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and 2,5-disubstituted 1,3,4-oxadiazoles as DNA photocleaving
agents
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Abstract In search of potential biologically active com-

pounds, some novel 2,5-disubstituted 1,3,4-oxadiazole

derivatives have been prepared conveniently via oxidation of

newly synthesized pyrazolylaldehyde N-isonicotinoyl hy-

drazones by (diacetoxyiodo)benzene in dichloromethane

under mild reaction conditions. Compounds were obtained

in excellent yields, and their structures have been established

on the basis of their FT-IR, 1H, 13C NMR, and mass spectral

data. The DNA photocleavage potential for all the synthe-

sized compounds was evaluated using agarose gel elec-

trophoresis. It has been observed that oxadiazole derivatives

showed a significant level of DNA photocleavage activity

when compared with their corresponding hydrazones, and

some modifications in the basic structure may lead to con-

struct some potential chemotherapeutic agents in future.

Keywords Pyrazole � Oxadiazole � Hydrazone �
Isonicotine � DNA photocleavage �
(Diacetoxyiodo)benzene

Introduction

Isoniazid, a heterocyclic compound containing pyridine

moiety, is still being considered as one of the leading

pharmacophore in the development of potential bioactive

compounds (Judge et al., 2012a). Compounds containing

isoniazid moiety possess a wide range of biological sig-

nificance as anti-mycobacterial (Nikaljea et al., 2012), an-

timicrobial (Deep et al., 2012), anticancer (Kumar et al.,

2011), anti-tubercular (Sriram et al., 2011, 2012), analgesic

(Deodhar et al., 2012), and anti-viral and antifungal agents

(Judge et al., 2012b). Pyridine nucleus is a basic unit of

many drugs, vitamins, dyes, insecticides, and herbicides

(Elguero et al., 1996). Some isonicotinoyl hydrazones are

known to exhibit anti-tubercular (Sousa et al., 2014; Rı́kova

et al., 2011), antitumor (Martins et al., 1999), DNA-binding,

and photocleavage activity (Gowda et al., 2013).

On the other hand, azoles derivatives are well known for

their great biological (Kaur et al., 2014; Lu et al., 2012;

Bondock et al., 2013) and medicinal significance (Kumar

et al., 2013a; Hassan et al., 2012). Among azoles, substituted

pyrazoles have possessed a broad spectrum of biological

properties such as anti-tumor (Mohareb et al., 2012), anti-

tubercular (Ravala et al., 2011), antioxidant (Al-Ayed, 2011),

anti-inflammatory (Kumar et al., 2013b; Bekhit et al., 2009),

anti-bacterial (Kumar et al., 2005), anti-obesity (Gupta et al.,

2011), and antidepressant (Aziz et al., 2009) activities.

Similarly, 2,5-disubstituted 1,3,4-oxadiazoles and their

derivatives have proven their role as bioactive agents and thus

play an important role in the field of medicinal chemistry.

These compounds in particular are well known for their great

biological potential specifically in the presence of some other

potent heterocycles. Several, 1,3,4-oxadiazoles derivatives

have shown biological and pharmacological activities like

antifungal (Merugu et al., 2011; Chandrakantha et al., 2010),

anticancer (Dash et al., 2011), immunosuppressive (Zhang

et al., 2012; Tang et al., 2012), and antimicrobial (Bakht et al.,

2010; Joshi and Parikh, 2014).

In recent years, attention has been paid to evaluate the DNA

photocleavage potential of some azoles such as oxadiazoles
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(Kulkarni et al., 2011; Hanumanagoud and Basavaraja, 2012;

Taj et al., 2012) or heteroaryl-linked hydrazones (Gowda

et al., 2013) may be because of their binding or interacting

ability with the DNA structure. Therefore, such nitrogen-

containing heterocyclic compounds could be used as probes

for DNA structure, potential chemotherapeutic and diagnostic

agents (Kurdekar et al., 2011). DNA is a site where most of the

chemotherapeutic drugs act and interact, which may result in

DNA photocleavage leading to inhibition or death of cancer-

ous cells (Raman and Raja, 2007). In light of the above facts, it

was decided to synthesize some novel pyrazole-linked

isonicotinoyl hydrazones which were further converted into

2,5-disubstituted 1,3,4-oxadiazoles under mild conditions and

evaluate their DNA photocleavage activity. In past years, or-

ganic synthesis has acquired various advantages such as

shorter reaction time and higher regio-selectivity (Aggarwal

et al., 2007, Gupta et al., 2014; Pal et al., 2014), use of greener

solvents or reagents with low toxicity profile. In this concern,

organoiodine (III) reagents like (Diacetoxyiodo)benzene

(DIB), hydroxy tosyloxy iodobenzene (HTIB). etc. are well

known for their non-toxic and eco-friendly behavior in organic

synthesis (Vorvoglis, 1997; Zhdankin, 2009). Due to low

toxicity and selective nature (Kumar, 2012; Yang and Dai,

1993), these reagents have been extensively used for the

synthesis of various heterocycles such as triazoles, oxa-

diazoles, etc. Herein also, some disubstituted 1,3,4-oxa-

diazoles were prepared using DIB.

Result and discussion

Chemistry

It has already been reported in the literature that disubsti-

tuted 1,3,4-oxadiazoles were synthesized using different

reagents like phosphorus oxychloride (Jha et al., 2010),

phosphorus pentaoxide (Rostamizadeh and Ghamkhar,

2008), and acetic anhydride (Oliveira et al., 2012), etc.

which are toxic in nature. In continuation of our interest to

synthesize biologically active compounds, herein, we re-

port the synthesis of some novel pyrazole-linked

isonicotinoyl hydrazones which on oxidative transforma-

tion by iodobenzene diacetate (IBD) in dichloromethane

under mild conditions gave 2,5-disubstituted 1,3,4-oxa-

diazoles (Scheme 1).

The pyrazolylaldehyde isonicotinoyl hydrazones 3 were

obtained by the condensation of 1 with substituted 3-aryl-

1-phenyl-1H-pyrazole-4-carbaldehydes 2 in ethanol and

dichloromethane (DCM) in the presence of a catalytic

amount of concentrated sulfuric acid under reflux condi-

tions as adopted by Prakash et al. (2010, 2011) for different

derivatives. The final products (4) were obtained in

88–92 % yields with high purity by oxidative cyclization

of 3 in the presence of 1.1 equivalent of IBD under mild

conditions (Scheme 1). Various 1,3,4-oxadiazole deriva-

tives were also prepared via oxidation of substituted hy-

drazones such as N-acylhydrazones (Yang and Dai, 1993)

with 1.1 equivalent of (diacetoxyiodo)benzene in dichlor-

omethane at room temperature. In the present investigation,

total fourteen novel compounds were prepared and char-

acterized on the basis of FT-IR, 1H, 13C NMR, and mass

spectral data. The absorption bands for –NH and –C=O

stretching vibration appeared in the IR spectra of the

compounds 3a–g at 3421 and 1665 cm-1, respectively.

The compounds 3a–g displayed two singlets due to 5-H of

pyrazole ring and N=CH around at d 9.05 and 8.59, re-

spectively. In 1H NMR spectra of 3a–g, the characteristic

downfield signal at d 11.97 is attributed to the NH proton,

and rest of the protons exhibit multiplet in the aromatic

region. The chemical shifts in 13C NMR spectra at around d
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Scheme 1 Synthesis of isonicotinoyl hydrazones (3a–g) and oxadiazoles (4a–g)
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142.0–142.4, 127.2, and 161.1 correspond to N=CH,

pyrazole-5, and carbonyl carbons, respectively.

The structures of the final products (4) were established

by comparing FT-IR, 1H, and 13C NMR spectral data with

those of the compounds 3a–g. The FT-IR spectrum of 4

was transparent in the region of –NH and –C=O stretching

and thus confirmed the successful oxidation of 3 into 4.

Disappearance of chemical shifts at d 8.59–8.66 (N=CH)

and 11.91–11.99 (NH) in 1H NMR spectrum of each pro-

duct (4a–g) confirmed the oxidative transformation of

isonicotinoyl hydrazones into 2,5-disubstituted 1,3,4-oxa-

diazoles. The 13C NMR spectra displayed signals at around

d 160.2, 161.5 for oxadiazole carbons and other signals at d
150.8, 105.5 and 131.6 correspond to pyrazole ring carbon-

300, 400, 500, respectively. In 13C NMR spectrum, disap-

pearance of a signal in range of d 142.0–142.4 due to

N=CH functionality further confirmed the formation of ti-

tled compounds.

The 1H and 13C correlation of compound 3 or 4 was

assigned on the basis of DEPT-135, COSY, HSQC, and

ROESY experiments. In the 13C NMR spectrum, 16 carbon

signals were appeared. Further, the DEPT-135 spectra

showed only 10 signals corresponding to methine carbons

and other six quaternary carbons. The HSQC spectrum of

compound 3 indicated that 50 and 60-H resonated at d 9.05

and 8.59, respectively, with the corresponding carbon sig-

nals of C-50 and C-60 at d 127.2 and 142.2, respectively. In

the same spectrum, two set of protons 2, 6-H and 3, 5-H

appeared at d 8.78 and 7.83, respectively, which gave

correlation by carbon signals of carbons 2, 6 and 3, 5 at d
150.3 and, 121.5, respectively.

Furthermore, the correlation between carbons and pro-

tons in spectrum of the compound 4 was also estimated by

HSQC spectrum. In this case, protons 500 and 2¢¢¢, 6¢¢¢-H
gave signals at d 9.48 and 8.02, respectively, along with

cross-signals by the carbons, C-500 and C-2¢¢¢, 6¢¢¢ at d 131.6

and 118.9, respectively. Moreover, 20, 60 and 30, 50-H
protons shared signals at d 8.84 and 7.90, respectively,

which gave correlation with carbons, C-20, 60 and C-30, 50 at

d 150.9 and 119.98. The disappearance of NMR signal at d
142.2 also indicated the formation of oxadiazole.

The COSY spectra have shown well correlation between

protons with adjacent protons. It has been observed from
1H NMR and COSY spectra that signals at d 7.83 and 8.78

correspond to pyridine ring, while 60-H and –NH signals at

d 8.59 and 11.97 did not show coupling with any other

proton.

The formation of compound 4 was also confirmed on the

basis of disappearance of signals at d 8.59 and 11.97. The

COSY spectra indicated that the signals at d 7.90 and 8.84

correspond to pyridine ring. However, the pyrazole proton,

500-H is resonated at d 9.48.

ROESY experiment

The stereochemistry of the compound 3 or 4 was estab-

lished by analyzing the ROESY spectra. The ROESY

spectra of isonicotinoyl hydrazones 3 have shown a clear

space interaction between the –NH proton with 60 and 3,

5-H protons. The protons 50-H and 60-H showed a close

relationship in space with 200, 600 and 2¢¢¢, 6¢¢¢-H, respec-

tively. The four possible configurations for 3a are given in

Fig. 1.

The configuration I was in full agreement with the ob-

servation drawn from the ROESY spectra. Therefore, the

confirmed structure of compound 3 should be of type-

I. The ROESY experiment also provided a great help for

assigning the structure of compound 4 in which the spectra

were clearly showing the ROEs between 500-H with 2¢¢¢, 6¢¢¢-
H. Further, the proton signals due to 20000 and 60000-H are
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Fig. 1 Possible configurations of isonicotinoyl hydrazone 3a
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shifted to higher value because of the anisotropic effect of

oxygen atom of the oxadiazole formed after cyclization of

the corresponding hydrazone compound.

Biological evaluation

Plasmid DNA photocleavage study

Figure 2: Lane C: Control plasmid DNA ? UV ? DMSO,

Lane 1 DNA ? 40 lg 3a, Lane 2 DNA ? 40 lg 3b, Lane

3 DNA ? 40 lg 3c, Lane 4 DNA ? 40 lg 3d, Lane 5

DNA ? 40 lg 3e, Lane 6 DNA ? 40 lg 3f, Lane 7

DNA ? 40 lg 3g, Lane 8 DNA ? 40 lg 4a, Lane 9

DNA ? 40 lg 4b, Lane 10 DNA ? 40 lg 4c, Lane 11

DNA ? 40 lg 4d, Lane 12 DNA ? 40 lg 4e, Lane 13

DNA ? 40 lg 4f, Lane 14 DNA ? 40 lg 4g, respectively.

The DNA photocleavage study was performed using

agarose gel electrophoresis, and the overall pattern is

shown in Fig. 2. No DNA cleavage was observed for

negative control (lane C). A significant change in intensity

of DNA Forms (I, II) in case of isonicotinoyl hydrazones as

well as oxadiazoles in comparison with untreated DNA

indicated some kinds of fragmentations or interactions

caused by the compounds. In case of isonicotinoyl hydra-

zones, compounds 3a, 3b, 3d, and 3e (Lane 1, 2, 4, and 5,

respectively), the intensity of Form I of pBR322 DNA was

found to be increased, while Form II was either decreased

or completely diminished as compared to the control (Lane

C). However, compound 3c (Lane 3) decreased the inten-

sity of both the forms in comparison with control. The

compounds 3f and 3g (Lane 6 and 7) were found respon-

sible to a significant decrease in intensity of Form II and

complete disappearance of Form I, whereas for oxadiazoles

(4), the intensity of open circular DNA (Form II) was found

to be increased to a large extent in comparison with control

in cases of compounds 4b and 4c (Lane 9 and 10, re-

spectively). However, rest of the oxadiazoles (4a, 4d–

g) was responsible for either complete disappearance of

Form I or highly reduced value of its intensity. It has been

observed in case of oxadiazoles intensity of Form I is either

decreased or diminished to a great extent in comparison

with hydrazones.

In case of hydrazone 3b in which nitro group is present

at para-position of phenyl ring attached to pyrazole moiety,

both the forms of DNA appeared with low intensity in

comparison with control. On the other hand, its corre-

sponding oxadiazole (4b) was found to be the most ef-

fective agent due to its selective nature to convert the Form

I into Form II to a large extent. The most effective nature of

oxadiazole nucleus was further indicated by the results of

other oxadiazoles in comparison with hydrazones (Fig. 2).

The hydrazones (3f–g) as well as their corresponding

oxadiazoles (4f–g) bearing bromo or methyl substitution at

para-position of phenyl ring attached to pyrazole ring

completely degraded the Form I and reduced intensity of

Form II to a large extent in comparison with control. The

hydrazone bearing fluoro substitution is responsible for

converting the Form II to Form I; however, its corre-

sponding oxadiazole was found to be responsible for di-

minishing the Form I and reducing the intensity of Form II.

The overall results observed from the present study have

indicated that oxadiazole derivatives possessed more po-

tential for DNA photocleavage as compared to isonicoti-

noyl hydrazones.

Conclusion

In present investigation, we have reported the synthesis of

some novel unsymmetrical 1,3,4-oxadiazole derivatives via

oxidative cyclization of some newly synthesized

isonicotinoyl hydrazones using IBD as a mild oxidizing

agent and thus extended potential of organoiodine (III)

reagents in heterocycles synthesis. Structures of the syn-

thesized compounds have been established by rigorous

analysis of their NMR spectral data. The DNA photo-

cleavage potential was evaluated for all the synthesized

compounds using agarose gel electrophoresis. A significant

change in intensity of both the Forms (I and II) of pBR322

DNA was observed in case of isonicotinoyl hydrazones as

Fig. 2 Plasmid DNA photocleavage picture
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well as oxadiazoles. Compounds 3c, 3f, 3g, 4b, and 4d–g

have emerged as the most active DNA photocleaving

agents among all the synthesized compounds. Furthermore,

the present study have indicated that oxadiazole derivatives

possessed more potential for DNA photocleavage as

compared to isonicotinoyl hydrazones and some modifi-

cations in the basic structure may lead to construct some

potential chemotherapeutic agents in future.

Experimental

Chemistry-materials and methods

Melting points of all compounds were determined in open

capillary using digital melting point apparatus and are

uncorrected. IR spectra were recorded as KBr disks on a

PerkinElmer Spectrophotometer in the 4000–450 cm-1

range. Both 1H and 13C NMR (CDCl3/DMSO-d6) spectra

of the synthesized compounds were recorded on a Bruker

Advance at 400 and 100 MHz, respectively. Chemical

shifts were measured relative to internal standard TMS

(d = 0) on d scale (ppm). Mass spectra were recorded on

Agilent Mass Spectrometer, and carbon, nitrogen, hydro-

gen contents were analyzed using LECO 9320 analyzer.

Isoniazid 1 (Manjunatha et al., 2010), 4-formylpyrazoles

(2) (Rajput and Rajput, 2011) utilized in present investi-

gation were synthesized according to the literature

methods.

Synthesis of Isonicotinoyl hydrazones (3a–g)

General procedure A solution of an appropriate

4-formylpyrazole derivative (2, 0.01 mol) in dichlor-

omethane was added to an ethanolic solution of isoniazid

(1, 0.01 mol). One drop of concentrated sulfuric acid was

added to the reaction mass and refluxed it for 40–45 min

till completion of reaction. The reaction was monitored by

thin-layer chromatography. The excess of solvent was

evaporated and then cooled to room temperature. The ob-

tained product was filtered, washed with alcohol, and re-

crystallized from ethanol. Noted m.p. and submitted to

analysis.

N-Isonicotinoyl-N0-(10,30-diphenyl-40-pyrazolylmethylidene)hy-

drazine (3a) Yield 92 %; mp 195–197 �C; Rf = 0.09

[ethylacetate: hexane (1:1)]; IR (KBr) tmax: 3427 (N–H

str.), 1668 (C=O str.) cm-1; 1H NMR (DMSO-d6,

400 MHz,): d = 11.97 (1H, s, H–N, D2O exchangeable),

9.05 (1H, s, H-50), 8.79 (2H, d, J = 3.6 Hz, H-2, H-6), 8.59

(1H, s, H-60), 8.04 (2H, d, J = 7.6 Hz, H-200, H-600), 7.83

(2H, d, J = 3.2 Hz, H-3, H-5), 7.75 (2H, d, J = 6.8 Hz,

H-2¢¢¢, H-6¢¢¢), 7.39–7.55 (6H, m, H-300, H-400, H-500 & H-3¢¢¢,
H-4¢¢¢, H-5¢¢¢); 13C NMR (DMSO-d6, 100 MHz,):

d = 161.1 (C, C-7), 152.1 (C, C-30), 150.3 (CH, C-2, C-6),

142.2 (CH, C-60), 140.5 (C, C-100), 139.0 (C, C-4), 131.9

(C, C-1¢¢¢), 129.6 (CH, C-3¢¢¢, C-5¢¢¢), 128.8 (CH, C-300,
C-500), 128.7 (C, C-4¢¢¢), 128.4 (CH, C-2¢¢¢, C-6¢¢¢), 127.2

(CH, C-50), 127.0 (CH, C-400), 121.5 (CH, C-3, C-5), 118.8

(CH, C-200, C-600), 116.6 (C, C-40); MS (ESI) m/z: 368.14

(M ? 1)?; Anal. Calcd. for C22H17N5O: C, 71.91; H, 4.63;

N, 19.07. Found: C, 71.89; H, 4.62; N, 19.05.

N-Isonicotinoyl-N0-[30-(4¢¢¢-nitrophenyl)-10-phenyl-40-pyra-

zolylmethylidene]hydrazine (3b) Yield 87.5 %; mp

256–257 �C; Rf = 0.05 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3430 (N–H str.), 1667 (C=O str.), 1540

(NO2 asymmetric str.), 1351 (NO2 symmetric str.) cm-1;
1H NMR (DMSO-d6, 400 MHz,): d = 11.99 (1H, s, H–

N, D2O exchangeable), 9.01 (1H, s, H-50), 8.77 (2H, d,

J = 5.9 Hz, H-2, H-6), 8.66 (1H, s, H-60), 8.36 (2H, d,

J = 8.4 Hz, H-3¢¢¢, H-5¢¢¢), 8.14 (2H, d, J = 8.0 Hz,

H-2¢¢¢, H-6¢¢¢), 8.00 (2H, d, J = 8.4 Hz, H-200, H-600), 7.85

(2H, d, J = 5.9 Hz, H-3, H-5), 7.37–7.57 (3H, m, H-300,
H-400, H-500); 13C NMR (DMSO-d6, 100 MHz,):

d = 161.1 (C, C-7), 150.6 (C, C-30), 150.1 (CH, C-2,

C-6), 146.3 (C, C-4¢¢¢), 142.1 (CH, C-60), 140.4 (C,

C-100), 138.8 (C, C-4), 137.1 (C, C-1¢¢¢), 128.6 (CH, C-300,
C-500), 127.5 (CH, C-50), 127.0 (CH, C-400), 126.4 (CH,

C-2¢¢¢, C-6¢¢¢), 124.5 (CH, C-3¢¢¢, C-5¢¢¢), 121.4 (CH, C-3,

C-5), 118.7 (CH, C-200, C-600), 116.6 (C, C-40); MS (ESI)

m/z: 413.13 (M ? 1)?; Anal. Calcd. for C22H16N6O3: C,

64.06; H, 3.88; N, 20.38. Found: C, 64.05; H, 3.86; N,

20.35.

N-Isonicotinoyl-N0-[30-(4¢¢¢-methoxyphenyl)-10-phenyl-40-pyra-

zolylmethylidene]hydrazine (3c) Yield 88.4 %; mp

209–210 �C; Rf = 0.04 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3421 (N–H str.), 1665 (C=O str.) cm-1; 1H

NMR (DMSO-d6, 400 MHz,): d = 11.91 (1H, s, H–N,

D2O exchangeable), 8.92 (1H, s, H-50), 8.77 (2H, d,

J = 5.2 Hz, H-2, H-6), 8.59 (1H, s, H-60), 7.98 (2H, d,

J = 8.0 Hz, H-200, H-600), 7.85 (2H, d, J = 5.6 Hz, H-3,

H-5), 7.68 (2H, d, J = 8.0 Hz, H-2¢¢¢, H-6¢¢¢), 7.35–7.54

(3H, m, H-300, H-400, H-500), 7.07 (2H, d, J = 8.0 Hz, H-3¢¢¢,
H-5¢¢¢), 3.86 (3H, s, 4¢¢¢-OCH3); 13C NMR (DMSO-d6,

100 MHz,): d = 161.2 (C, C-7), 159.2 (C, C-4¢¢¢), 150.6 (C,

C-30), 150.1 (CH, C-2, C-6), 142.0 (CH, C-60), 140.4 (C,

C-100), 138.9 (C, C-4), 128.4 (CH, C-300, C-500), 127.8 (CH,

C-50), 127.4 (CH, C-2¢¢¢, C-6¢¢¢), 126.9 (CH, C-400), 121.3

(CH, C-3, C-5), 120.3 (C, C-1¢¢¢), 118.8 (CH, C-200, C-600),
116.6 (C, C-40), 114.3 (CH, C-3¢¢¢, C-5¢¢¢), 55.3 (CH3,

OCH3); MS (ESI) m/z: 398.15 (M ? 1)?; Anal. Calcd. for

C23H19N5O2: C, 69.49; H, 4.78; N, 17.62. Found: C, 69.48;

H, 4.77; N, 17.59.
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N0-[30-(4¢¢¢-Fluorophenyl)-10-phenyl-40-pyrazolylmethylidene]-

N-isonicotinoylhydrazine (3d) Yield 84 %; mp

258–259 �C; Rf = 0.14 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3422 (N–H str.), 1663 (C=O str.) cm-1; 1H

NMR (DMSO-d6, 400 MHz,): d = 11.92 (1H, s, H–N,

D2O exchangeable), 8.95 (1H, s, H-50), 8.77 (2H, d,

J = 5.0 Hz, H-2, H-6), 8.59 (1H, s, H-60), 7.98 (2H, d,

J = 8.0 Hz, H-200, H-600), 7.50–7.85 (6H, m, H-300, H-500,
H-2¢¢¢, H-6¢¢¢ & H-3, H-5), 7.28–7.38 (3H, m, H-3¢¢¢, H-5¢¢¢
& H-400); 13C NMR (DMSO-d6, 100 MHz,): d = 161.4 (C,

d, 1JC-F = 245.3 Hz, C-4¢¢¢), 161.2 (C, C-7), 150.7 (C,

C-30), 150.1 (CH, C-2, C-6), 141.9 (CH, C-60), 140.5 (C,

C-100), 138.9 (C, C-4), 129.6 (C, d, 3JC-F = 8.3 Hz, C-2¢¢¢,
C-6¢¢¢), 128.8 (C, C-1¢¢¢), 128.5 (CH, C-300, C-500), 127.7

(CH, C-50), 127.0 (CH, C-400), 121.5 (CH, C-3, C-5), 118.7

(CH, C-200, C-600), 116.6 (C, C-40), 116.0 (C, d, 2JC-

F = 21.6 Hz, C-3¢¢¢, C-5¢¢¢); MS (ESI) m/z: 386.13

(M ? 1)?; Anal. Calcd. for C22H16FN5O: C, 68.55; H,

4.15; N, 18.17. Found: C, 68.54; H, 4.14; N, 18.15.

N0-[30-(4¢¢¢-Chlorophenyl)-10-phenyl-40-pyrazolylmethylidene]-

N-isonicotinoylhydrazine (3e) Yield 89.3 %; mp

247–248 �C; Rf = 0.11 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3430 (N–H str.), 1668 (C=O str.) cm-1; 1H

NMR (DMSO-d6, 400 MHz,): d = 11.93 (1H, s, H–N,

D2O exchangeable), 8.96 (1H, s, H-50), 8.77 (2H, d,

J = 5.8 Hz, H-2, H-6), 8.59 (1H, s, H-60), 7.98 (2H, d,

J = 8.0 Hz, H-200, H-600), 7.79–7.85 (4H, m, H-2¢¢¢, H-6¢¢¢ &

H-3, H-5), 7.35–7.56 (5H, m, H-3¢¢¢, H-5¢¢¢ & H-300, H-400,
H-500); 13C NMR (DMSO-d6, 100 MHz,): d = 161.0 (C,

C-7), 150.6 (C, C-30), 150.0 (CH, C-2, C-6), 141.9 (CH,

C-60), 140.4 (C, C-100), 138.9 (C, C-4), 133.5 (C, C-4¢¢¢),
130.8 (CH, C-2¢¢¢, C-6¢¢¢), 130.0 (C, C-1¢¢¢), 129.5 (CH,

C-3¢¢¢, C-5¢¢¢), 128.5 (CH, C-300, C-500), 127.6 (CH, C-50),
126.9 (CH, C-400), 121.4 (CH, C-3, C-5), 118.8 (CH, C-200,
C-600), 116.7 (C, C-40); MS (ESI) m/z: 402.10 (M ? 1)?,

404.10 (M ? 2)? in the ratio showing typical chlorine

isotope profile (3:1); Anal. Calcd. for C22H16ClN5O: C,

65.82; H, 3.99; N, 17.45. Found: C, 65.78; H, 3.97; N,

17.41.

N0-[30-(4¢¢¢-Bromophenyl)-10-phenyl-40-pyrazolylmethylidene]-

N-isonicotinoylhydrazine (3f) Yield 89.4 %; mp

239–240 �C; Rf = 0.16 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3433 (N–H str.), 1665 (C=O str.) cm-1; 1H

NMR (CDCl3, 400 MHz,): d = 11.93 (1H, s, H–N, D2O

exchangeable), 8.99 (1H, s, H-50), 8.77 (2H, d, J = 5.9 Hz,

H-2, H-6), 8.58 (1H, s, H-60), 7.99 (2H, d, J = 8.0 Hz,

H-200, H-600), 7.83 (2H, d, J = 5.8 Hz, H-3, H-5), 7.37–7.76

(7H, m, H-3¢¢¢, H-5¢¢¢, H-Ph00 & H-2¢¢¢, H-6¢¢¢); 13C NMR

(DMSO-d6, 100 MHz,): d = 160.0 (C, C-7), 150.6 (C,

C-30), 150.0 (CH, C-2, C-6), 142.0 (CH, C-60), 140.5 (C,

C-100), 138.9 (C, C-4), 132.7 (CH, C-3¢¢¢, C-5¢¢¢), 129.9 (C,

C-1¢¢¢), 128.5 (CH, C-300, C-500), 127.9 (CH, C-50), 127.5

(CH, C-2¢¢¢, C-6¢¢¢), 127.0 (CH, C-400), 123.9 (C, C-4¢¢¢),
121.3 (CH, C-3, C-5), 118.7 (CH, C-200, C-600), 116.5 (C,

C-40); MS (ESI) m/z: 446.05 (M ? 1)?, 448.05 (M ? 2)?

in the ratio showing typical bromine isotope profile (1:1);

Anal. Calcd. for C22H16BrN5O: C, 59.32; H, 3.59; N,

15.73. Found: C, 59.30; H, 3.58; N, 15.69.

N-Isonicotinoyl-N0-[30-(4¢¢¢-methylphenyl)-10-phenyl-40-pyra-

zolylmethylidene]hydrazine (3g) Yield 90 %; mp

199–200 �C; Rf = 0.07 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: 3426 (N–H str.), 1666 (C=O str.) cm-1; 1H

NMR (CDCl3, 400 MHz,): d = 9.93 (1H, s, H–N, D2O

exchangeable), 8.74 (2H, d, J = 5.2 Hz, H-2, H-6), 8.61

(1H, s, H-50), 8.42 (1H, s, H-60), 7.45–7.80 (9H, m, H-Ph00,
H-2¢¢¢, H-6¢¢¢ & H-3, H-5), 7.25 (2H, d, J = 8.0 Hz, H-3¢¢¢,
H-5¢¢¢), 2.17 (3H, s, 4¢¢¢-CH3); 13C NMR (DMSO-d6,

100 MHz,): d = 161.1 (C, C-7), 152.1 (C, C-30), 150.2

(CH, C-2, C-6), 142.4 (CH, C-60), 140.5 (C, C-100), 139.0

(C, C-4), 138.0 (C, C-4¢¢¢), 129.4 (CH, C-2¢¢¢, C-6¢¢¢), 129.2

(CH, C-3¢¢¢, C-5¢¢¢), 129.1 (C, C-1¢¢¢), 128.5 (CH, C-300,
C-500), 126.9 (CH, C-50), 126.8 (CH, C-400), 121.4 (CH, C-3,

C-5), 118.7 (CH, C-200, C-600), 116.5 (C, C-40), 20.8 (C,

CH3); MS (ESI) m/z: 382.16 (M ? 1)?; Anal. Calcd. for

C23H19N5O: C, 72.41; H, 4.98; N, 18.36. Found: C, 72.40;

H, 4.96; N, 18.32.

Synthesis of 2,5-disubstituted 1,3,4-oxadiazoles

General procedure IBD (0.011 mol) was added in a lot-

wise manner to the suspension or solution of an appropriate

isonicotinoyl hydrazone (3, 0.01 mol) in dichloromethane

under stirring. The reaction mass was further stirred for 1.

0 h, and the reaction was monitored by TLC. After com-

pletion of the reaction, the solvent was evaporated and

residues were triturated with petroleum ether twice to ob-

tain crude product (4) which was recrystallised from

ethanol.

2-(100,300-Diphenyl-pyrazol-400-yl)-5-(pyridin-40-yl)-1,3,4-oxa-

diazole (4a) Yield 91 %; mp 177–178 �C; Rf = 0.22

[ethylacetate: hexane (1:1)]; IR (KBr) tmax: transparent in

the region of (N–H str.) and (C=O str.), 1251 (C–O str.)

cm-1; 1H NMR (DMSO-d6, 400 MHz,): d = 9.48 (1H, s,

H-500), 8.85 (2H, d, J = 5.4 Hz, H-20, H-60), 8.03 (2H, d,

J = 8.0 Hz, H-2¢¢¢, H-6¢¢¢), 7.99 (2H, d, J = 7.6 Hz, H-20000,
H-60000), 7.91 (2H, d, J = 5.6 Hz, H-30, H-50), 7.43–7.59

(6H, m, H-3¢¢¢, H-4¢¢¢, H-5¢¢¢ & H-30000, H-40000, H-50000); 13C

NMR (DMSO-d6, 100 MHz,): d = 161.6 (C, C-5), 160.2

(C, C-2), 150.9 (CH, C-20, C-60), 150.8 (C, C-300), 138.6 (C,

C-40), 131.6 (CH, C-500), 131.3 (C, C-1¢¢¢), 130.3 (C, C-10000),
129.7 (CH, C-30000, C-50000), 129.1 (C, C-40000), 128.8 (CH,

C-20000, C-60000), 128.2 (CH, C-3¢¢¢, C-5¢¢¢), 127.5 (CH, C-4¢¢¢),
120.0 (CH, C-30, C-50), 118.9 (CH, C-2¢¢¢, C-6¢¢¢), 105.5 (C,

C-400); MS (ESI) m/z: 366.13 (M ? 1)?; Anal. Calcd. for
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C22H15N5O: C, 72.30; H, 4.11; N, 19.17. Found: C, 72.28;

H, 4.10; N, 19.15.

2-[300-(40000-Nitrophenyl)-100-phenyl-pyrazol-400-yl]-5-(pyridin-

40-yl)-1,3,4-oxadiazole (4b) Yield 88.5 %; mp

241–242 �C; Rf = 0.18 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and

(C=O str.), 1543 (NO2 symmetric str.), 1349 (NO2 asym-

metric str.), 1247 (C–O str.) cm-1; 1H NMR (CDCl3,

400 MHz,): d = 9.52 (1H, s, H-500), 8.87 (2H, d,

J = 5.2 Hz, H-20, H-60), 8.39 (2H, d, J = 7.8 Hz, H-30000,
H-50000), 8.18 (2H, d, J = 8.0 Hz, H-20000, H-60000), 8.06 (2H,

d, J = 8.0 Hz, H-2¢¢¢, H-6¢¢¢), 7.99 (2H, d, J = 5.4 Hz,

H-30, H-50), 7.46–7.62 (3H, m, H-3¢¢¢, H-4¢¢¢, H-5¢¢¢); 13C

NMR (DMSO-d6, 100 MHz,): d = 161.5 (C, C-5), 160.1

(C, C-2), 150.8 (CH, C-20, C-60), 150.7 (C, C-300), 145.7 (C,

C-40000), 138.7 (C, C-40), 137.2 (C, C-10000), 131.4 (CH,

C-500), 130.5 (C, C-1¢¢¢), 129.6 (CH, C-20000, C-60000), 127.5

(CH, C-3¢¢¢, C-5¢¢¢), 126.7 (CH, C-30000, C-50000), 126.3 (CH,

C-4¢¢¢), 119.8 (CH, C-30, C-50), 118.7 (CH, C-2¢¢¢, C-6¢¢¢),
105.3 (C, C-400); MS (ESI) m/z: 411.1 (M ? 1)?; Anal.

Calcd. for C22H14N6O3: C, 64.37; H, 3.41; N, 20.48.

Found: C, 64.36; H, 3.39; N, 20.45.

2-[300-(40000-Methoxyphenyl)-100-phenyl-pyrazol-400-yl]-5-(pyrid-

in-40-yl)-1,3,4-oxadiazole (4c) Yield 90 %; mp

195–196 �C; Rf = 0.15 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and

(C=O str.), 1249 (C–O str.) cm-1; 1H NMR (DMSO-d6,

400 MHz,): d = 8.83 (2H, d, J = 5.6 Hz, H-20, H-60), 8.71

(1H, s, H-500), 7.83–7.94 (6H, m, H-30, H-50, H-20000, H-60000-
H & H-2¢¢¢, H-6¢¢¢), 7.39–7.56 (3H, m, H-3¢¢¢, H-4¢¢¢, H-5¢¢¢),
7.05 (2H, d, J = 7.2 Hz, H-30000, H-50000), 3.91 (3H, s, 40000-
OCH3); 13C NMR (DMSO-d6, 100 MHz,): d = 161.5 (C,

C-5), 160.5 (C, C-2), 159.7 (C, C-40000), 151.0 (CH, C-20,
C-60), 150.9 (C, C-300), 138.7 (C, C-40), 131.8 (CH, C-500),
130.5 (C, C-1¢¢¢), 128.6 (CH, C-20000, C-60000), 128.5 (CH,

C-3¢¢¢, C-5¢¢¢), 126.9 (CH, C-4¢¢¢), 120.1 (CH, C-30, C-50),
119.1 (C, C-10000), 118.9 (CH, C-2¢¢¢, C-6¢¢¢), 114.2 (CH,

C-30000, C-50000), 105.4 (C, C-400), 55.3 (CH3, OCH3); MS

(ESI) m/z: 396.2 (M ? 1)?; Anal. Calcd. for C23H17N5O2:

C, 69.84; H, 4.30; N, 17.71. Found: C, 69.82; H, 4.30; N,

17.69.

2-[300-(40000-Fluorophenyl)-100-phenyl-pyrazol-400-yl]-5-(pyridin-

40-yl)-1,3,4-oxadiazole (4d) Yield 89.3 %; mp

237–238 �C; Rf = 0.38 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and

(C=O str.), 1253 (C–O str.) cm-1; 1H NMR (DMSO-d6,

400 MHz,): d = 8.85 (2H, d, J = 5.4 Hz, H-20, H-60), 8.72

(1H, s, H-500), 7.83–7.97 (6H, m, H-30, H-50, H-20000, H-60000

& H-2¢¢¢, H-6¢¢¢), 7.20–7.57 (5H, m, H-30000, H-50000 & H-3¢¢¢,
H-4¢¢¢, H-5¢¢¢); 13C NMR (DMSO-d6, 100 MHz,):

d = 162.3 (C, d, 1JC-F = 246.1 Hz, C-40000), 161.5 (C, C-5),

160.2 (C, C-2), 150.9 (CH, C-20, C-60), 150.8 (C, C-300),
138.6 (C, C-40), 131.9 (CH, C-500), 130.6 (C, C-1¢¢¢), 130.4

(C, d, 3JC-F = 8.4 Hz, C-20000, C-60000), 129.8 (C, C-10000),
128.4 (CH, C-3¢¢¢, C-5¢¢¢), 127.6 (CH, C-4¢¢¢), 120.1 (CH,

C-30, C-50), 118.9 (CH, C-2¢¢¢, C-6¢¢¢), 115.8 (C, d, 2JC-

F = 21.5 Hz, C-30000, C-50000), 105.3 (C, C-400); MS (ESI)

m/z: 384.1 (M ? 1)?; Anal. Calcd. for C22H14FN5O: C,

68.91; H, 3.65; N, 18.27. Found: C, 68.90; H, 3.64; N,

18.25.

2-[300-(40000-Chlorophenyl)-100-phenyl-pyrazol-400-yl]-5-(pyrid-

in-40-yl)-1,3,4-oxadiazole (4e) Yield 91.2 %; mp

214–215 �C; Rf = 0.35 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and

(C=O str.), 1246 (C–O str.) cm-1; 1H NMR (DMSO-d6,

400 MHz,): d = 9.51 (1H, s, H-500), 8.86 (2H, d,

J = 5.2 Hz, H-20, H-60), 8.02–8.07 (4H, m, H-20000, H-60000-
H & H-2¢¢¢, H-6¢¢¢), 7.94 (2H, d, J = 5.6 Hz, H-30, H-50),
7.58–7.60 (4H, m, H-30000, H-50000 & H-3¢¢¢, H-5¢¢¢), 7.43–7.46

(1H, t, H-4¢¢¢); 13C NMR (DMSO-d6, 100 MHz,):

d = 162.2 (C, C-5), 160.6 (C, C-2), 151.5 (CH, C-20, C-60),
150.0 (C, C-300), 139.0 (C, C-40), 134.4 (C, C-40000), 132.4

(CH, C-500), 131.0 (CH, C-20000, C-60000), 130.8 (C, C-1¢¢¢),
130.7 (C, C-10000), 130.2 (CH, C-30000, C-50000), 128.8 (CH,

C-3¢¢¢, C-5¢¢¢), 128.2 (CH, C-4¢¢¢), 120.6 (CH, C-30, C-50),
119.5 (CH, C-2¢¢¢, C-6¢¢¢), 106.1 (C, C-400); MS (ESI) m/z:

400.08 (M ? 1)?, 402.08 (M ? 2)? in the ratio showing

typical chlorine isotope profile (3:1); Anal. Calcd. for

C22H14ClN5O: C, 66.15; H, 3.51; N, 17.54. Found: C,

66.10; H, 3.50; N, 17.50.

2-[300-(40000-Bromophenyl)-100-phenyl-pyrazol-400-yl]-5-(pyrid-

in-40-yl)-1,3,4-oxadiazole (4f) Yield 90.2 %; mp

203–204 cm-1; Rf = 0.37 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and (C=O

str.), 1246 (C–O str.) cm-1; 1H NMR (DMSO-d6, 400 MHz,):

d = 8.86 (2H, d, J = 5.4 Hz, H-20, H-60), 8.70 (1H, s, H-500),
7.82–7.89 (6H, m, H-20000, H-60000 & H-Ph¢¢¢), 7.65 (2H, d,

J = 5.2 Hz, H-30, H-50), 7.41–7.57 (3H, m, H-30000, 50000 &

H-4¢¢¢); 13C NMR (DMSO-d6, 100 MHz,): d = 161.6 (C,

C-5), 160.0 (C, C-2), 151.0 (CH, C-20, C-60), 150.7 (C, C-300),
138.2 (C, C-40), 133.7 (CH, C-30000, C-50000), 132.0 (CH, C-500),
131.6 (C, C-10000), 130.8 (C, C-1¢¢¢), 130.6 (CH, C-20000, C-60000),
128.5 (CH, C-3¢¢¢, C-5¢¢¢), 127.6 (CH, C-4¢¢¢), 124.6 (C, C-40000),
120.2 (CH, C-30, C-50), 119.3 (CH, C-2¢¢¢, C-6¢¢¢), 105.8 (C,

C-400); MS (ESI) m/z: 444.03 (M ? 1)?, 446.03 (M ? 2)? in

the ratio showing typical bromine isotope profile (1:1); Anal.

Calcd. for C22H14BrN5O: C, 59.59; H, 3.16; N, 15.80. Found:

C, 59.57; H, 3.14; N, 15.78.

2-[300-(40000-Methylphenyl)-100-phenyl-pyrazol-400-yl]-5-(pyrid-

in-40-yl)-1,3,4-oxadiazole (4g) Yield 92 %; mp

185–186 �C; Rf = 0.25 [ethylacetate: hexane (1:1)]; IR

(KBr) tmax: transparent in the region of (N–H str.) and
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(C=O str.), 1253 (C–O str.) cm-1; 1H NMR (CDCl3,

400 MHz,): d = 8.81 (2H, d, J = 5.6 Hz, H-20, H-60), 8.72

(1H, s, H-500), 7.79–7.88 (6H, m, H-30, H-50, H-20000, H-60000

& H-2¢¢¢, H-6¢¢¢), 7.39–7.56 (3H, m, H-3¢¢¢, H-4¢¢¢, H-5¢¢¢),
7.33 (2H, d, J = 7.6 Hz, H-30000, H-50000), 2.47 (3H, s, 40000-
CH3); 13C NMR (DMSO-d6, 100 MHz,): d = 161.6 (C,

C-5), 160.3 (C, C-2), 150.9 (CH, C-20, C-60), 150.8 (C,

C-300), 138.6 (C, C-40), 138.5 (C, C-40000), 131.6 (CH, C-500),
130.5 (CH, C-20000, C-60000), 129.6 (C, C-1¢¢¢), 128.8 (C,

C-10000), 128.6 (CH, C-30000, C-50000), 128.5 (CH, C-3¢¢¢,
C-5¢¢¢), 127.5 (CH, C-4¢¢¢), 120.0 (CH, C-30, C-50), 118.9

(CH, C-2¢¢¢, C-6¢¢¢), 105.4 (C, C-400), 20.9 (C, CH3); MS

(ESI) m/z: 380.14 (M ? 1)?; Anal. Calcd. for C23H17N5O:

C, 72.80; H, 4.48; N, 18.46. Found: C, 72.78; H, 4.46; N,

18.45.

Biological activity

DNA photocleavage study

DNA photocleavage experiment was performed by taking

10 ll solution containing pBR322 DNA in TE (Tris

10 mM, EDTA 0.01 mM, pH 8.0) buffer in the presence of

40 lg of synthesized compounds (Sharma et al., 2014).

The sample solution held in caps of polyethylene micro-

centrifuge tubes were placed directly on the surface of a

transilluminator (8000 mW/cm) at 360 nm and were irra-

diated for 30 min at room temperature. After irradiation,

samples were further incubated at 37 �C for 1 h. Irradiated

samples were mixed with 6X loading dye containing

0.25 % bromophenol blue and 30 % glycerol. The samples

were then analyzed by electrophoresis on a 0.8 % agarose

horizontal slab gel in Tris–acetate EDTA buffer (40 mM

Tris, 20 mM acetic acid, 1 mM EDTA, pH: 8.0). Untreated

plasmid DNA was maintained as a control in each run of

gel electrophoresis which was carried out at 5 V/cm for

2.0 h. Gel was stained with ethidium bromide (1 lg/mL)

and photographed under UV light. To account the effect of

synthesized compounds on DNA, the band intensities were

analyzed using the GelQuant.NET software provided by

biochemlabsolutions.com.
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