C₃N₄ and NiMoO₄ was intimately contacted (see the obtained 234 HRTEM results). Therefore, g-C₃N₄ and NiMoO₄ have been suitable hybridized to form a novel 235 Z direct scheme (Fig. 5). Electrochemical impedance spectra (EIS) were also carried out to 236 confirm electron transfer between NiMoO₄ and g-C₃N₄. The obtained EIS Nyquist plots, which 237 was provided in the supplementary data (Fig. S8), showed that the charge transfer resistance of 238 the NiMoO₄/g-C₃N₄ was much lower than those of single NiMoO₄ and NiMoO₄/g-C₃N₄. This 239

240 verified these findings indicating that the Z scheme has been successfully established to enhance

electron transfer between $NiMoO_4$ and $g-C_3N_4$.

Single photocatalysts

Z direct scheme heterojunction

242 243

Fig. 5. Mechanism for Z direct scheme heterojunction.

In the formed direct Z-scheme, narrow E_{bg} g-C₃N₄ and NiMoO₄ photocatalysts could absorb 244 visible light to excite e^{-} from valence band to conduction band leaving h^{+} on the valence band. 245 Then, these excited e on the conduction band of the NiMoO₄ could easily transfer (migrate) to 246 the valence band of the g-C₃N₄ to fill these h⁺ there. This effectively minimized recombination of 247 photo-excited charges in each material. Thus, the incident visible light was efficiently used for 248 separation of e and h^+ or visible-light absorption of these synthesized NiMoO₄/g-C₃N₄ was 249 250 greater than those of single components. The photoluminescence (PL) characterization was also used to determine recombination status of photo-excited charges in the synthesized samples (Fig. 251 6). It is known that the higher the PL peak intensity indicates faster recombination. Fig. 6 252 presented that these PL peaks of these synthesized NiMoO₄/g-C₃N₄ heterojunction were 253 obviously lower than those of the g-C₃N₄ and NiMoO₄ meaning that the direct Z-scheme 254 heterojunction remarkably restrained e^{-} and h^{+} recombination. 255

256

Fig. 6. Photoluminescence spectra of these synthesized g-C₃N₄, NiMoO₄ and NiMoO₄/g-C₃N₄
 heterojunctions.

259 $3.2. \text{ CO}_2$ conversion

No carbon-containing products was detected in blank experiments, which used a mixture of 260 N_2 and H_2O vapor as inlet gas to feed into the irradiated reactor involving synthesized g- C_3N_4 , 261 NiMoO₄ and NiMoO₄/g-C₃N₄ heterojunctions. This observation verified that carbon products (if 262 263 any) could be generated from CO₂ precursor rather than from carbon components (residues) of these synthesized photocatalysts. After blank experiments, CO₂ and H₂O vapor mixtures were 264 fed to the reactor, which contained these synthesized g-C₃N₄, NiMoO₄ and NiMoO₄/g-C₃N₄, 265 under both visible light and dark conditions. There was no converted product was noticed when 266 tests were conducted under darkness. This indicated the necessary of incident visible light as 267

excitation source for photocatalytic performance. The single component photocatalysts (NiMoO₄ 268 or $g-C_3N_4$) could not also exhibit any activity for conversion of CO_2 when they were excited by 269 visible light. This result was due to rapid recombination of photo-excited h^+ and e^- , which was 270 one of major disadvantages of single component photocatalyst. Interestingly, these NiMoO₄/g-271 C₃N₄ heterojunctions effectively converted CO₂ into various carbon-containing products 272 including CO, CH₄ and HCOOH. Huge O₂ gas have been also found as by-product from 273 photocatalytic CO₂ conversion. The production rates of CO, CH₄, HCOOH and O₂ were shown 274 275 in Table 1. The CO₂ conversion efficiency of the NiMoO₄/g-C₃N₄ photocatalyst was much higher than those of recent reported materials (Table S1 in the supplementary material). When 276 NiMoO₄ was coupled with g-C₃N₄ to create NiMoO₄/g-C₃N₄ heterojunctions, both NiMoO₄ and 277 g-C₃N₄ could absorb large amount of incident visible light (because of their narrow E_{bg}) to excite 278 of e^{-} from the valence band to the conduction band of each material leaving h^{+} at the valence 279 band. Because of suitable potential energy level and intimate contact between NiMoO4 and g-280 C_3N_4 , the photo-excited e⁻ on the conduction band of the NiMoO₄ can travel to h⁺ on the valence 281 band of the g-C₃N₄ (to recombine); thereby, effectively minimize charge recombination in each 282 material. Therefore, the NiMoO₄/g-C₃N₄ direct Z scheme heterojunctions could produce 283 significant available e^- at the conduction band of the g-C₃N₄ and h⁺ at the valence band of the 284 NiMoO₄. These produced charges presented suitable redox potential to convert CO₂ describing 285 by following equations [32, 58, 59]. 286

$$NiMoO_4/g-C_3N_4 \xrightarrow{Visible \ light} e^- + h^+$$
(1)

$$2H_2O + 4h^+ \rightarrow 4H^+ + O_2 \tag{2}$$

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O \ (E^0_{redox} = -0.24 \text{ V})$$
 (3)

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O \quad (E^0_{redox} = -0.48 \text{ V})$$
 (4)

$$\operatorname{CO}_2 + 2\operatorname{H}^+ + 2\operatorname{e}^- \longrightarrow \operatorname{HCOOH} \quad (\operatorname{E}^0_{\operatorname{redox}} = -0.61 \text{ V})$$
 (5)

Based on the equations 2, 3, 4 and 5, it can be seen that the [produced O_2] = 2 × [produced 287 CH₄] +1/2 × [produced HCOOH] + 1/2 × [produced CO] = 1,809 (μ mol. g⁻¹cat. h⁻¹). The 288 calculated O₂ products mostly matched with the detected produced O₂ (Table 1). Therefore, the 289 proposed mechanism for photocatalytic CO₂ conversion following equations (1 to 5) was 290 291 scientifically correct. In addition, equations 2, 3, 4 and 5 also indicated that these efficient used charges (e⁻ or h⁺) = 4 × [produced O₂] = 8 × [produced CH₄] + 2 × [produced CO] + 2 × 292 [produced HCOOH]. These efficient used charges (e or h⁺) of these NiMoO₄/g-C₃N₄ 293 heterojunctions were also shown in Table 1. The efficient used charges of the NiMoO₄/g-C₃N₄-294 60 was approximately 7,238 (µmol. g^{-1} cat. h^{-1}), which was the highest among those of these 295 synthesized NiMoO₄/g-C₃N₄ heterojunctions (5,950 (µmol. g⁻¹cat. h⁻¹) for NiMoO₄/g-C₃N₄-50 296 and 6.614 (μ mol. g⁻¹cat. h⁻¹) for NiMoO₄/g-C₃N₄-70). The observation greatly matched with 297 these characterized results. Thus, the $g-C_3N_4$ contents significantly affected photocatalytic 298 efficiency and the optimal $g-C_3N_4$ molar ratio was 60 %. When $g-C_3N_4$ content was increased to 299 70 %, the excess g-C₃N₄ amount would entirely cover NiMoO₄ surface leaded to form dense and 300 closed shell [41, 42]. The formed closed shell decreased contact between NiMoO₄ and CO₂ as 301 well as the heterojunction interface effects, which reduced e^{-} and h^{+} separation and transfer 302 efficiency leading to decrease in photocatalytic conversion efficiency. 303

Recycling experiments were conducted to determine the stability of the synthesized NiMoO₄/g-C₃N₄ during the CO₂ conversion processes. The NiMoO₄/g-C₃N₄, which was used for CO₂ conversion for 4 h, was collected and vacuum dried for 24 h under dark condition and then continuously applied for next cycle. The CO₂ conversion efficiency of the NiMoO₄/g-C₃N₄ was constantly over five cycles (Table 2). The results indicated the high stability of the NiMoO₄/g-C₃N₄ material in the CO₂ conversion process.

	Production rates $(\mu mol. g^{-1} cat. h^{-1})$			Efficient used charges $(\mu \text{mol. } g^{-1} \text{cat. } h^{-1})$	
	CH ₄	СО	O_2	НСООН	
Cycle #1	635	432	1853	647	7238
Cycle #2	617	430	1802	680	7156
Cycle #3	625	414	1705	630	7088
Cycle #4	608	407	1754	618	6914
Cycle #5	612	397	1673	595	6880

Table 2. Production rates and efficient used charges from CO_2 conversion of the recycled NiMoO₄/g-C₃N₄.

312

313 **4.** Conclusions

We successfully combined g-C₃N₄ and NiMoO₄, which are moderate E_{bg} materials, to create Z 314 scheme heterojunction to effectively use for visible-light photocatalytic CO₂ conversion to 315 valuable products involving CH₄, HCOOH, CO and O₂. The intimate contact between NiMoO₄ 316 with g-C₃N₄ in NiMoO₄/g-C₃N₄ direct Z scheme heterojunctions have been well proved. The 317 material characterization also indicated that these band position of NiMoO₄ was also perfectly 318 319 matched with those of g-C₃N₄. Thus, these photo-excited e⁻ at the conduction band of the NiMoO₄ could easily recombine with h^+ at the valence band of the g-C₃N₄ to preserve significant 320 available amounts of e^- at the conduction band of the g-C₃N₄ and h⁺ at the valence band of the 321 NiMoO₄. These preserved h^+ and e⁻ presented suitable redox potential to effectively convert CO₂ 322 to produce CH₄, HCOOH, CO and O₂. Finally, we determined that the optimized g-C₃N₄ molar 323 324 ratio in the NiMoO₄/g-C₃N₄ heterojunction for the highest CO₂ conversion efficiency was 60 %. 325 This was because the excess g-C₃N₄ amount (when the g-C₃N₄ content increased to 70 %) would 326 entirely cover NiMoO₄ surface leaded to form dense and closed shell decreasing contact between

327	NiMoO ₄ and CO ₂ as well as the heterojunction interface effects, which reduced e^- and h^+
328	separation and transfer efficiency resulted in decrease in photocatalytic conversion efficiency.
329	
330	Acknowledgements
331	This research is funded by Vietnam National Foundation for Science and Technology
332	Development (NAFOSTED) under grant number 104.05-2018.354
333	
334	References
335	[1] S. Chaemchuen, X. Xiao, M. Ghadamyari, B. Mousavi, N. Klomkliang, Y. Yuan, F.
336	Verpoort, Robust and efficient catalyst derived from bimetallic Zn/Co zeolitic imidazolate
337	frameworks for CO ₂ conversion, J. Catal. 370 (2019) 38-45.
338	[2] TD. Pham, BK. Lee, Novel capture and photocatalytic conversion of CO2 into solar fuels
339	by metals co-doped TiO_2 deposited on PU under visible light, Appl. Catal., A 529 (2017) 40-
340	48.
341	[3] W. Shi, X. Guo, JC. Wang, Y. Li, L. Liu, Y. Hou, Y. Li, H. Lou, Enhanced photocatalytic
342	$3D/2D$ architecture for CO_2 reduction over cuprous oxide octahedrons supported on
343	hexagonal phase tungsten oxide nanoflakes, J. Alloys Compd. 830 (2020) 154683.
344	[4] N.T.P. Le Chi, N.T. Dieu Cam, D. Van Thuan, T.T. Truong, N.T. Thanh Truc, C. Van
345	Hoang, T.T. Thu Phuong, TD. Pham, M.H. Thanh Tung, N.T. Minh Thu, N.M. Phuong,
346	V.N. Nguyen, Synthesis of vanadium doped tantalum oxy-nitride for photocatalytic reduction
347	of carbon dioxide under visible light, Appl. Surf. Sci. 467-468 (2019) 1249-1255.
348	[5] M. Xu, X. Hu, S. Wang, J. Yu, D. Zhu, J. Wang, Photothermal effect promoting CO ₂
349	conversion over composite photocatalyst with high graphene content, J. Catal. 377 (2019)
350	652-661.

- 351 [6] Y. Wang, Z. Zhang, L. Zhang, Z. Luo, J. Shen, H. Lin, J. Long, J.C.S. Wu, X. Fu, X. Wang,
- 352 C. Li, Visible-Light Driven Overall Conversion of CO₂ and H₂O to CH₄ and O₂ on 3D-
- 353 SiC@2D-MoS₂ Heterostructure, J. Am. Chem. Soc. 140 (2018) 14595-14598.
- 354 [7] J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, A Hierarchical Z-Scheme CdS–WO₃ Photocatalyst with
- Enhanced CO_2 Reduction Activity, Small 11 (2015) 5262-5271.
- [8] W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, A Covalent Organic
 Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective
 Photoreduction of CO₂ to CO, J. Am. Chem. Soc. 141 (2019) 7615-7621.
- 359 [9] Y. Zhao, W. Cai, M. Chen, Y. Bu, Turning the activity of Cr–Ce mixed oxide towards
 360 thermocatalytic NO oxidation and photocatalytic CO₂ reduction via the formation of yolk
 361 shell structure hollow microspheres, J. Alloys Compd. 829 (2020) 154508.
- [10] Y. Chai, L. Li, J. Lu, D. Li, J. Shen, Y. Zhang, J. Liang, X. Wang, Germanium-substituted
 Zn2TiO4 solid solution photocatalyst for conversion of CO₂ into fuels, J. Catal. 371 (2019)
 144-152.
- [11] N.T. Thanh Truc, N.T. Hanh, M.V. Nguyen, N.T.P. Le Chi, N. Van Noi, D.T. Tran, M.N.
 Ha, D.Q. Trung, T.-D. Pham, Novel direct Z-scheme Cu₂V₂O₇/g-C₃N₄ for visible light
 photocatalytic conversion of CO₂ into valuable fuels, Appl. Surf. Sci. 457 (2018) 968-974.
- [12] T.-D. Pham, B.-K. Lee, Novel photocatalytic activity of Cu@V co-doped TiO₂/PU for CO₂
 reduction with H2O vapor to produce solar fuels under visible light, J. Catal. 345 (2017) 8795.
- [13] N.L.M. Tri, D.S. Duc, D. Van Thuan, T.A. Tahtamouni, T.-D. Pham, D.T. Tran, N. Thi
 Phuong Le Chi, V.N. Nguyen, Superior photocatalytic activity of Cu doped NiWO₄ for
 efficient degradation of benzene in air even under visible radiation, Chem. Phys. 525 (2019)
 110411.

- 375 [14] C. Ding, Z. Ma, C. Han, X. Liu, Z. Jia, H. Xie, K. Bao, L. Ye, Large-scale preparation of
- BiOX (X = Cl, Br) ultrathin nanosheets for efficient photocatalytic CO_2 conversion, J. Taiwan
- 377 Inst. Chem. Eng. 78 (2017) 395-400.
- 378 [15] T.K. Ghorai, D. Dhak, S.K. Biswas, S. Dalai, P. Pramanik, Photocatalytic oxidation of
- organic dyes by nano-sized metal molybdate incorporated titanium dioxide ($M_xMo_xTi_{1-x}O_6$)
- 380 (M=Ni, Cu, Zn) photocatalysts, J. Mol. Catal. A Chem. 273 (2007) 224-229.
- [16] J. Bi, L. Wu, J. Li, Z. Li, X. Wang, X. Fu, Simple solvothermal routes to synthesize
 nanocrystalline Bi₂MoO₆ photocatalysts with different morphologies, Acta Mater. 55 (2007)
 4699-4705.
- [17] W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced
 photocatalytic activity of g-C₃N₄ via modification of NiMoO₄ nanorods, Colloids Surf. A
 Physicochem. Eng. Asp. 514 (2017) 98-106.
- [18] J. Haetge, I. Djerdj, T. Brezesinski, Nanocrystalline NiMoO₄ with an ordered mesoporous
 morphology as potential material for rechargeable thin film lithium batteries, ChemComm. 48
 (2012) 6726-6728.
- [19] M. Dhanasekar, S. Ratha, C.S. Rout, S.V. Bhat, Efficient sono-photocatalytic degradation of
 methylene blue using nickel molybdate nanosheets under diffused sunlight, J. Environ. Chem.
 Eng. 5 (2017) 2997-3004.
- 393 [20] S.K. Ray, D. Dhakal, C. Regmi, T. Yamaguchui, S.W. Lee, Inactivation of Staphylococcus
 aureus in visible light by morphology tuned α-NiMoO₄, J. Photochem. Photobio. A 350
 (2018) 59-68.
- 396 [21] A. Morozan, P. Jegou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between
 397 polypyrrole morphology and electrochemical activity towards oxygen reduction reaction,
 398 ChemComm. 48 (2012) 4627-4629.

- 399 [22] N.T. Thanh Truc, T.-D. Pham, D. Van Thuan, L.T. Son, D.T. Tran, M.V. Nguyen, V.N.
- Nguyen, N.M. Dang, H.T. Trang, Superior activity of Cu-NiWO₄/g-C₃N₄ Z direct system for
 photocatalytic decomposition of VOCs in aerosol under visible light, J. Alloys Compd. 798
 (2019) 12-18.
- 403 [23] N.T.T. Truc, D.S. Duc, D. Van Thuan, T.A. Tahtamouni, T.-D. Pham, N.T. Hanh, D.T.
- 404 Tran, M.V. Nguyen, N.M. Dang, N.T.P. Le Chi, V.N. Nguyen, The advanced photocatalytic
 405 degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C₃N₄, Appl. Surf. Sci. 489
 406 (2019) 875-882.
- 407 [24] R. Pang, K. Teramura, H. Asakura, S. Hosokawa, T. Tanaka, Highly selective
 408 photocatalytic conversion of CO₂ by water over Ag-loaded SrNb₂O₆ nanorods, Appl. Catal. B
 409 Environ. 218 (2017) 770-778.
- [25] F. Wang, Y. Ye, Y. Cao, Y. Zhou, The favorable surface properties of heptazine based gC3N4 (001) in promoting the catalytic performance towards CO₂ conversion, Appl. Surf. Sci.
 412 481 (2019) 604-610.
- [26] F. Yi, J. Ma, C. Lin, L. Wang, H. Zhang, Y. Qian, K. Zhang, Insights into the enhanced adsorption/photocatalysis mechanism of a Bi₄O₅Br₂/g-C₃N₄ nanosheet, J. Alloys Compd. 821 (2020) 153557.
- 416 [27] V.-D. Dao, L.T. Son, T.D. Nguyen, N. Van Noi, N.M. Ngoc, T.-D. Pham, P. Van Quan,
- 417 H.T. Trang, Superior visible light photocatalytic activity of $g-C_3N_4/NiWO_4$ direct Z system
- 418 for degradation of gaseous toluene, J. Solid State Chem. 272 (2019) 62-68.
- 419 [28] A. Kumar, A. Kumar, G. Sharma, A.a.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C. Guo,
- 420 F.J. Stadler, Biochar-templated g-C₃N₄/Bi₂O₂CO₃/CoFe₂O₄ nano-assembly for visible and
- 421 solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion,
- 422 Chem. Eng. J. 339 (2018) 393-410.

- [29] P. Zhou, J. Yu, M. Jaroniec, All-Solid-State Z-Scheme Photocatalytic Systems, Adv. Mater.
 26 (2014) 4920-4935.
- 425 [30] M.H. Thanh Tung, N.T. Dieu Cam, D. Van Thuan, P. Van Quan, C. Van Hoang, T.T. Thu
- 426 Phuong, N.T. Lam, T.T. Tam, N.T. Phuong Le Chi, N.T. Lan, D.N. Thoại, T.-D. Pham, Novel
- 427 direct Z-scheme AgI/N–TiO₂ photocatalyst for removal of polluted tetracycline under visible
- 428 irradiation, Ceram. Int. 46 (2020) 6012-6021.
- 429 [31] G. Sui, J. Li, L. Du, Y. Zhuang, Y. Zhang, Y. Zou, B. Li, Preparation and characterization
- 430 of $g-C_3N_4/Ag-TiO_2$ ternary hollowsphere nanoheterojunction catalyst with high visible light 431 photocatalytic performance, J. Alloys Compd. 823 (2020) 153851.
- 432 [32] J. Wang, C. Qin, H. Wang, M. Chu, A. Zada, X. Zhang, J. Li, F. Raziq, Y. Qu, L. Jing,
- 433 Exceptional photocatalytic activities for CO_2 conversion on AlO bridged g- C_3N_4/α -Fe2O₃ z-434 scheme nanocomposites and mechanism insight with isotopesZ, Appl. Catal. B Environ. 221 435 (2018) 459-466.
- [33] J. Jia, X. Zhang, C. Jiang, W. Huang, Y. Wang, Visible-light-driven nitrogen-doped carbon
 quantum dots decorated g-C₃N₄/Bi₂WO₆ Z-scheme composite with enhanced photocatalytic
 activity and mechanism insight, J. Alloys Compd. 835 (2020) 155180.
- [34] L. Yang, L. Zeng, H. Liu, Y. Deng, Z. Zhou, J. Yu, H. Liu, W. Zhou, Hierarchical
 microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen
 evolution reaction, Appl. Catal. B Environ. 249 (2019) 98-105.
- 442 [35] S. Chen, Z. Zhang, W. Zeng, J. Chen, L. Deng, Construction of NiCo₂S₄@NiMoO₄ Core-
- 443 Shell Nanosheet Arrays with Superior Electrochemical Performance for Asymmetric
- 444 Supercapacitors, ChemElectroChem 6 (2019) 590-597.

- [36] J. Wang, L. Zhang, X. Liu, X. Zhang, Y. Tian, X. Liu, J. Zhao, Y. Li, Assembly of flexible
- 446 CoMoO₄@NiMoO₄·xH₂O and Fe₂O₃ electrodes for solid-state asymmetric supercapacitors,
 447 Sci. Rep. 7 (2017) 41088.
- 448 [37] Y. Zhang, C.-r. Chang, X.-d. Jia, Q.-y. Huo, H.-l. Gao, J. Yan, A.-q. Zhang, Y. Ru, H.-x.
- Mei, K.-z. Gao, L.-z. Wang, Morphology-dependent NiMoO₄/carbon composites for high
 performance supercapacitors, Inorg. Chem. Commun. 111 (2020) 107631.
- 451 [38] Y. Hao, H. Huang, Q. Wang, Q. Wang, G. Zhou, Nitrogen-doped carbon/NiMoO₄
 452 nanospheres assembled by nanosheets and ultrasmall nanoparticles for supercapacitors, Chem.
- 453 Phys. Lett. 728 (2019) 215-223.
- 454 [39] W. An, K. Sun, J. Hu, W. Cui, L. Liu, The Z-scheme Ag₂CO₃@g-C₃N₄ core-shell structure
- 455 for increased photoinduced charge separation and stable photocatalytic degradation, Appl.
 456 Surf. Sci. 504 (2020) 144345.
- [40] X. Bai, L. Wang, Y. Wang, W. Yao, Y. Zhu, Enhanced oxidation ability of g-C₃N₄
 photocatalyst via C60 modification, Appl. Catal. B Environ. 152-153 (2014) 262-270.
- 459 [41] H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, Synthesis of Z-scheme α-Fe₂O₃/g-
- 460 C₃N₄ composite with enhanced visible-light photocatalytic reduction of CO₂ to CH₃OH, J.
 461 CO₂ Util. 33 (2019) 233-241.
- 462 [42] G. Li, B. Wang, J. Zhang, R. Wang, H. Liu, Rational construction of a direct Z-scheme g-
- 463 C_3N_4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of 464 erythromycin and tetracycline, Appl. Surf. Sci. 478 (2019) 1056-1064.
- 465 [43] D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Ag₂CrO₄/g-C₃N₄/graphene oxide ternary
- 466 nanocomposite Z-scheme photocatalyst with enhanced CO₂ reduction activity, Appl. Catal. B
- 467 Environ. 231 (2018) 368-380.

- 468 [44] M. Ren, Y. Ao, P. Wang, C. Wang, Construction of silver/graphitic-C₃N₄/bismuth tantalate
- Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole
 degradation, Chem. Eng. J. 378 (2019) 122122.
- 471 [45] Z. Zhang, Z. Pan, Y. Guo, P.K. Wong, X. Zhou, R. Bai, In-situ growth of all-solid Z-scheme
- 472 heterojunction photocatalyst of $Bi_7O_9I_3/g-C_3N_4$ and high efficient degradation of antibiotic 473 under visible light, Appl. Catal. B Environ. 261 (2020) 118212.
- 474 [46] Z. Jin, R. Hu, H. Wang, J. Hu, T. Ren, One-step impregnation method to prepare direct Z 475 scheme LaCoO₃/g-C3N₄ heterojunction photocatalysts for phenol degradation under visible
- 476 light, Appl. Surf. Sci. 491 (2019) 432-442.
- 477 [47] Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, One-step synthesis of nanostructured g-
- 478 C₃N₄/TiO₂ composite for highly enhanced visible-light photocatalytic H₂ evolution, Appl.
 479 Catal. B Environ. 230 (2018) 260-268.
- 480 [48] H. Xuan, Y. Xu, Y. Zhang, H. Li, P. Han, Y. Du, One-step combustion synthesis of porous
- 481 CNTs/C/NiMoO₄ composites for high-performance asymmetric supercapacitors, J. Alloys
- 482 Compd. 745 (2018) 135-146.
- 483 [49] X. Zhang, L. Wei, X. Guo, Ultrathin mesoporous NiMoO₄-modified MoO₃ core/shell
- 484 nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors,
 485 Chem. Eng. J. 353 (2018) 615-625.
- [50] M. Cao, Y. Bu, X. Lv, X. Jiang, L. Wang, S. Dai, M. Wang, Y. Shen, Three-dimensional
 TiO₂ nanowire@NiMoO₄ ultrathin nanosheet core-shell arrays for lithium ion batteries, Appl.
- 488 Surf. Sci. 435 (2018) 641-648.
- 489 [51] S. Yue, H. Tong, L. Lu, W. Tang, W. Bai, F. Jin, Q. Han, J. He, J. Liu, X. Zhang,
 490 Hierarchical NiCo₂O₄ nanosheets/nitrogen doped graphene/carbon nanotube film with

- 491 ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for
 492 supercapacitors, J. Mater. Chem. A 5 (2017) 689-698.
- 493 [52] C. Chen, S. Wang, X. Luo, W. Gao, G. Huang, Y. Zeng, Z. Zhu, Reduced
 494 ZnCo₂O₄@NiMoO₄·H₂O heterostructure electrodes with modulating oxygen vacancies for
 495 enhanced aqueous asymmetric supercapacitors, J. Power Sources, 409 (2019) 112-122.
- 496 [53] S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M.
- Wang, G. Qiao, S. Yun, Novel gravel-like NiMoO₄ nanoparticles on carbon cloth for
 outstanding supercapacitor applications, Ceram. Int. (2019).
- 499 [54] S.K. Ray, D. Dhakal, S.W. Lee, Rapid degradation of naproxen by AgBr-α-NiMoO₄
 500 composite photocatalyst in visible light: Mechanism and pathways, Chem. Eng. J. 347 (2018)
 501 836-848.
- 502 [55] S.K. Ray, D. Dhakal, J.K. Sohng, S.-Y. Kim, S.W. Lee, Efficient inactivation of
 503 Pseudomonas aeruginosa by Cu/Co-α-NiMoO₄ in visible light, Chem. Eng. J. 347 (2018) 366504 378.
- 505 [56] S.K. Ray, R.P. Pandey, S. Jeong, S.W. Lee, Rapid Escherichia coli inactivation in visible
 506 light by Fe/Zn-α-NiMoO₄ nanorod, J. Photochem. Photobio. A Chem. 367 (2018) 162-170.
- 507 [57] S.K. Ray, D. Dhakal, Y.K. Kshetri, S.W. Lee, Cu-α-NiMoO₄ photocatalyst for degradation
- of Methylene blue with pathways and antibacterial performance, J. Photochem. Photobio. A
 Chem. 348 (2017) 18-32.
- 510 [58] Y.Y. Lee, H.S. Jung, J.M. Kim, Y.T. Kang, Photocatalytic CO₂ conversion on highly
- 511 ordered mesoporous materials: Comparisons of metal oxides and compound semiconductors,
- 512 Appl. Catal. B Environ. 224 (2018) 594-601.
- 513 [59] A. Halder, M. Kilianová, B. Yang, E.C. Tyo, S. Seifert, R. Prucek, A. Panáček, P.
- 514 Suchomel, O. Tomanec, D.J. Gosztola, D. Milde, H.-H. Wang, L. Kvítek, R. Zbořil, S. Vajda,

- 515 Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO₂ conversion, Appl.
- 516 Catal. B Environ. 225 (2018) 128-138.

ournal Prevention

Highlights

- Successfully created NiMoO₄/g-C₃N₄ Z scheme heterojunction for CO₂ conversion —
- Hybridization of NiMoO₄ and g-C₃N₄ prevented recombination of e^{-}/h^{+} in each material
- The created NiMoO₄/g-C₃N₄ converted CO₂ into HCOOH, CH₄ and CO even under visible light
- The optimal molar ratio of $g-C_3N_4/NiMoO_4$ for the best photocatalytic conversion was 60% —

J4 fo. JUINA

Declaration of interests

Thanh Dong Pham, Ph.D.

VNU Key Laboratory of Advanced Materials for Green Growth,University of Science, Vietnam National University,334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Phone: +84-988-239-630,

E-Mail: dong2802@vnu.edu.vn

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

⊠ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

un or ch