## Insect Pheromones. Stereoselective Reduction of $\beta$ or $\omega$ -Alkynols to the Corresponding (E)-Alkenols by Lithium Tetrahydroaluminate

Renzo Rossi\*, Adriano Carpita

Istituto di Chimica Organica Industriale dell'Università di Pisa, Via Risorgimento 35, I-56100 Pisa, Italy

Several insect pheromone components are comprised of unsaturated alcohols or their derivatives having disubstituted double bonds with the E configuration  $^{1-9}$ .

While (E)-2-alkenols may be conveniently prepared by reduction of the corresponding 2-alkynols with lithium tetrahydroaluminate in diethyl ether<sup>10,11</sup>, (E)-β- and, in general, (E)-ω-alkenols cannot be obtained in a similar manner. A classic method to prepare such pure compounds consists of reducing the O-tetrahydropyran-2-yl derivatives of the corresponding alkynols with metallic sodium in liquid ammonia<sup>12,13</sup>. Nevertheless, high molecular weight alkynic compounds, which are less soluble in liquid ammonia, are reduced in low yields. In this case, to increase significantly the yields it is necessary to use a very large excess of liquid ammonia<sup>13</sup>. It must be noted, however, that when we have employed this procedure<sup>13</sup> for the preparation of (E)-14methyl-8-hexadecen-1-ol (2a), a component of the sex pheromone of female Trogoderma glabrum<sup>5</sup>, we have only obtained a rather low yield ( $\sim 50\%$ ).

In this paper we wish to report a general method for preparing in one-step, stereoselectively, and in high yield, low and high molecular weight (E)- $\beta$ - or (E)- $\omega$ -alkenols from the corresponding alkynols. This method consists of reacting the alkynic alcohols at 140° for 48-55 h, under nitrogen, with a large excess of lithium tetrahydroaluminate in a mixture of diglyme and tetrahydrofuran. Careful hydrolysis of the reaction mixture affords the desired (E)-alkenols in high yield. G.L.C. analysis shows that the reduction of the alkynols having a C-chain shorter than C<sub>13</sub> is quantitative and that the (E)-alkenols so obtained contain less than 1% of the corresponding (Z)-isomers<sup>14</sup>. On the other hand, reduction of high molecular weight alkynols affords (E)-alkenols which are contamined by 2-4% of the starting acetylenic compounds. Such (E)-alkenols may, however, be conveniently purified by column chromatography on silver nitrate-impregnated silica gel.

| R-C≡C-(CH <sub>2</sub> ) <sub>n</sub> -OH |                                                                                                                                                                                | 1. LiAlH <sub>4</sub> / diglyme / THF<br>2. H <sub>2</sub> O |                                             |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|--|--|
|                                           |                                                                                                                                                                                |                                                              |                                             |  |  |
| 1                                         |                                                                                                                                                                                |                                                              | R-CH=CH-(CH <sub>2</sub> ) <sub>n</sub> -OH |  |  |
|                                           | R                                                                                                                                                                              | n                                                            | (E)-2                                       |  |  |
| а                                         | sec-C <sub>4</sub> H <sub>9</sub> (CH <sub>2</sub> ) <sub>4</sub> -<br>n-C <sub>6</sub> H <sub>13</sub><br>n-C <sub>4</sub> H <sub>9</sub><br>n-C <sub>8</sub> H <sub>17</sub> | 7                                                            |                                             |  |  |
| b                                         | n-C <sub>6</sub> H <sub>13</sub>                                                                                                                                               | 2                                                            |                                             |  |  |
| С                                         | n-C4H9                                                                                                                                                                         | 6                                                            |                                             |  |  |
| d                                         | n-C8H17                                                                                                                                                                        | 6                                                            |                                             |  |  |

The (E)-alkenols prepared in the present work are (E)-14-methyl-8-hexadecen-1-ol (2a), (E)-3-decen-1-ol (2b), (E)-7-dodecen-1-ol (2c), and (E)-7-hexadecen-1-ol (2d). The acetate of 2c is the sex pheromone of the false codling moth,  $Argyrop-loce\ leucotreta^{15}$ .

It may be concluded that the reduction of  $\beta$ - or  $\omega$ -alkynols by lithium tetrahydroaluminate usefully complements the reduction with sodium in liquid ammonia. However, when high molecular weight (E)-alkenols must be prepared, the high yields of the reduction with lithium tetrahydroaluminate make this the procedure of choice.

Table 1. Physical Properties of the Alkynols 1

| Com-<br>pound | b.p./torr     | n <sub>D</sub> <sup>25</sup> | Molecular<br>formula <sup>a</sup>            | I.R. (film) v [cm <sup>-1</sup> ]                                              |
|---------------|---------------|------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|
| la            | 133-134°/0.15 | 1.4645                       | C <sub>17</sub> H <sub>32</sub> O<br>(252.4) | 3300; 2940; 2860;<br>1465; 1380; 1300;<br>1200; 1060; 720                      |
| 1 c           | 99-100°/0.20  | 1.4614                       | C <sub>12</sub> H <sub>22</sub> O<br>(182.3) | 3300; 2940; 2920;<br>2840; 1440; 1410;<br>1360; 1310; 1070;<br>1050; 1025; 720 |
| 1 d           | 134-135°/0.45 | 1.4627                       | C <sub>16</sub> H <sub>30</sub> O (238.4)    | 3300; 2940; 2915;<br>2840; 1440; 1410;<br>1360; 1320; 1070;<br>1025; 715       |

<sup>&</sup>lt;sup>a</sup> All products gave satisfactory microanalyses (C ±0.25; H ±0.20%) and the expected mass and <sup>1</sup>H-N.M.R. spectra; microanalyses were carried out by Dr. V. Nuti, Istituto di Chimica Farmaceutica, Pisa.

## General Procedure for Preparing ω-Alkynols (1):

3-Decyn-1-ol (1b) is a commercially available product. 14-Methyl-8-hexadecyn-1-ol (1a) is synthesized in 51% yield by reaction

Table 2. Physical Properties of the (E)-Alkenols (2)

| Com-<br>pound   | Yield<br>[%] | b.p./torr<br>(Lit. b.p./torr)                | $n_D^{25}$ | Molecular<br>formula                         | ¹H-N.M.R. (CCl₄, 60 MHz)<br>δ [ppm]                                                            |
|-----------------|--------------|----------------------------------------------|------------|----------------------------------------------|------------------------------------------------------------------------------------------------|
| 2a              | 85           | 108-109°/0.03                                | 1.4584     | C <sub>17</sub> H <sub>34</sub> O<br>(254.5) | 0.89 (t, 6H); 1.33 (br, 19H); 1.97 (br, 4H); 3.25 (s, 1H); 3.50 (t, 2H); 5.16 (m, 2H)          |
| 2 b             | 89           | 113-114°/15<br>(56-57°/0.1) <sup>18</sup>    | 1.4473     | $C_{10}H_{20}O$ (156.3)                      | 0.87 (t, 3 H); 1.30 (br, 8 H); 1.7–2.2 (br, 4 H); 3.33 (s, 1 H); 3.50 (t, 2 H); 5.40 (m, 2 H)  |
| 2e <sup>b</sup> | 93           | 99- 100°/0.30<br>(78-81°/0.06) <sup>19</sup> | 1.4521     | C <sub>12</sub> H <sub>24</sub> O<br>(184.3) | 0.88 (t, 3 H); 1.33 (br, 12 H); 1.7-2.2 (br, 4 H); 3.50 (t, 2 H); 4.11 (s, 1 H); 5.33 (m, 2 H) |
| 2d              | 94           | 126-127°/0.30                                | c          | C <sub>16</sub> H <sub>32</sub> O<br>(240.4) | 0.88 (t, 3H); 1.33 (br, 20H); 1.7–2.2 (br, 4H); 3.30 (s, 1H); 3.51 (t, 2H); 5.33 (m, 2H)       |

<sup>&</sup>lt;sup>a</sup> All products gave satisfactory microanalysis (C  $\pm 0.25$ ; H  $\pm 0.25$ %) and the expected I. R. and mass spectra.

b This alcohol was converted into the corresponding acetate having b.p.  $86-88^{\circ}/0.1$  torr and  $n_D^{25} = 1.4410$  (Lit. <sup>19</sup>, b.p.  $78-82^{\circ}/0.05$ ;  $n_D^{25} = 1.4420$ ). (E)-7-Dodecen-1-yl acetate is the sex pheromone of false codling moth <sup>16</sup>.

c m.p. 27-28°.

562 Communications SYNTHESIS

of 1-lithio-7-methyl-1-nonyne with 1-tetrahydropyranyloxy-7-iodoheptane in hexamethylphosphoric triamide solution and subsequent removal of the Thp-protective group 16. Analogously, 7-dodecyn-1-ol (1c) and 7-hexadecyn-1-ol (1d) are obtained in 52% yield by reaction of 1-tetrahydropyranyloxy-6-iodohexane with 1-lithio-1-hexyne and 1-lithio-1-decyne, respectively, and subsequent removal of the Thp group. Table 1 summarizes some physical properties of 1a, 1c, and 1d.

## General Procedure for Reducing $\beta$ - or $\omega$ -Alkynols to the Corresponding (E)-Alkenols (2):

A mixture of tetrahydrofuran (10 ml), diglyme (80 ml), and lithium tetrahydroaluminate (5 g, 0.131 mol) is heated under nitrogen and a low boiling fraction is distilled off ( $\sim$ 7 ml). A solution of the alkynol 1 (0.038 mol) in diglyme (10 ml) is slowly added to the magnetically stirred mixture cooled at 10°. Then temperature is raised and kept at 140° for 48 55 h. The reaction mixture is cooled and slowly hydrolyzed under nitrogen with degassed ice-cold water. The aqueous slurry is neutralized with dilute hydrochloric acid and extracted with pentane (300 ml in 6 portions). The pentane extracts are washed with water and saturated sodium chloride solution. After drying, the (*E*)-alkenol is isolated by fractional distillation.

G.L.C. analysis (8% Carbowax 20 M on Chromosorb W 60-80 mesh; 15% BDS on Chromosorb W 80-100 mesh; UCON LB 550 X on Chromosorb W 80-100 mesh) shows that the (E)-alkenols having a C—chain longer than  $C_{12}$  are contamined by 2-4% of the corresponding alkynols. Their purification is performed by column chromatography over silver nitrate impregnated-silica gel<sup>17</sup>. Elution with hexane yields pure (E)-alkenols (2). Table 2 summarizes some physical properties of 2a, 2b, 2c, and 2d.

We thank the Consiglio Nazionale delle Ricerche (Roma) for financial support.

Received: April 12, 1977

- \* To whom all correspondence should be addressed.
- <sup>1</sup> M. Jacobson, K. Ohimata, D. L. Chambers, W. A. Jones, M. S. Fujimoto, *J. Med. Chem.* 16, 248 (1973).
- W. L. Roelofs, A. Comean, in *Pesticide Chemistry*, Vol. 3, *Chemical Releasers in Insects*, A. S. Tahori, Ed., Gordon and Breach, New York, 1971, pp. 91–412.
- <sup>3</sup> A. Hill, R. Cardé, A. Comean, W. Bode, W. Roelofs, *Environ. Entomol.* 3, 249 (1974).
- <sup>4</sup> C. J. Sanders, R. J. Bartell, W. L. Roelofs, Can. For. Serv. Bi-Mon. Res. Notes 28, 9 (1972); C. A. 77, 124 104 (1972).
- <sup>5</sup> R. G. Yarger, R. M. Silverstein, W. E. Burkholder, J. Chem. Ecol. 1, 323 (1975); C. A. 83, 128969 (1975).
- W. Roelofs, J. Kochansky, E. Anthon, R. Rice, R. Cardé, Environ. Entomol. 4, 580 (1975).
- W. Roelofs, A. Hill, R. Cardé, J. Tette, H. Madsen, J. Vakenty, Environ. Entomol. 3, 747 (1974).
- Entiron. Entomol. 3, 747 (1774).
  A. S. Hill, W. L. Roelofs, J. Chem. Ecol. 1, 91 (1975); C. A. 83, 5480 (1975).
- <sup>9</sup> For general reviews on the synthesis of achiral and chiral unsaturated components of insect pheromones see: R. Rossi Insect Pheromones, Parts I and II, Synthesis, in press.
- <sup>10</sup> S. J. Attenburrow et al., J. Chem. Soc. 1952, 1094.
- J. S. Pitzer, Synthetic Reagents, Vol. 1, Wiley & Sons Inc., New York, 1974, pp. 232–236.
- <sup>12</sup> D. Wharten, M. Jacobson, J. Med. Chem. 11, 373 (1968).
- <sup>13</sup> J. D. Wharten Jr., M. Jacobson, Synthesis 1973, 616.
- An analogous procedure previously described for the reduction of low molecular weight alkynes [L. H. Slaugh, *Tetrahedron*,
  22, 1741 (1966)] has been successfully employed to prepare, in ~100% stereoselectivity and high yield, high molecular weight (E)-alkenes from the corresponding alkynes: R. Rossi, C. Conti, *Chim. Ind. (Milan)* 57, 581 (1975).
- <sup>15</sup> J. S. Read, P. H. Hewitt, F. L. Warren, A. C. Myberg, J. Insect Physiol. 20, 441 (1974).

- 16 R. Rossi, A. Carpita, Chim. Ind. (Milan) (1977), in press.
- <sup>17</sup> B. Loev, P. E. Bender, R. Smith, Synthesis 1973, 362.
- <sup>18</sup> S. Warwel, G. Schmitt, B. Ahlfaenger, Synthesis 1975, 632.
- <sup>19</sup> N. Green, M. Jacobson, T. J. Henneberry, A. N. Kishaba, J. Med. Chem. **10**, 533 (1967).