denjenigen der obigen α -Irone im wesentlichen folgende Zusammensetzung besitzen:

Fraktion Nr.	Bestandteile¹)
$ \begin{array}{r} 3-30 \\ 30-45 \\ 46-50 \end{array} $	trans $(2,6)$ - α -Iron ²) trans $(2,6)$ - α - und cis $(2,6)$ - α -Iron Max. des cis $(2,6)$ - α -Irongehaltes

In den höheren Fraktionen wurde β -Iron nachgewiesen³).

Wir danken auch an dieser Stelle für die Unterstützung aus Mitteln eines Arbeitsbeschaffungskredites des Bundes. Ferner danken wir der Firma Chuit, Naef & Cie., Firmenich & Cie., Scors., Genf, für das zur Verfügung gestellte Material.

Zusammenfassung.

Natürliches und synthetisches Irongemisch wurde in einer Podbielniak-Kolonne fraktioniert destilliert. Es konnte bei natürlichem Iron eine Trennung in optisch aktives $trans(2,6)-\alpha$ -, $cis(2,6)-\alpha$ - und γ -Iron beobachtet werden. Bei synthetischem Iron wurde eine Zerlegung in racemisches $trans(2,6)-\alpha$ - und $cis(2,6)-\alpha$ -Iron festgestellt. Es werden die Infrarot-Spektren dieser reinen Isomeren wiedergegeben.

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich.

232. Veilchenriechstoffe.

47. Mitteilung4).

Über die fraktionierte Destillation von natürlichem und synthetischem Iron. II

von C. F. Seidel und L. Ruzicka.

(26. VII. 52.)

In der vorhergehenden Mitteilung⁴) berichten Hs. H. Günthard, C. F. Seidel & L. Ruzicka über die Trennung von natürlichem Iron in trans(2,6)- α -, cis(2,6)- α - und γ -Iron, sowie über die Zerlegung des synthetischen Produktes in racemisches trans(2,6)- α - und cis(2,6)- α -

¹⁾ Hier handelt es sich um die racemischen Formen der genannten Verbindungen.

²⁾ Die Spektren der Fraktionen 3—30 des synth. Irons zeigen sehr geringe, aber deutlich ausserhalb der Messfehlergrenze liegende Abweichungen (besonders zwischen 700 und 900 cm⁻¹) von denen der gereinigten trans(2,6)- α - und cis(2,6)- α -Irone (Fig. 5).

³) Siehe Abh. II, Helv. **35**, 1826 (1952).

^{4) 46.} Mitteilung: Helv. 35, 1820 (1952).

Iron durch Destillation in einer *Podbielniak*-Kolonne. Die Charakterisierung der verschiedenen Fraktionen geschah mit Hilfe der Infrarotspektren und beim natürlichen Iron ausserdem mit den optischen Drehungen.

In der vorliegenden Arbeit beschreiben wir die chemische Untersuchung der bei den genannten Destillationen erhaltenen Ironfraktionen und die Identifizierung einer Anzahl von Isomeren an Hand der Derivate.

Von der grossen Zahl der theoretisch möglichen Isomeren, die sich beim α - und γ -Iron auf je 8 optisch aktive und 4 racemische, beim β -Iron auf 4 aktive und 2 racemische Formen beläuft¹), sind nämlich im natürlichen Irongemisch mehr vorhanden als man früher angenommen hatte. Die schon bekannten Isomeren wurden jetzt schneller, mit besserer Ausbeute und in reinerer Form erhalten und neue Isomere konnten isoliert werden.

Von besonderem Interesse sind die trans(2,6)- und $\operatorname{cis}(2,6)$ - α -Irone, welche sowohl aus dem natürlichen als auch aus dem synthetischen Produkt abgetrennt werden konnten. Sie wurden wie üblich durch die in der Seitenkette gesättigten Dihydroverbindungen charakterisiert. Bei diesen fällt die cis-trans-Isomerie an der Doppelbindung des Butenonrestes weg; ausserdem zeichnen sich ihre Semicarbazone durch besonders gutes Kristallisationsvermögen und untereinander stark verschiedene Löslichkeit aus. Auf Grund der verschiedenen Dichte kommt nach Auwers-Skita dem Dihydro-iron, dessen Semicarbazon bei 172—173° schmilzt, cis-Form, dem andern Isomeren (Semicarbazon 143—144°) trans-Form zu²).

Früher hatte uns die Isolierung von reinem α -Iron aus den stark γ -haltigen natürlichen Gemischen grosse Schwierigkeiten bereitet. Man hatte deshalb versucht, das γ -Iron durch Isomerisieren mit schwachen Säuren oder alkoholischen Alkalien in die α -Form überzuführen. Die dabei erhaltenen Präparate enthielten dann aber immer auch β -Iron, das wieder besonders abgetrennt werden musste; auch waren sie z. T. sterisch nicht einheitlich. Die von uns nach der alten Methode aus Naturion erhaltenen Präparate waren die folgenden:

- 1. ein (+)-Keton aus Phenylsemicarb. 153—154°, das noch wenige % des β -Isomeren enthielt³);
 - 2. ein Phenylsemicarbazon Smp. 160—161°, praktisch reine α-Form⁴);
- 3. ein (-)-trans(2,6)-Keton, durch Isomerisieren von natürlichem Iron mit alkoholischem Alkali gewonnen, Phenylsemic. Smp. $164-165^{03}$).

¹⁾ Unter Berücksichtigung der geometrischen Isomerie in der Seitenkette.

²⁾ Y. R. Naves, Helv. 31, 893, 1103, 1871 (1948); C. F. Seidel, H. Schinz & L. Ruzicka, Helv. 32, 2102 (1949).

³⁾ P. Bächli, C. F. Seidel, H. Schinz & L. Ruzicka, Helv. 32, 1744 (1949).

⁴⁾ L. Ruzicka, C. F. Seidel, H. Schinz & Ch. Tavel, Helv. 31, 257 (1948).

Naves und Mitarbeiter gaben folgende von ihnen isolierte α -Irone an:

- 1. ein (+)-cis(2,6)-Keton von hohem α_D , Phenylsemic. Smp. 157—157,5° 1);
- 2. ein (-)-Neo-Keton, Phenylsemic. Smp. 181—18202);
- 3. ein trans(2,6)-Keton, Phenylsemic. 174-17503).

Durch die Destillation mit der *Podbielniak*-Kolonne hat die Trennung der verschiedenen α -Isomeren eine bedeutende Vereinfachung erfahren. Durch Kombination mit den chemischen Methoden erreichten wir überdies eine weitere Trennung des cis- α -Irons in eine racemische und zwei optisch aktive, in der Seitenkette stereoisomere Formen.

Auch die Abtrennung des γ -Irons gestaltete sich jetzt einfacher. Die frühere Art der Isolierung durch fraktionierte Kristallisation ist. ausserordentlich verlustreich. Einmalige Destillation mit der Podbielniak-Kolonne gestattete schon die direkte Gewinnung von ca. 40 % der vorhandenen Menge des γ -Irons in praktisch reinem Zustand. Dadurch wurde es möglich, grössere Mengen dieses Ketons zu untersuchen, was u. a. zur Auffindung eines zweiten stereoisomeren γ -Irons führte.

A. Erste Destillation von natürlichem Iron⁴).

y-Iron.

250 g "Iris absolue" wurden einer gewöhnlichen Vordestillation im Hochvakuum unterzogen und die 183 g betragende Fraktion vom Sdp. $_{0,1}$ 70—90° in der Podbielniak-Kolonne destilliert. Über die Daten der hierbei erhaltenen Fraktionen siehe Tab. 1 links.

Die letzten 6 Fraktionen bestanden in der Hauptsache aus reinem γ -Iron; die Phenylsemicarbazone zeigten nach 1—2 maligem Umkristallisieren den Smp. 178—179°. Die Identifizierung der Fraktionen geschah auch mittels des IR.-Spektrums.

Eine quantitative Bestimmung des γ -Irons war wegen der vielen, kompliziert zusammengesetzten Zwischenfraktionen nicht möglich.

Vom Dihydroderivat schmolz das Semicarbazon bei 199—200° und das 2,4-Dinitrophenylhydrazon bei 108—109°.

α-Iron.

Die optische Drehung erreichte bei Fraktion 2 einen maximalen Wert von $+204^{\circ}$ (nach Reinigung mit *Girard*-Reagens). Das Phenylsemicarbazon Smp. 162— 163° war sterisch nicht einheitlich; es bestand

¹⁾ Y. R. Naves, Helv. 32, 611 (1949).

²) Helv. **31**, 1280, 1876, 2047 (1948). Die von *Naves* mit "Neo" bezeichneten Irone besitzen nach diesem Autor in der Seitenkette die trans-Konfiguration, Helv. **32**, 969 (1949).

³) Helv. **31**, 1280 (1948).

⁴) Diese Destillation entspricht Versuch 1 der vorhergehenden Abhandlung. Bedingungen siehe Abh. I, Tab. 1 und 2.

wahrscheinlich aus einem Gemisch der Derivate von (+)-cis(2,6)- und (+)-trans(2,6)- α -Iron.

Tabelle 1.

Destillation von natürlichem Iron in der Podbielniak-Kolonne.

	1. Destillation: 183 g Iron 1)			2. Destillation: 241 g Iron ¹)			
Frakt. Nr.	Menge cm ³	$\alpha_D^{\ 2})$	Phenyl- semicarbazon Smp.	Frakt. Nr.	Menge cm ³	α _D ²)	Phenyl- semicarbazon Smp.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	7 6,5 9 10 9 10 11 11 11 10 10,5 10 10	+ 39,7° +172° (+204°) +125° (+134,5°) + 85,9° + 66,1° + 56,4° + 52,5° + 47,8° + 41,8° + 37,1° + 30,8° + 25,5° + 21,0° + 15,9° + 11,4° + 9,2° + 7,8° + 7,2° (+7,24° + 7,5° + 9,1°	178—179° 178—179°		2 3 3,5 3 3,5 3,0 3,5 3,3 3,3 3 3 10 10 6,5	+ 62,6° + 58,4° + 55,6° + 52,8° + 49,0° + 48,3° + 47,1° (+49°) + 47,4° + 47,4° + 47,3° + 17,2°	1. 156,5—157,5° 2. 181—182° 3. 174—175° (1. 178—179° (2. 168—169°
				22	49	+ 10,60	

B. Zweite Destillation von natürlichem Iron³).

Von den zu diesem Versuch verwendeten 241 g Iron bestanden 127 g aus frischem Material und der Rest aus den Zwischenfraktionen 4—15 der 1. Destillation. 80 g dieses Gemisches wurden sehr langsam destilliert, der Rest des Öls dagegen rasch übergetrieben, weil man Isomerisation befürchtete (Fraktionen 21 und 22). Über die α_D -Werte der verschiedenen Fraktionen vgl. Tab. 1 rechts. Bei diesem Versuch wurde eine Trennung des $\operatorname{cis}(2,6)$ - und $\operatorname{trans}(2,6)$ - α -Irons erzielt.

 $^{^{1})}$ Bei den beiden Destillationen kamen insgesamt 310 g
 natürliches Irongemisch zur Verarbeitung. Vgl. dazu den ersten Satz des Abschnitts B.

²) Die in Klammern angegebenen Werte beziehen sich auf mit Girard-Reagens gereinigtes Produkt.

³⁾ Vgl. Versuch 2 der vorhergehenden Mitteilung, Bedingungen siehe Abhandlung I, Tab. 1 und 2.

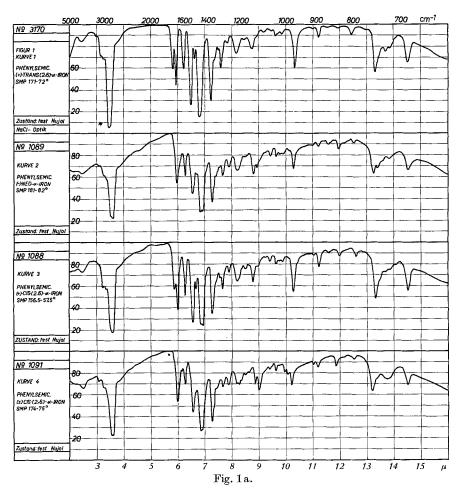
$$(+)$$
-trans $(2,6)$ - α -Iron.

 $\alpha_{\rm D}$ zeigte bei den Fraktionen 3 und 4 den maximalen Wert, der nach der Reinigung mit Girard-Reagens $+282^{\circ}$ betrug. Das Phenylsemicarbazon schmolz nach mehrmaligem Umkristallisieren bei 171—172° und bestand aus dem Derivat des reinen (+)-trans(2,6)- α -Irons. Das aus dem Phenylsemicarbazon regenerierte Keton zeigte $\alpha_{\rm D}=+327^{\circ}$. Die Dihydroverbindung gab das bekannte Semicarbazon Smp. 146—147°. Über diese und einige weitere Derivate des trans-(2,6)- α -Irons siehe Tab. 2.

c) Dreha) Semib) Phenyl-2,4-Dinitrovermögen carbazon semicarb. phenylhydrazon (+)-trans(2,6)- α -Iron (I) . $\alpha_{\rm D} = +327^{\rm 0}$ $192 - 193^{\circ}$ $171 - 172^{\circ}$ $98 - 99^{\circ}$ (+)-Dihydro-trans(2,6)- α -Iron (II). $|[\alpha]_D = +75^{01}|$ $146 - 147^{0}$ $86 - 87^{\circ}$

Tabelle 2.

Die kristallisierten Derivate Ib und IIa zeigten mit den entsprechenden, gleichschmelzenden Präparaten der synthetischen Ketone keine Schmelzpunktserniedrigungen. Auch beim Vermischen von Ic mit dem bei 103—104° schmelzenden 2,4-Dinitrophenylhydrazon des synthetischen Ketons wurde keine Depression beobachtet. Die Smp. von Ia und IIc sind stark verschieden von denjenigen der racemischen Präparate (Smp. 165—166° bzw. 116—117°); auch hier traten keine Schmelzpunktserniedrigungen auf.


$$(+)$$
-cis $(2,6)$ - α -Iron, (\pm) -cis $(2,6)$ - α -Iron und $(-)$ -Neo-cis- $(2,6)$ - α -iron.

Aus den Fraktionen 15—20, bei denen $\alpha_{\rm D}$ fast konstant 47—49° betrug, isolierte man Neo- α -iron in Form des sehr schwer löslichen Phenylsemicarbazons Smp. 181—182°. Die Mutterlauge dieses Derivats lieferte das bei 156,5—157,5° schmelzende Derivat von (+)-cis(2,6)- α -Iron und eine geringe Menge der racemischen Verbindung vom Smp. 174—175°. Die aus den Phenylsemicarbazonen regenerierten 3 Ketone wurden in die Dihydroverbindungen übergeführt, deren Semicarbazone alle bei 172—173° schmolzen.

Die IR.-Spektren²) der obigen Phenylsemicarbazone und der entsprechenden Ketone sind zusammen mit denen von (+)-trans-(2,6)- α -Iron in Fig. 1a und 1b wiedergegeben.

¹⁾ Wegen Substanzmangel in Lösung bestimmt.

²) Die IR.-Spektren wurden von A. Hübscher mit einem Baird-Spektrographen aufgenommen. P.-D. Dr. Hs. H. Günthard danken wir für die Diskussion dieser Spektren.

In den Kurven 5–8 (Fig. 1b) kommt der Unterschied zwischen trans(2,6)- und cis(2,6)- α -Iron deutlich zum Ausdruck. Während die IR.-Absorptionskurven der drei genannten cis- α -Irone untereinander praktisch identisch sind (ein Einfluss der geometrischen Isomerie in der Seitenkette ist kaum sichtbar), unterscheiden sie sich in den Bereichen von 780–900 cm⁻¹ und 1080–1200 cm⁻¹ stark vom Spektrum des trans- α -Irons (vgl. auch die vorhergehende Mitteilung Fig. 3). Nach Naves & Lecomte¹) besteht im Gebiet von 10–15 μ zwischen den Spektren von cis(2,6)- und trans(2,6)- α -Iron, ausser einer Umkehrung der Intensitäten der 2 Banden bei 800 cm⁻¹, nur ein geringer Unterschied. Bei den Phenylsemicarbazonen sind die Unterschiede der Stereoisomerie (2,6) ebenfalls sichtbar; ausserdem spielt hier der Einfluss des festen Zustandes noch eine Rolle.

¹⁾ Y. R. Naves & J. Lecomte, C. r. 234, 924 (1952).

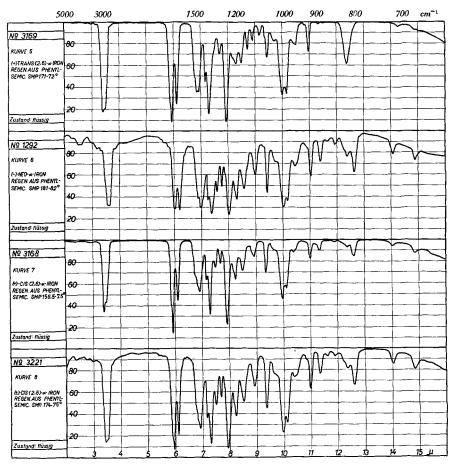


Fig. 1b.

In Tab. 3 sind die Schmelzpunkte der Phenylsemicarbazone und einiger weiterer, aus den 3 cis-α-Ironen, sowie aus ihren Dihydroverbindungen hergestellter kristallisierter Derivate¹) aufgeführt.

Folgende Mischungen gaben keine Schmelzpunktserniedrigungen: Semicarbazone von IV und VI; Thiosemicarbazone Smp. 183° von II und III; 2,4-Dinitrophenylhydrazone von I und III, von IV und VI. Ferner geben die Semicarbazone aus IV und VI mit dem Semicarbazon Smp. 172—173° aus synth. Dihydro- (\pm) -cis(2,6)- α -iron keine Erniedrigungen, dagegen wird bei der Mischprobe von Semicarbazon aus V mit dem Derivat aus synth. Dihydro- (\pm) -cis(2,6)- α -iron eine Depression von 6° beobachtet.

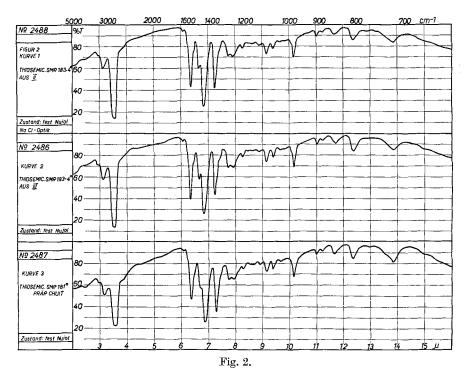
¹⁾ Die 2,4-Dinitrophenylhydrazone wurden nicht aus den Ketonen direkt, sondern aus deren Phenylsemicarbazonen gewonnen.

Ta	he	lle	3.
	NO	110	•••

Keton	$\alpha_{ m D}$	Phenyl- semicarb.	Semicar- bazon	Thio- semicarb.	2,4-Dinitro- phenylhydrazon
(-)-cis(2,6)-Neo- α-iron I	-0,40	1811820	160-1610		1531540
(+)-cis $(2,6)$ - $lpha$ -Iron II	+900	156,5—157,5°		99–100° und 183–184° (wenig)	139—1400
$\begin{array}{c} \text{nat.} \ (\pm)\text{-}\mathrm{cis}(2,6)\text{-} \\ \alpha\text{-}\mathrm{Iron} \ \Pi\Pi \ . \ . \ . \ . \end{array}$		174—175°		183—1840	153—1540
Dihydro-(-)-neo-cis- (2,6)- α -iron IV (aus I)			172-1730		131—1320
Dihydro-(+)cis (2,6)- α-iron V (aus II).		98—99°	1721730		101—102°
$\begin{array}{c} \text{nat. Dihydro-(}\pm\text{)-} \\ \text{cis(}2,6\text{)-}\alpha\text{-iron VI} \\ \text{(aus III)} . . . \end{array}$			172—173°		131—1320

Das Thiosemicarbazon von (+)-cis(2,6)- α -Iron (II) war nicht ganz einheitlich: es bestand zur Hauptsache aus einem leicht löslichen Anteil vom Smp. 99—100°, $[\alpha]_D = +$ 91° und wenig eines schwer löslichen Derivats vom Smp. 183—184° 2), das optisch inaktiv war. Dieses war auf Grund der Mischprobe identisch mit dem Thiosemicarbazon Smp. 183—184° des nat. (\pm) -cis(2,6)- α -Irons (III), sowie mit einem alten, ebenfalls inaktiven Präparat vom Smp. 181—182°, das früher von Ph. $Chuit^3$) aus Iris-Öl Schimmel & Co. isoliert worden war. Die Identität der drei Thiosemicarbazone wurde durch die IR-Spektren bestätigt.

Für das 2,4-Dinitrophenylhydrazon des Dihydro-(+)-cis(2,6)- α -irons V wurde Smp. 101—102° gefunden, der von den Smp. der analogen Derivate der Dihydroketone IV und VI, (131-132°) stark abweicht⁴).


Die erwähnten Unterschiede bei den Smp. der Thiosemicarbazone der Ketone II und III, sowie der 2,4-Dinitrophenylhydrazone der entsprechenden Dihydroketone sind dadurch zu erklären, dass Keton II optisch aktiv, Keton III dagegen inaktiv ist.

¹⁾ In Lösung bestimmt.

²) Y. R. Naves, Helv. 32, 600 (1949), gibt den Smp. 182,5—183° an.

³⁾ L. Ruzicka, C. F. Seidel & H. Schinz, Helv. 16, 1146 (1933).

⁴⁾ Y. R. Naves, Helv. 31, 904, 1103 (1948), gibt auch für das Derivat von V den höheren Smp. von 130—131° an.

 $(+)-\gamma$ -Iron.

Beim Umkristallisieren des Phenylsemicarbazons von Fraktion 21 wurde das bekannte Derivat von γ-Iron vom Smp. 178-179° in 40-proz. Ausbeute isoliert (vgl. Tab. 4 unter I). Daneben wurde aus der Mutterlauge ein zweites, leichter lösliches Derivat vom Smp. 168-1690 (II in Tab. 4) in einer Menge von 4% des Ausgangsproduktes erhalten. Dieses gab mit dem Präparat von Smp. 178-179° eine Schmelzpunktserniedrigung, bestand jedoch auf Grund des IR.-Spektrums ebenfalls aus y-Iron-phenylsemicarbazon. Die beiden v-Irone unterschieden sich weiter durch die optischen Drehungen der Phenylsemicarbazone und der Ketone selbst. Das Thiosemicarbazon des neuen Isomeren schmolz bei 137-1380 und war nach der Mischprobe mit dem bei 136-137° schmelzenden Thiosemicarbazon des aus dem Phenylsemicarbazon vom Smp. 178-1790 regenerierten Irons identisch. Ferner sind die Derivate der beiden Dihydro-y-irone¹) nach Smp. und Mischprobe identisch, woraus folgt, dass y-Irone mit eis-trans-Isomerie in der Seitenkette vorliegen.

Die Identität der beiden Thiosemicarbazone lässt sich dadurch erklären, dass wahrscheinlich bei der Hydrolyse der Phenylsemi-

 $^{^{1})}$ Semicarbazone und Dinitrophenylhydrazone der Dihydro-Ketone III (aus $\gamma\text{-Iron I})$ und IV (aus II) in Tab. 4.

carbazone in Gegenwart von Phtalsäureanhydrid Umlagerung der unbeständigen $\operatorname{cis}(2^1,2^2)$ -Form in das entsprechende trans-Isomere stattfindet.

Aus den beiden verschieden schmelzenden Phenylsemicarbazonen werden ausserdem identische 2,4-Dinitrophenylhydrazone erhalten, Smp. 133—134° bzw. 134—135°. In diesem Fall vollzieht sich die Umlagerung der $\operatorname{cis}(2^1,2^2)$ in die $\operatorname{trans}(2^1,2^2)$ -Form unter dem Einfluss der salzsauren Lösung von Dinitrophenylhydrazin.

Mit diesen Beobachtungen stehen die IR.-Spektren in Übereinstimmung: die Phenylsemicarbazone der Smp. 178—179° und 168—169° zeigen stark verschiedene Absorptionskurven, während diejenigen der durch schwach saure Hydrolyse gewonnenen Ketone praktisch identisch sind (Fig. 3).

	$rac{lpha_{ m D}}{ m Keton}$	Phenyl- semicar- bazon	α _D Phenyl- semic.	Semi- carbaz.	Dinitro- phenyl- hydraz.	Thiosemi- carbazon
(+)-γ-Iron I (+)-γ-Iron II . Dihydro-(+)-γ-	$egin{aligned} lpha_{\mathrm{D}} = +13,\!7^{\mathrm{o}} \ lpha_{\mathrm{D}} = +5,\!7^{\mathrm{o}} \end{aligned}$	$\begin{vmatrix} 178 - 179^{0} \\ 168 - 169^{0} \end{vmatrix}$	$-12^{0} -73^{0}$			136—137° 137—138°
	$[\alpha]_{D} = +43,201$			199—2000	108—1090	-
	$[\alpha]_{D} = +39,2^{01}$			200-2010	108—1090	

Tabelle 4.

Aus den Mutterlaugen des Phenylsemicarbazons vom Smp. 178—179° wurden, nach Entfernung von kleinen Mengen des Derivates von Neo- α -iron, Präparate mit Smp. zwischen 168 und 176° erhalten, die alle keine Schmelzpunktserniedrigungen mit dem hochschmelzenden Derivat von γ -Iron gaben. Nach weiterem Umkristallisieren wurden hieraus konstant schmelzende Mischkristalle vom Smp. 172—173° und $\alpha_D=0^\circ$ erhalten. Das hieraus bei der Hydrolyse erhaltene Keton zeigte $\alpha_D=+30^\circ$ und lieferte eine Dihydroverbindung, deren Semicarbazon nicht einheitlich war. Neben Kristallen vom Smp. 197—198°, die mit dem Semicarbazon vom Smp. 199—200° von Dihydro γ -iron identisch waren, erhielt man aus der Mutterlauge ein Produkt vom Smp. 176—178°, das keine Schmelzpunktserniedrigung mit dem Semicarbazon von (+)-Dihydro-cis- α -iron Smp. 172—173° zeigte.

Ausser den genannten Phenylsemicarbazonen wurde in dieser Fraktion noch eine kleine Menge Derivat von (+)-cis(2,6)- α -Iron Smp. 155—157° isoliert, das identisch war mit dem analogen Präparat vom Smp. 156—157° aus den Fraktionen 15—20.

¹⁾ Wegen Substanzmangel in Lösung bestimmt.

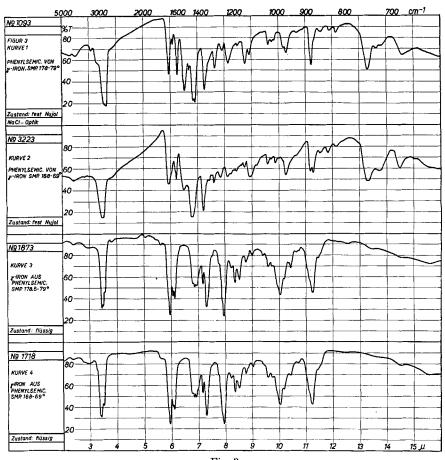


Fig. 3.

Bemerkungen zum Mengenverhältnis zwischen den α - und γ -Isomeren im natürlichen Iron.

Da sich die γ -Irone von den α -Isomeren durch einen höheren Sdp. und niedrigere spezifische Drehung unterscheiden, so können die Fraktionen 16—21 der ersten Destillation und die Fraktionen 21 und 22 der zweiten Destillation des natürlichen Iron-Gemisches (vgl. Tab. 1) annähernd als γ -Irone und die tiefersiedenden als α -Irone bezeichnet werden. Das Verhältnis $\gamma:\alpha$ wäre danach 2:1, entsprechend unseren Befunden anhand der Ozon-Methode sowie der quantitativen Auswertung der typischen IR.-Absorptionsbanden 1)2).

¹⁾ Hs. H. Günthard, L. Ruzicka, H. Schinz & C. F. Seidel, Helv. 32, 2198 (1949).

²) Genaue Angaben über das Mengenverhältnis der verschiedenen Stereoisomeren lassen sich nicht machen, da die Reinigung über die kristallisierten Derivate mit beträchtlichen Verlusten verbunden ist.

C. Destillation von synthetischem Iron¹).

Das verwendete Iron wurde aus Pseudoiron-Nachläufen durch Cyclisation mit Bortrifluorid hergestellt²). 430 g dieses Ketons trennte man durch Destillation in einer *Podbielniak*-Kolonne in 58 Fraktionen.

In Tab. 5 haben wir die Mengen und Sdp. der einzelnen Fraktionen sowie die Smp. der Derivate zusammengestellt. Man sieht hieraus, dass eine weitgehende Trennung des trans(2,6)- α -Irons von den andern Isomeren stattgefunden hat. In der vorangehenden Publikation wurde schon durch den Vergleich der Infrarotspektren der Fraktionen 3—30 mit demjenigen von reinem trans(2,6)- α -Iron festgestellt, dass diese Fraktionen praktisch quantitativ aus trans α -Iron bestehen.

Wir konnten diesen Befund bestätigen durch die Identifizierung der Fraktionen 6, 12, 18 und 27 in Form der Semicarbazone der Dihydroverbindungen vom Smp. 150–151°. Weiter wurden die Phenylsemicarbazone von den Fraktionen 6 und 18 hergestellt; sie schmolzen bei 174–175°. Sowohl die Semicarbazone der Dihydroverbindungen als die Phenylsemicarbazone der unhydrierten Ketone waren alle identisch mit den entsprechenden, bei 146–147°, resp. 171–172° schmelzenden Derivaten von (+)-trans(2,6)- α -Iron. Die Menge dieses Isomeren betrug 55% des eingesetzten Irons.

Die Fraktionen 30—38 kann man als Übergangsfraktionen bezeichnen; sie enthalten ein Gemisch von trans- und cis-α-Iron. Beide wurden in Fraktion 36 nebeneinander in Form der Semicarbazone ihrer Dihydroverbindungen nachgewiesen. Die Menge des isolierten Derivates von cis(2,6)-α-Iron Smp. 172—173° betrug 25%; diejenige von trans(2,6)-α-Iron 8%. Der Gehalt an cis-Isomeren erreichte ein Maximum in den Fraktionen 46—50, wie anhand der Infrarotspektren festgestellt werden konnte. Die Untersuchung des aus Fraktion 41 hergestellten Phenylsemicarbazons lieferte 40% des Phenylsemicarbazons von Neo-cis(2,6)-α-iron (Smp. 180—181°) und 3,5% des Derivats von cis(2,6)-α-Iron vom Smp. 173—174°. Die Mischproben mit den entsprechenden, bei 181—182°, resp. 174—175° schmelzenden Präparaten aus natürlichem Iron zeigten keine Smp.-Erniedrigungen. Ausserdem enthielt diese Fraktion noch eine geringe Menge trans-α-Iron.

Ungefähr das gleiche Resultat wurde erhalten bei der Untersuchung der vereinigten Fraktionen 42, 43 und 44.

Die Fraktionen 45 und 50 lieferten 40, bzw. 41 % des Semicarbazons von Dihydro-cis(2,6)-\(\alpha\)-iron.

¹) Diese Destillation entspricht dem 3. Versuch aus der Abhandlung $Hs.H.G\ddot{u}nthard$, C.F.Seidel & L.Ruzicka in diesem Heft.

²⁾ Siehe C. F. Seidel, H. Schinz & L. Ruzicka, Helv. 32, 2109 (1949); J. R. Naves, Helv. 31, 1108 (1948).

Tabelle 5.				
Destillation von synthetischem Iron in der Podbielniak-Kolonne.	Destilla			

Fraktion	Menge cm	Sdp. 6—6,5 mm	Semicarbazon	Phenyl- semicarb.
1	2	111—1150		
2	$oldsymbol{2}$	115—1180		
3	5	118—1230		
4	15,5	1230		
5	15	122,5-1260		
6	12	126—127,5°	$165-166^{\circ} \ \mathrm{DH^{1})} 150-151^{\circ}$	174—175°2)
7—11	8,8—15,7	123—1270		
12	15,3	125—130°	DH 150—151°	
13—17	8,3-15,3	$130-131,5^{\circ}$		
18	$9,\!4$	1310	DH 150—151°	174—17502)
19—26	5,15,3	127—130°	1	,
27	5,2	1290	DH 150151°	
28-35	5,25,8	128—1320		İ
36	5,2	132—1330	DH 146—147°	.
1			,, 172—173°	
37—40	5,1—5,6	131—1330		
41—44	2,5—6	129—131,5°		$180 - 181^{0} \\ 173 - 174^{03})$
45	5,3	131—131,50	DH 172173°	
46-49	5,3-5,9	131-1320		
50	5,5	132—132,5°	DH 171—172° ,, 149—152°	
51	5,5	132,5-1330		
52	5,2	$132,5-133^{\circ}$		
53	5,2	132,50		
54	5,3	129—130°		
55	5,1	1290		
56	5,5	128-1330		
57	5,2	$133-133,5^{0}$		
58	4,2	$133,5-134,5^{\circ}$		
Kolbenrück- stand re-	1			
destilliert	23	<u> </u>	1681690	

In den Fraktionen 50, 51, 52, 54, 56 und 58 wurde mit Hilfe des UV.-Absorptionsspektrums der Gehalt an β -Iron bestimmt. Die UV.-Absorptionskurven der Fraktionen 50 und 51 zeigen nur geringe Inflexionen bei 293 m μ , entsprechend einem Gehalt von wenigen Prozenten β -Iron. Die übrigen Fraktionen besitzen einen steigenden Gehalt an diesem Isomeren, wie aus der nachstehenden Tab. ersichtlich ist.

¹⁾ DH = Dihydroverbindung.

²) (\pm) -trans(2,6)- α -Iron.

³⁾ (\pm) -cis(2,6)- α -Iron.

Fraktion	$egin{array}{c} \log arepsilon \ \mathrm{bei} \ \lambda = 293 \ \mathrm{m} \mu \end{array}$	β -Iron
52	2,8	5,6
54	2,77	5,2
56	3,24	15,6
58	3,79	55
59	3,93	75
59	3,93	75

In dem aus dem Kolbenrückstand (Frakt. 59) der *Podbielniak*-Destillation durch Redestillation gewonnenen Keton war das β -Iron am meisten angereichert. Das Semicarbazon schmolz nach 3maligem Umkristallisieren aus Methanol bei 168—169° und war identisch mit einem gleichschmelzenden Kontrollpräparat.

Diskussion.

Durch die Destillation in der *Podbielniak*-Kolonne ist es uns gelungen, 2 bisher nicht bekannte stereoisomere Irone zu isolieren und andere, bereits bekannte in reinerer Form aus dem Gemisch abzutrennen und durch die gebräuchlichen Derivate zu charakterisieren. Dadurch ist es möglich geworden, die Liste der beschriebenen Präparate zu erweitern und in manchen Punkten zu berichtigen.

Die von uns so in reinem Zustand isolierten Präparate sind die folgenden:

Aus natürlichem Iron.

1. (+)-trans(2,6)- α -Iron: Phenylsemicarbazon Smp. 171—172°1); 2,4-Dinitrophenylhydrazon Smp. 98—99°2).

Höherer Smp. als früher: Semicarbazon Smp. 192—193°3).

Dihydroketon: Semic. Smp. 146—147°4), 2,4-Dinitroph. Smp. 86—87°4).

2. (+)-cis(2,6)- α -Iron: Phenylsemic. Smp. 156,5—157,505).

Thiosemic. Smp. 99—100°6); 2, 4-Dinitrophenylhydrazon Smp. 139—140°.

Dihydroketon: Semic. Smp. 172—17307); Dinitroph. Smp. 101—10208).

3. Natürl. (\pm) -cis(2,6)- α -Iron⁹): Phenylsemic. 174—175°.

Dinitroph. Smp. 153—154°; Thiosemic. Smp. 183—184°.

Dihydroketon: Semic. Smp. 172-173°; Dinitroph. Smp. 131-132°.

4. (-)-cis(2,6)-Neo-α-iron: Phenylsemic. Smp. 181—182⁰¹⁰); Semic. Smp. 160—161⁰¹¹); 2,4-Dinitrophenylhydrazon Smp. 153—154°.

¹⁾ Naves, Helv. 31, 1280 (1948), gibt 174,5-175,5° an.

²) Naves, l. c. 103—103,5°.

³) Wir fanden früher, Helv. **16**, 1143 (1933), 190^o.

⁴⁾ Von Naves nicht beschrieben.

⁵) Naves, 157,5—158°, Helv. **32**, 611 (1949).

⁶⁾ Naves, 182,5—1830, Helv. 32, 599 (1949).

⁷⁾ Naves, 172—173°, Helv. 31, 1103 (1948).

⁸⁾ Naves, 130-131°, l. c.

⁹⁾ Von Naves nicht beschrieben.

¹⁰) Naves, 181—182°, Helv. 31, 1280, 1876 (1948).

¹¹) Naves, 164—165°, Helv. 32, 1230 (1949).

Dihydroketon: Semic. Smp. 172—173°1); Dinitroph. Smp. 131—132°2).

5. (+)-trans $(2^1, 2^2)$ - γ -Iron:

Höhere Smp. als früher: Phenylsemicarbazon Smp. 178—179°. Dinitroph. Smp. $133-134^{\circ 3}$); Thiosemic. Smp. $136-137^{\circ 4}$).

6. (+)-cis $(2^1,2^2)$ - γ -Iron⁵): Phenylsemicarbazon Smp. 168—169°.

Aus synthetischem Iron.

1. (\pm) -trans(2,6)- α -Iron: Semicarbazon Smp. 165—166°.

Höhere Smp. als früher: Phenylsemicarbazon Smp. 174—175°6); Dihydroketon Semic. Smp. 150—151°7).

- 2. (\pm) -cis(2,6)- α -Iron; Phenylsemicarbazon Smp. 173—17408).
- 3. (\pm) -cis(2,6)-Neo- α -iron:

Höherer Smp. als früher: Phenylsemicarbazon Smp. 181-18209).

Die genauere Kenntnis der verschiedenen isomeren Irone erleichtert eine Gegenüberstellung unserer Präparate und derjenigen von *Naves* und Mitarbeitern. In manchen Punkten herrscht jetzt bessere Übereinstimmung zwischen den Befunden der beiden Arbeitsgruppen als früher. In andern bleiben Divergenzen bestehen oder treten noch deutlicher in Erscheinung.

Gewisse von Naves und Mitarbeitern beschriebene, von uns aber bisher nicht erhaltene Präparate konnten wir jetzt auch isolieren, z. B. das natürliche Neo- α -iron.

Bei andern Naves'schen Präparaten gelang dies dagegen nicht, z. B. konnten wir das Dihydro- α -iron, dessen Semicarbazon bei $203-203,5^{\circ}$ schmilzt, nicht auffinden.

Anderseits gelang es uns, Isomere zu isolieren, welche bisher sowohl *Naves* als auch uns selbst entgangen waren, z. B. das neue γ -Iron (Phenylsemic. 168—169° 10) und das natürliche (\pm)-cis(2,6)- α -Iron.

Diskrepanzen gegenüber den Angaben Naves finden wir vor allem beim $\operatorname{cis}(2,6)$ - α -Iron. Das Semicarbazon unseres (+)- $\operatorname{cis}(2,6)$ - α -Irons war amorph (Naves, Smp. 192—193° und ein amorphes Präparat Smp. 103—104°); unser Thiosemicarbazon zeigte Smp. 99—100°, daneben war sehr wenig eines von natürlichem (\pm) - $\operatorname{cis}(2,6)$ - α -Iron herrührenden Präparates vom Smp. 183—184° vorhanden (Naves gibt nur das Präparat Smp. 182,5—183° an); 2,4-Dinitrophenylhydrazon

- 1) Naves, 172,5—173°, Helv. 31, 1876 (1948).
- ²) Naves, 130—131°, l. c.
- 3) Früher 130—131°, Helv. 32, 1744 (1949).
- 4) Früher 127,5—128,5°, l. c.
- 5) Von Naves nicht beschrieben.
- 6) Früher 172—173°, Helv. 32, 2102 (1949).
- ⁷) Früher 146—147°, Helv. 32, 2102 (1949).
- 8) Naves, 164,5—165°, Helv. 31, 1103 (1948).
- 9) Früher 178—179°, Helv. 32, 2102 (1949).
- 10) Naves fand zwar ein anderes zweites γ -Iron, dessen Phenylsemicarbazon jedoch Smp. 174—177° und dessen 2,4-Dinitrophenylhydrazon Smp. 126,5—127° aufweist; Helv. 32, 2186 (1949). Der unscharfe Schmelzpunkt des Phenylsemicarbons deutet auf das Vorliegen eines Gemisches hin.

Smp. 139—140° (Naves, 125,5—126°). Der Unterschied zeigt sich auch bei den Dihydroketonen: 2,4-Dinitrophenylhydrazon 101—102° (Naves, 130—131°).

Das Phenylsemicarbazon unseres synthetischen (\pm)-cis-(2,6)- α -Irons zeigt Smp. 173—174° (Naves, 164—165°).

Das Semicarbazon der Dihydroverbindung von (+)-cis(2,6)- α -Iron zeigte bei der Mischprobe mit den gleichschmelzenden Derivaten der Dihydroderivate von natürlichem (\pm) -cis(2,6)- α -Iron, von (-)-cis(2,6)-Neo- α -iron und von synthetischem (\pm) -cis(2,6)- α -Iron Schmelzpunktserniedrigungen von ca. 6° , die durch die optische Aktivität bedingt sind. Mischungen der drei letztgenannten Präparate untereinander geben dagegen keine Depressionen.

Auch beim $trans(2,6)-\alpha$ -Iron bestehen Unterschiede zwischen unseren Resultaten und denjenigen von *Naves*. Wir fanden für das Semicarbazon der (+)-Form Smp. 192—193°, für dasjenige der synthetischen (±)-Form 165—166° (*Naves* gibt nur den Smp. 157—158° an¹)).

Wir stimmen mit Naves darin überein, dass das Neo- α -iron cis(2,6)-Form besitzt und dass es sich vom (+)-cis(2,6)- α -Iron nur durch Stereoisomerie an der Doppelbindung der Seitenkette unterscheidet. Welchem der beiden Isomeren die cis $(2^1,2^2)$ -Form und welchem die trans $(2^1,2^2)$ -Form zukommt, können wir dagegen nicht sicher entscheiden²).

Die gleiche Isomerie in der Seitenkette fanden wir auch bei den beiden γ -Ironen. Hier dürfte in dem neu aufgefundenen Keton (Phenylsemicarbazon Smp. 168—169°) die cis(2¹,2²)-Form vorliegen, da es sich leicht in das schon länger bekannte, beständigere Isomere (Phenylsemicarbazon Smp. 178—179°) umlagert.

Damit haben wir nur die wichtigsten Punkte einander gegenübergestellt. Auf die zahlreichen kleineren Unterschiede wollen wir nicht besonders hinweisen.

Wir danken der Firma Chuit, Naef & Cie., Firmenich & Cie., Sccrs., Genf, für die Unterstützung dieser Arbeit.

Experimenteller Teil3).

A. Erste Destillation von natürlichem Iron.

Vordestillation des Ausgangsmaterials. 250 g "Iris absolue" ($\alpha_{\rm D}=+31,1^{\rm 0}$) wurden in einem *Widmer*-Kolben destilliert: 1. 0,1 mm 40—70°, 9,4 g; 2. 70—77°, 2,3 g; 3. 77—82°, 186,1 g; 4. 82—90°, 2,7 g; 5. (90) 110—115°, 43,3 g; Rückstand 5 g. Fraktion 3: $\alpha_{\rm D}=+39,2^{\rm 0}$.

¹) Helv. **32**, 1230 (1949).

²) Nach Naves besitzt das Neo- α -iron trans $(2^1, 2^2)$ - und das (+)-cis(2, 6)- α -Iron cis $(2^1, 2^2)$ -Form, Helv. **31**, 1280 (1948); **32**, 611 (1949).

³⁾ Bei den Angaben der Smp. ist die Fadenkorrektur nicht berücksichtigt.

183 g Iron¹) vom Sdp. _{0,1} 70—90° (Fraktionen 2—4) wurden in der *Podbielniak*-Kolonne destilliert. Diese Destillation ist in der vorhergehenden Abhandlung I beschrieben. Von den dabei erhaltenen 21 Fraktionen wurden die optischen Drehungen bestimmt, vgl. Tab. 1, theoret. Teil, und Abhandlung I, Fig. 1.

Fraktion 2.

4,5 g Keton wurden im *Widmer*-Kolben redestilliert. a) 0,08 mm 68—73°, 2,45 g; b) 73—74°, 1,7 g; c) 74—76°, 0,5 g. Bei Behandlung von Fraktion a mit *Girard*-Reagens P traten 0,7 g nicht in Reaktion. Die ketonischen Teile (1,6 g) ergaben 1,55 g Öl vom Sdp. $_{0,1}$ 75—76°; $\alpha_{\rm D}=+204,2°$.

3,678 mg Subst. gaben 10,999 mg CO₂ und 3,536 mg $\rm H_2O$ $\rm C_{14}H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,61 H 10,76%

Phenylsemicarbazon. Aus 0,3 g Keton wurde das Phenylsemicarbazon hergestellt, das nach zweimaligem Umkristallisieren aus Methanol bei 162—163° schmolz. Bei den Mischproben mit den Phenylsemicarbazonen von (\pm) -trans(2,6)-α-Iron vom Smp. 169—170° und von (+)-cis(2,6)-α-Iron Smp. 157—157,5° wurden keine Schmelzpunktserniedrigungen beobachtet.

3,698 mg Subst. gaben 10,061 mg CO₂ und 2,830 mg H₂O C₂₁H₂₉ON₃ Ber. C 74,30 H 8,61% Gef. C 74,25 H 8,56% $\left[\alpha\right]_{\rm D} = +204^{\rm o} \ ({\rm c}=2.5; \ {\rm Chloroform})$

Fraktion 3.

6 g ergaben 4,85 g Iron (Girard) vom Sdp. $_{0.08}$ 75—76°; $\alpha_{\rm D}=+134,5^{\circ}.$

3,833 mg Subst. gaben 11,421 mg $\mathrm{CO_2}$ und 3,605 mg $\mathrm{H_2O}$

 $C_{14}H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,31 H 10,52%

Phenylsemicarbazon. Smp. 157—158° (aus Methanol). Mischproben mit den gleichen Präparaten wie oben keine Schmelzpunktserniedrigung.

3,624 mg Subst. gaben 9,848 mg CO₂ und 2,732 mg $\rm H_2O$ $\rm C_{21}H_{29}ON_3$ Ber. C 74,30 H 8,61% Gef. C 74,16 H 8,44%

Fraktionen 16, 17 und 21.

Die aus je 0,3 g Keton hergestellten Phenylsemicarbazone schmolzen nach ein- bis zweimaligem Umkristallisieren aus Alkohol bei 178—179° und zeigten keine Schmelzpunktserniedrigungen mit einem Präparat aus γ -Iron vom gleichen Smp.

Fraktion 19.

(+)- γ -Iron. 2,5 g Keton ergaben nach Reinigung mit Girard-Reagens P 2,2 g vom Sdp. $_{0,25}$ 92—94°; $\alpha_{\rm D}=+7,24$ °.

3,572 mg Subst. gaben 10,681 mg CO₂ und 3,415 mg H₂O C₁₄H₂₂O Ber. C 81,50 H 10,75% Gef. C 81,62 H 10,70%

Das Phenylsemicarbazon schmolz nach Umkristallisieren bei 178—179°. $[\alpha]_D=-15^\circ$ (c = 6,79; Chloroform). Keine Smp.-Erniedrigung mit dem gleichschmelzenden Präparat aus γ -Iron.

Dihydro- γ -iron. 3,3 g γ -Iron von Fraktion 19 wurden in Gegenwart von 0,6 g Raney-Nickel in Feinsprit mit Wasserstoff geschüttelt. In 26 Min. wurden 425 cm³ (1 Mol.) aufgenommen. Semicarbazon des Dihydroketons nach Umkristallisieren aus abs. Alkohol Smp. 199—200 $^{\circ}$, 3,5 g. Mischprobe mit einem früher erhaltenen Präparat aus Dihydro- γ -iron vom gleichen Smp. keine Depression.

3,878 mg Subst. gaben 9,629 mg CO₂ und 3,536 mg H₂O C₁₅H₂₇ON₃ Ber. C 67,88 H 10,26% Gef. C 67,76 H 10,20%

¹) Die Blasenfüllung bestand ausser dem Iron noch aus 43 g Nachläufen vom Sdp. $_{0,1}$ 110—115°.

Die Hydrolyse von 2 g Semicarbazon, Smp. 199—200°, mit Phtalsäureanhydrid im Wasserdampfstrom lieferte 1,3 g Dihydroketon, Sdp. $_{0.06}$ 81—82°; $d_4^{20}=0.9309$; $n_D^{20}=1.4842$; M_D ber. für $C_{14}H_{24}O$ [1] 64,19; Gef. 64,04.

2,4-Dinitrophenylhydrazon (durch Umsetzen von Semicarbazon, Smp. 199—200°, mit einer methylalkoholischen Lösung von 2,4-Dinitrophenylhydrazin-hydrochlorid). Gelbe Nadeln vom Smp. 108—109° (aus Methanol-Chloroform).

B. Zweite Destillation von natürlichem Iron.

150 g "Iris-absolue" wurden zur Entfernung von geringen Mengen saurer Bestandteile mit Sodalösung und mit Wasser bis zur neutralen Reaktion gewaschen und hierauf in einem *Widmer*-Kolben vordestilliert; 1. 0,1 mm 45—70°, 3,1 g; 2. 0,02 mm 70—90°, 126,8 g; 3. 90—115°, 14 g; Rückstand 5 g.

Die Blasenfüllung der in der vorhergehenden Abhandlung beschriebenen 2. Destillation in der *Podbielniak*-Kolonne bestand aus 126,8 g Iron vom Sdp. 0,02 70—90°, weiter aus 114,3 g Iron von den Zwischenfraktionen 4—15 von der 1. Destillation und 54 g Nachläufen Sdp. 0,1 90—115°. Die 241 g Iron wurden in 20 Fraktionen von 2—10 cm³ und 2 Fraktionen von 100 resp. 49 cm³ getrennt. Von sämtlichen Fraktionen wurden die optischen Drehungen bestimmt (Tab. 1, theoretischer Teil; Abhandlung I, Fig. 1).

Fraktionen 3 und 4.

6,0 g der vereinigten Fraktionen 3 und 4 gaben nach Reinigen mit Girard-Reagens P 4,75 g α -Iron vom Sdp. 0,15 82—83°; $\alpha_{\rm D}=+282^{\rm 0}$ und 1,05 g nicht-ketonische Teile. 2,6 g Keton lieferten 3,85 g Phenylsemicarbazon. Diese wurden zweimal aus Methanol und zweimal aus Methanol-Essigester (10:1) umkristallisiert; filzige Nädelchen, Smp. 171—172°, [$\alpha_{\rm D}=+338^{\rm 0}$ (c = 3,84 in CHCl₃). Die Mischprobe mit einem Präparat vom Smp. 171—172° von synthetischem trans(2,6)- α -Iron (Pseudo-iron nach Oppenauer, cyclisiert mit Phosphorsäure) zeigte keine Schmelzpunktserniedrigung.

3,670 mg Subst. gaben 9,988 mg CO₂ und 2,783 mg H₂O C₂₁H₂₉ON₃ Ber. C 74,30 H 8,61% Gef. C 74,27 H 8,51%

2,4-Dinitrophenylhydrazon (aus 0,11 g Phenylsemicarbazon von nicht ganz höchstem Smp.) Smp. konstant 98—99° (Methanol-Chloroform). Mit einem Präparat vom Smp. 104—105° aus (\pm)-trans(2,6)- α -Iron (Pseudo-iron mit 62,5-proz. $\rm H_2SO_4$ eyclisiert) trat keine Schmelzpunktserniedrigung ein.

3,800 mg Subst. gaben 8,654 mg CO $_2$ und 2,288 mg $\rm H_2O$ $\rm C_{20}H_{26}O_4N_4$ Ber. C 62,16 H 6,78% Gef. C 62,15 H 6,74%

(+)-trans(2, 6)-α-Iron aus Phenylsemicarbazon Smp. 171—172°. Durch Hydrolyse von 2,2 g Phenylsemicarbazon, Smp. 170—172°, mit Phtalsäureanhydrid im Dampfstrom erhielt man 1,15 g α-Iron vom Sdp. 0,15 83—84°; ${\rm d}_{2}^{20}=0.9321$; ${\rm n}_{\rm D}^{20}=1.5002$; ${\rm a}_{\rm D}=+327^{\circ}$; [α]_D=+363° (c=5,68 in CHCl₃); ${\rm M}_{\rm D}$ Ber. für C₁₄H₂₂O $|\overline{\rm 2}|$ 63,73; Gef. 65,13; EM_D=+1,40.

3,265 mg Subst. gaben 9,730 mg CO_2 und 3,139 mg H_2O $C_{14}H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,33 H 10,76%

Semicarbazon (aus 0,15 g dieses gereinigten Ketons). Das amorphe Rohprodukt wurde in Äther aufgenommen und mit Sodalösung und Wasser gewaschen. Der nach Verdampfen des Äthers verbleibende Rückstand kristallisierte nach Anreiben mit Petroläther und lieferte nach viermaligem Umkristallisieren aus Methanol Nädelchen vom Smp. 192—193°.

```
3,736 mg Subst. gaben 9,342 mg CO<sub>2</sub> und 3,158 mg \rm H_2O \rm C_{15}H_{25}ON_3 Ber. C 68,40 H 9,57% Gef. C 68,24 H 9,46%
```

Dihydro-trans(2,6)- α -iron. 0,3 g Keton von den Fraktionen 3 und 4 wurden in Gegenwart von 0,1 g Raney-Nickel zum Dihydroketon hydriert. Semicarbazon Smp. 146—147° (aus Methanol). Mischprobe mit dem gleichschmelzenden Präparat von (\pm) -

trans(2,6)-Dihydro-α-iron keine Schmelzpunktserniedrigung. 2,4-Dinitrophenylhydrazon (aus 0,07 g Semicarbazon Smp. 146—147°) Smp. 86—87°.

3,828 mg Subst. gaben 8,634 mg CO $_2$ und 2,414 mg CO $_2$ C $_{20}\rm H_{28}O_4N_4$ Ber. C 61,83 H 7,24% Gef. C 61,55 H 7,08%

Fraktionen 15, 16, 18, 19, 20.

Das vereinigte Öl dieser Fraktionen (27 g) wurde mit *Girard*-Reagens P behandelt. Ketonanteil 25,2 g vom Sdp. 0,2 89—90°. Nichtketonische Teile 0,9 g.

Aus den 25,2 g Keton wurden durch $2\frac{1}{2}$ stündiges Kochen mit 19,4 g Phenylsemicarbazid in 125 cm³ Methanol 37,5 g Phenylsemicarbazon erhalten. Beim Behandeln mit viel heissem Methanol blieb ein Teil des Derivats (4,2 g) als schwer lösliches, sandiges Pulver ungelöst, wovon die warme Lösung abfiltriert wurde. Nach Waschen mit Methanol schmolzen die Kristalle bei 181—182°. Sie wurden umkristallisiert durch Lösen in wenig heissem Chloroform und Versetzen der Lösung mit Alkohol bis zur beginnenden Kristallisation, wobei feine, weisse Nädelchen vom gleichen Smp. und $[\alpha]_D = -1,1°$ (c = 4,21 in Chloroform) erhalten wurden.

3,654 mg Subst. gaben 9,945 mg CO₂ und 2,831 mg $\rm H_2O$ $\rm C_{21}H_{29}ON_3$ Ber. C 74,30 H 8,61% Gef. C 74,28 H 8,67%

Aus der Mutterlauge der Kristalle Smp. 181—182° erhielt man eine Fraktion vom Smp. 143—147°, deren Smp. sich beim Umkristallisieren aus Methanol nicht wesentlich änderte. Dabei wurde nochmals eine kleine Menge des schwer löslichen Derivats vom Smp. 181—182° abgetrennt. Die Hauptmenge der Kristalle (Smp. 145—148°) war nicht einheitlich und bestand aus einem Gemisch von weichen, filzigen Nädelchen und wenig körnigem Material. Zur Trennung wurde das Produkt in einem Erlenmeyer mit gekühltem Pentan, worin es wenig löslich ist, aufgeschlemmt und die Suspension der leichten Nädelchen nach kurzem Absitzenlassen des schwereren Pulvers dekantiert. Nach fünfmaliger Wiederholung dieser Operation mit dem am Boden des Erlenmeyers liegen bleibenden Produkt wurden 1,3 g eines schweren Kristallpulvers erhalten, das nach Umkristallisieren aus einem Gemisch von Methanol und wenig Chloroform bei 173—174° schmolz. Nach nochmaligem Umkristallisieren aus Essigester lag der Smp. bei 174—175°; $\alpha_{\rm D}=0$ (0,112 g in 1,057 cm³ CHCl3).

3,708 mg Subst. gaben 10,092 mg CO₂ und 2,854 mg $\rm H_2O$ C₂₁ $\rm H_{29}ON_3$ Ber. C 74,30 H 8,61% Gef. C 74,27 H 8,61%

Bei der Mischprobe wurden mit folgenden Derivaten starke Schmelzpunktserniedrigungen beobachtet: Phenylsemicarbazon Smp. 181—182°; Phenylsemicarbazon von γ -Iron Smp. 178—179° und Phenylsemicarbazon von (\pm) -trans(2,6)- α -Iron Smp. 171—172°.

Die Pentansuspensionen wurden abfiltriert und das Phenylsemicarbazon aus viel Methanol umkristallisiert. Die Kristalle schmolzen bei 156,5—157,5° (2,2 g); $\alpha_{\rm D}=+28,2°$ (c = 4,76 in Chloroform). Durch Einengen der Pentanlösung und Umkristallisieren der erhaltenen Kristallfraktionen wurden weitere Mengen (5,7 g) dieses Derivats, deren Smp. zwischen 156 und 158° lagen, gewonnen. Die spezifischen Drehungen lagen zwischen +27.6° und 29.6°.

Nochmaliges Umkristallisieren aus Methanol-Essigester 9:1 lieferte 6 g Kristalle vom Smp. 156,5—157,5°; $[\alpha]_D=+28,8$ —30,6°.

3,730 mg Subst. gaben 10,136 mg CO₂ und 2,877 mg H₂O C₂₁H₂₉ON₃ Ber. C 74,30 H 8,61% Gef. C 74,16 H 8,63%

(-)-cis(2,6)-Neo-α-iron aus Phenylsemicarbazon Smp. 181–182°. 3,2 g Phenylsemicarbazon Smp. 181–182° wurden mit 15 g Phtalsäureanhydrid während 3 Tagen im Wasserdampfstrom destilliert. Das Destillat wurde zur Entfernung von mitgerissenem Phtalsäureanhydrid einer zweiten Dampfdestillation unterworfen. Die Ätherlösung des Ketons wurde mit verd. Salzsäure, Sodalösung und Wasser gewaschen. Nach Verdampfen des Äthers und Destillation wurden 1,4 g Iron vom Sdp. 9,05 77—78° erhalten.

 $\alpha_{\rm D} = -0.4^{\rm o}; \, {\rm d}_4^{20} = 0.9365; \, {\rm n}_{\rm D}^{20} = 1.5006; \, {\rm M}_{\rm D} \; {\rm ber. \, für \, C_{14} H_{22} O} \; |_{\rm \overline{2}} \; 63.73; \, {\rm gef. \, 64.86}; \, {\rm EM}_{\rm D} = +1.13.$

4,341 mg Subst. gaben 12,938 mg CO_2 und 4,109 mg H_2O $C_{14}H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,34 H 10,59%

Semicarbazon (aus 50 mg des obigen Irons). Das amorphe Produkt wurde in Äther aufgenommen und mit Sodalösung und Wasser gewaschen. Nach Verdampfen des Äthers behandelte man den Rückstand mit Petroläther, wonach Kristallisation eintrat. Das Derivat schmolz nach Umkristallisieren aus Methanol bei 160—161°.

3,675 mg Subst. gaben 9,190 mg CO₂ und 3,156 mg H₂O C₁₅H₂₇ON₃ Ber. C 67,88 H 10,26% Gef. C 68,24 H 9,61%

2,4-Dinitrophenylhydrazon (aus 0,11 g Phenylsemicarbazon Smp. 181—182°). Orange gefärbte Nädelchen vom Smp. 153—154° (aus Methanol-Chloroform); bei der Mischprobe mit einem Präparat vom Smp. 151—152° aus (\pm)-cis(2,6)- α -Iron keine Smp.-Erniedrigung.

Dihydro-cis(2,6)-neo- α -iron. 0,2 g cis(2,6)-Neo- α -iron wurden bis zur Aufnahme von 1 Mol. Wasserstoff in Gegenwart von Raney-Nickel hydriert. Die Dihydroverbindung führte man ins Semicarbazon über, das nach einmaligem Umkristallisieren aus Methanol bei 172,5—173° schmolz. Mischprobe mit einem Präparat von synthetischem Dihydro- α -iron Smp. 171-172° ohne Smp.-Erniedrigung.

- Das 2,4-Dinitrophenylhydrazon des Dihydroketons wurde aus 26 mg Semicarbazon Smp. 172,5—173° durch Umsetzen mit einer Lösung von salzsaurem Dinitrophenylhydrazin hergestellt. Umkristallisieren des rohen Derivates aus Methanol-Chloroform lieferte gelbe Kristalle vom Smp. 131—132°. Diese waren nach Mischprobe identisch mit dem bei 130—131° schmelzenden Präparat von synthetischem Dihydro-cis-α-iron.
- (+)-cis(2,6)-\$\alpha\$-1ron aus Phenylsemicarbazon Smp. 156,5-157,5°. Die Hydrolyse von 3,6 g Phenylsemicarbazon Smp. 156,5-157,5°, [\$\alpha\$]_D = +29,5-30,6°, mit Phtalsäureanhydrid im Dampfstrom ergab 1,85 g (+)-cis(2,6)-\$\alpha\$-Iron vom Sdp. 0,2 90-91°; \$\alpha_D = +90,1°\$; \$\alpha_D^2 = 0,9348\$; \$\alpha_D^2 = 1,5008\$; \$M_D\$ gef. 65,00\$; \$EM_D = +1,27\$.

3,930 mg Subst. gaben 11,749 mg CO₂ und 3,724 mg $\rm H_2O$ C₁₄ $\rm H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,59 H 10,60%

2,4-Dinitrophenylhydrazon (aus Phenylsemicarbazon Smp. 156—157°). Nach Umkristallisieren aus Methanol-Chloroform rote Nädelchen Smp. 139,5—140°.

3,784 mg Subst. gaben 8,636 mg CO $_2$ und 2,320 mg H $_2$ O C $_{20}$ H $_{26}$ O $_4$ N $_4$ Ber. C 62,16 H 6,78% Gef. C 62,28 H 6,86%

Thiosemicarbazon. 0,3 g reines Keton wurden mit 0,14 g Thiosemicarbazid in 3 cm³ 70-proz. Alkohol 4½ Std. gekocht. Nach Verdunstenlassen des Alkohols nahm man den amorphen Rückstand in Äther auf, wusch dreimal mit Wasser und verdampfte den Äther. Das Derivat wurde nun mit einer Mischung von Cyclohexan und wenig Benzol verrieben, wobei Kristallisation eintrat. Nach Abfiltrieren des Kristallpulvers und Auskochen mit Hexan, nahm man das unscharf bei 110—145° schmelzende Produkt in Äther auf. Dabei blieben 20 mg Kristalle vom Smp. 183—184° ungelöst, die ihren Smp. beim Umkristallisieren aus 80-proz. Alkohol nicht änderten. Bei der Mischprobe mit einem alten, optisch inaktiven Präparat Smp. 181° von Ph. Chuit wurde keine Schmelzpunktserniedrigung beobachtet.

3,712 mg Subst. gaben 8,733 mg CO₂ und 2,912 mg H₂O C₁₅H₂₅N₃S Ber. C 64,47 H 9,02% Gef. C 64,20 H 8,78%

Aus dem ätherlöslichen Anteil wurden durch Umkristallisieren aus Hexan-Benzol und hierauf aus 70-proz. Alkohol 35 mg Kristalle vom scharfen Smp. 99—100° erhalten. $[\alpha]_D = +91^\circ$.

3,746 mg Subst. gaben 8,844 mg CO₂ und 3,022 mg $\rm H_2O$ $\rm C_{15}H_{26}N_3S$ Ber. C 64,47 H 9,02% Gef. C 64,43 H 9,03%

Aus den Mutterlaugen wurden durch langsames Verdunstenlassen weitere Mengen des tiefschmelzenden Präparates mit dem unscharfen Smp. 99—103° bzw. 97—99° gewonnen; im ganzen 200 mg.

Dihydro-cis(2,6)- α -iron. 0,6 g des oben beschriebenen cis(2,6)- α -Irons vom Sdp. 0,2 90—91° wurden in Gegenwart von Raney-Nickel mit 1 Mol. Wasserstoff zur Dihydro-verbindung hydriert. Semicarbazon Smp. 172—173°. Nädelchen aus Methanol.

3,653 mg Subst. gaben 9,091 mg CO₂ und 3,343 mg H₂O C₁₅H₂₇ON₃ Ber. C 67,88 H 10,26% Gef. C 67,92 H 10,24%

Bei der Mischprobe mit dem Derivat von synthetischem Dihydro-cis- α -iron vom Smp. 171—172° wurde eine Schmelzpunktserniedrigung von 6° beobachtet.

2,4-Dinitrophenylhydrazon (aus 0,2 g des obigen Semicarbazons). Gelbe Nädelchen vom Smp. 100—101° (aus Methanol-Chloroform).

3,769 mg Subst. gaben 8,540 mg CO $_2$ und 2,422 mg $\rm H_2O$ $\rm C_{20}H_{26}O_4N_4$ Ber. C 62,16 H 6,78% Gef. C 61,84 H 7,19%

Phenylsemicarbazon. 0,18 g Semicarbazon Smp. 172—173° wurden mit Phtalsäureanhydrid im Dampfstrom hydrolysiert und lieferten 0,14 g Dihydroketon Sdp. 0,3 93—94°. 60 mg dieses Ketons wurden mit 46 mg Phenylsemicarbazid in 3 cm³ Methanol 2 Std. gekocht. Man kristallisierte das ausgefallene Derivat aus Methanol um und erhielt filzige Nädelchen vom Smp. 98—99°.

3,580 mg Subst. gaben 9,685 mg CO $_2$ und 2,946 mg $\rm H_2O$ $\rm C_{21}H_{31}ON_3$ Ber. C 73,86 H 9,15% Gef. C 73,82 H 9,22%

(±)-cis(2, 6)-α-Iron aus Phenylsemicarbazon Smp. 174—175°. 2 g Phenylsemicarbazon Smp. 174—175° lieferten bei der Hydrolyse mit Phtalsäureanhydrid im Dampfstrom 1,0 g Keton. Sdp. $_{0.05}$ 85—86°; $d_4^{20}=0.9340$; $n_D^{20}=1.5005$; $\alpha_D=0$ °. M_D gef. 65,03; $EM_D=+1.30$.

3,480 mg Subst. gaben 10,332 mg CO $_2$ und 3,400 mg $\rm H_2O$ C $_{14}\rm H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,02 H 10,93%

2, 4-Dinitrophenylhydrazon. 35 mg Phenylsemicarbazon Smp. 174—175° und 22 mg Reagens (freie Base) wurden mit 0,27 cm³ 4-proz. methanolischer Salzsäure in einigen cm³ Methanol $^1/_4$ Std. schwach erwärmt. Das ausgefallene orange gefärbte Derivat schmolz nach Umkristallisieren aus Methanol-Chloroform bei 153—154° und zeigte bei der Mischprobe mit dem entsprechenden Derivat von synthetischem Neo- α -iron (aus Phenylsemicarbazon 181—182°) vom Smp. 153—154° keine Schmelzpunktserniedrigung.

Thiosemicarbazon. 45 mg des oben beschriebenen natürlichen (\pm) -cis(2,6)-α-Irons wurden mit 22 mg Thiosemicarbazid in 0,4 cm³ 70-proz. Alkohol $4\frac{1}{2}$ Stunden gekocht. Das beim Erkalten auskristallisierte Derivat schmolz roh bei $182-183^{\circ}$, nach einmaligem Umkristallisieren aus 80-proz. Alkohol bei $183-184^{\circ}$ (Blättchen). Nach Mischprobe identisch mit dem Präparat vom Smp. 181° von Ph. Chuit und mit dem bei $182-183^{\circ}$ schmelzenden inaktiven Teils des Thiosemicarbazons von (+)-cis(2,6)-α-Iron.

 (\pm) -Dihydro-cis-α-iron. 0,33 g Keton wurden bis zur Dihydrostufe hydriert (Raney-Nickel). Semicarbazon Smp. 172,5—173° (aus Methanol). Mit den entsprechenden Präparaten von synth. Dihydro-cis-α-iron (Smp. 171—172°) und von Dihydro-α-iron (Smp. 172,5—173°) aus (-)cis(2,6)-Neo-α-iron (Phenylsemicarbazon Smp. 181—182°) keine Schmelzpunktserniedrigung.

```
3,695 mg Subst. gaben 9,176 mg CO<sub>2</sub> und 3,352 mg H<sub>2</sub>O C<sub>15</sub>H<sub>27</sub>ON<sub>3</sub> Ber. C 67,88 H 10,26% Gef. C 67,77 H 10,15%
```

2,4-Dinitrophenylhydrazon (aus 65 mg Semicarbazon Smp. 172,5—173°). Gelbbraune Kristalle Smp. 130—131°; mit dem gleichschmelzenden 2,4-Dinitrophenylhydrazon von synth. Dihydro-cis(2,6)-α-iron keine Erniedrigung.

3,650 mg Subst. gaben 8,258 mg CO2 und 2,364 mg H2O $\rm C_{20}H_{28}O_4N_4$ Ber. C 61,83 H 7,24% Gef. C 61,74 H 7,26%

Fraktion 17.

Die Trennung des aus 7,8 g dieser Fraktion hergestellten Phenylsemicarbazons (13 g) wurde in der gleichen Weise ausgeführt, wie bei den obigen Fraktionen beschrieben und lieferte folgende Präparate: 1. Smp. 181—182°, $\left[\alpha\right]_{\rm D}=-1,1^{\circ}$, 3,8g (29%); 2. Smp. 156—157°, $\left[\alpha\right]_{\rm D}=+26^{\circ}$, 5,1 g (40%); 3. Smp. 174—175°, $\left[\alpha\right]_{\rm D}=0^{\circ}$, 1 g (7,7%); 4. Smp. 145—150°, $\left[\alpha\right]_{\rm D}=+24,5^{\circ}$, 1,2 g.

Fraktion 21.

- 25,7 g Keton gaben 15,5 g Phenylsemicarbazon Smp. 178—179° (aus Alkohol); dieses war identisch mit dem gleichschmelzenden Präparat aus γ -Iron (Fraktion 19 der 1. Destillation). Ein durch Lösen in Chloroform und Versetzen mit Alkohol gereinigtes Präparat Smp. 178,5—179° zeigte $[\alpha]_{\rm D}=-12,2°$.
- 2, 4-Dinitrophenylhydrazon (aus 0,37 g Phenylsemicarbazon) Smp. 133—134°; keine Erniedrigung mit einem früher beschriebenen Präparat Smp. 130—131° 1) aus γ -Iron.
- (+)- γ -Iron aus Phenylsemicarbazon Smp. 178,5–179°. 4 g Phenylsemicarbazon Smp. 178,5–179° lieferten bei der Hydrolyse 2,4 g γ -Iron Sdp. 0,05 80–81°, $\alpha_D=+13,7°$.
- Thiosemicarbazon. Man kochte 0,2 g γ -Iron und 0,09 g Thiosemicarbazid in 2 cm³ 70-proz. Alkohol während 4 Std. auf dem Wasserbad. Das nach Verdunsten des Lösungsmittels zurückbleibende Derivat war amorph. Nach Lösen in 70-proz. Alkohol trat Kristallisation ein. Die bei 136—137° schmelzenden Nädelchen änderten den Smp. bei nochmaligem Umkristallisieren aus dem gleichen Lösungsmittel nicht.

3,666 mg Subst. gaben 8,654 mg CO2 und 2,967 mg H2O $\rm C_{15}H_{25}N_3S$ Ber. C 64,47 H 9,02% Gef. C 64,43 H 9,06%

Phenylsemicarbazon. Smp. 168—169° von γ-Iron. Aus den Mutterlaugen des Phenylsemicarbazons, Smp. 178—179°, wurden zunächst verschiedene Anteile mit Smp. zwischen 168—176° gewonnen, die alle keine Smp.-Depressionen mit den Derivaten von γ-Iron gaben. Es handelte sich um Präparate, die mit wenig cis(2,6), trans($2^1,2^2$)-α-Iron verunreinigt waren. Durch weiteres Einengen der Mutterlaugen dieser Produkte erhielt man Anteile mit Smp. zwischen 130—140°, zusammen 8 g. Diese wurden durch Aufschlemmen in Pentan und Dekantieren der Suspension in ein leichtes Kristallpulver und schwerere, nadelförmige Kristalle getrennt. Letztere schmolzen bei 167—168° und nach Umkristallisieren aus Methanol konstant bei 168—169° (1,6 g). Diese gaben bei der Mischprobe Smp.-Erniedrigungen mit den Phenylsemicarbazonen von γ-Iron Smp. 178—179°; von nat. racemischem cis-α-Iron Smp. 174—175° und von β -Iron Smp. 167—168°.

3,780 mg Subst. gaben 10,274 mg CO₂ und 2,869 mg $\rm H_2O$ C₂₁ $\rm H_{29}ON_3$ Ber. C 74,30 H 8,61% Gef. C 74,17 H 8,49%

2,4-Dinitrophenylhydrazon (aus 0,11 g Phenylsemicarbazon). Orange Nädelchen, Smp. 134—135° (aus Methanol-Essigester). Mit Präparat Smp. 133—134° (aus Phenylsemicarbazon 178,5—179°) keine Erniedrigung des Smp.

3,600 mg Subst. gaben 8,189 mg CO $_2$ und 2,132 mg $\rm H_2O$ $\rm C_{20}H_{26}O_4N_4$ Ber. C 62,16 H 6,78% Gef. C 62,08 H 6,63%

(+)· γ -Iron aus Phenylsemicarbazon Smp. 168–169°. Die Hydrolyse von 1.4 g Derivat in Gegenwart von Phtalsäureanhydrid lieferte 0,75 g γ -Iron; Sdp. $_{0,12}$ 82–83°; $d_4^{20}=0,9355$; $n_D^{20}=1,5012$; $\alpha_D=+5,70^\circ; M_D$ ber. für $C_{14}H_{22}O$ |2 63,73; gef. 65,00; EM $_D=+1,27$.

3,330 mg Subst. gaben 9,940 mg CO₂ und 3,213 mg $\rm H_2O$ C₁₄ $\rm H_{22}O$ Ber. C 81,50 H 10,75% Gef. C 81,46 H 10,80%

¹⁾ P. Bächli, C. F. Seidel, H. Schinz & L. Ruzicka, Helv. 32, 1744 (1949).

Thiosemicarbazon, aus 0,2 g Keton auf übliche Weise hergestellt. Rohprodukt amorph. Nach mehrmaligem Digerieren mit Pentan, Abgiessen und Umkristallisieren des Rückstandes aus 75-proz. Alkohol Smp. 137—138°. Nach Mischprobe identisch mit Thiosemicarbazon Smp. 136—137° von γ-Iron aus Phenylsemicarbazon Smp. 178,5—179°.

Dihydroverbindung. 0,265 g dieses γ-Irons wurden zur Dihydroverbindung hydriert (Raney-Nickel). Semicarbazon Smp. 200—201° (einmal aus Methanol), identisch mit dem früher beschriebenen Semicarbazon vom Smp. 199,5—200° (γ-Iron aus Phenylsemicarbazon Smp. 178—179°).

2,4-Dinitrophenylhydrazon (aus 60 mg Semicarbazon Smp. 200—201°) gelbe Nädelchen Smp. 108—109° (aus Methanol). Keine Erniedrigung mit dem früher beschriebenen, gleichschmelzenden Präparat von Dihydro- γ -iron.

C. Destillation von synthetischem Iron¹).

Die in der vorhergehenden Mitteilung beschriebene Destillation von 430 g synthetischem Iron in einer *Podbielniak*-Kolonne lieferte 58 Fraktionen (siehe Tab. 5), wovon die nachfolgenden untersucht wurden.

Untersuchung der Fraktionen.

Die Vorlauffraktionen 1—3, Sdp. 6 111—123° waren braun gefärbt und besassen einen unangenehmen, scharfen Geruch; sie wurden nicht untersucht.

Fraktionen 6, 12, 18, 27.

Je 2 g mit 1 Mol Wasserstoff partiell hydriert (Feinsprit, Raney-Nickel). Semicarbazon in allen 4 Fällen Smp. konstant 150—151° (einmal aus Methanol). Keine Erniedrigung mit dem früher beschriebenen Semicarbazon von (\pm) -Dihydro-trans(2,6)- α -iron vom Smp. 146—147° 2).

Von Fraktion 6 wurden 9,1 g Substanz mit Girard-Reagens P gereinigt. Phenylsemicarbazon Smp. 174—175° (zweimal aus Methanol).

 (\pm) -trans(2, 6)- α -Iron aus Phenylsemicarbazon Smp. 174—175°. Hydrolyse von 2 g Phenylsemicarbazon Smp. 174—175° lieferte 0,8 g Keton, Sdp. $_{0,1}$ 79—80°; d $_{0}^{20}=0.9322$; n $_{D}^{20}=1.5002$.

Semicarbazon (aus 0,2 g des obigen Ketons) roh amorph, kristallisierte beim Verreiben mit Wasser. Nach zweimaligem Umkristallisieren aus Methanol Nädelchen, Smp. 165—166°.

3,660 mg Subst. gaben 9,161 mg CO₂ und 3,115 mg H₂O $\rm C_{18}H_{25}ON_3$ Ber. C 68,40 H 9,57% Gef. C 68,31 H 9,52%

Fraktion 36.

2 g wurden zum Dihydroketon hydriert. Daraus erhielt man 0,64 g (25%) Semicarbazon Smp. 172—173° (zweimal aus Methanol) und aus der Mutterlauge folgende Präparate: 1. Smp. 167—168°, 0,2 g; 2. Smp. 155—160°, 0,4 g; 3. 150—152°, 0,08 g; 4. Smp. 146—147°, 0,2 g.

2,4-Dinitrophenylhydrazon (aus 0,3 g Semicarbazon Smp. 172—173°) Smp. 130—131°, gelbes Pulver, zweimal aus Methanol-Chloroform, einmal aus Benzol.

Fraktion 45.

Behandlung wie bei Fraktion 36. Semicarbazon aus 2 g des Dihydroketons: 1. Smp. 172—173°, 1 g (40%); Smp. 167—169°, 0,13 g; Smp. 153—154°, 0,31 g.

Fraktion 50.

Aus 3,4 g wurden in der gleichen Weise, wie bei Fraktion 36 beschrieben, folgende Präparate des Semicarbazons der Dihydroverbindung erhalten: 1. Smp. 171—172°, 1,8 g (41%); Smp. 156—158°, 0,1 g; Smp. 141—145°, 0,2 g; Smp. 149—152°, 0,5 g.

¹⁾ Teilweise von Herrn Dr. K. Brack bearbeitet.

²) C. F. Seidel, H. Schinz & L. Ruzicka, Helv. 32, 2102 (1949).

Fraktion 41.

3,3 g über die Girard-Verbindung gereinigtes Keton wurden in das Phenylsemicarbazon umgewandelt. Nach längerem Stehenlassen der verdünnten methanolischen Lösung kristallisierte zuerst das schwer lösliche Derivat vom Smp. 180—181° von cis(2,6)- α -Iron (Neo- α -iron) aus (2,2 g harte, körnige Kristalle, 40%). Das aus der Mutterlauge nach Einengen erhaltene Produkt vom Smp. 136—140° lieferte nach weiteren Kristallisationen 0,2 g (4%) Kristallpulver vom Smp. 173—174°, das identisch war mit dem bei 174—175° schmelzenden Präparat von nat. racemischem cis(2,6)- α -Iron; ferner wenig eines Derivats vom Smp. 165—166° (filzige Nädelchen), das keine Schmelzpunktserniedrigung zeigte mit einem Präparat von (\pm)-trans(2,6)- α -Iron Smp. 174—175°.

Fraktionen 42, 43 und 44.

Die vereinigten Fraktionen (12,4 g) lieferten 10,2 g reines Iron (Girard); daraus erhielt man 16 g rohes Phenylsemicarbazon. Durch Umkristallisieren (wie bei Fraktion 41) wurden folgende Anteile gewonnen: Smp. 180—181°, 8,3 g; Smp. 173—174°, 1 g; Smp. 162—166°, 0,5 g.

Kolbenrückstand.

31 g Produkt wurden im Claisen-Kolben redestilliert; erhalten 17,5 g Keton Sdp. $_{0,2}$ 92—95° und 13,2 g Rückstand. Semicarbazon (aus 1 g Keton) Smp. 168—169° (dreimal aus Methanol), identisch mit einem gleichschmelzenden Semicarbazon von (\pm) - β -Iron. 6,5 g durch Ausspülen der Kolonne erhaltenes Öl lieferten bei der Redestillation 5,7 g Destillat. Dieses gab eine weitere Menge des gleichen Semicarbazons, Smp. etwas höher $(169-169,5^{\circ})$.

Die Analysen wurden in unserer mikroanalytischen Abteilung von Herrn $W.\ Manser$ ausgeführt.

Zusammenfassung.

Es wurden die Fraktionen der in der vorhergehenden Abhandlung beschriebenen Destillationen (Podbielniak-Kolonne) von natürlichem und synthetischem Iron mittels verschiedener, kristallisierter Derivate charakterisiert. Aus natürlichem Iron wurden folgende Isomere über die Phenylsemicarbazone isoliert; ein (+)-trans(2,6)- α -, zwei in der Seitenkette cis-trans-isomere cis(2,6)- α - (wovon das eine (+), das andere (-)), ein racemisches cis(2,6)- α - und zwei wahrscheinlich in der Seitenkette cis-trans-isomere (+)- γ -Irone.

Aus synthetischem Iron erhielten wir die Phenylsemicarbazone von (\pm) -trans-(2,6)- α - und von zwei in der Seitenkette diastereomeren (\pm) -cis(2,6)- α -Ironen. β -Iron wurde als Semicarbazon isoliert.

Organisch-chemisches Laboratorium der Eidg. Techn. Hochschule, Zürich.