
BASE INDUCED OPENING OF 2,3-EPOXYCHLORIDES : AN EFFICIENT PREPARATION OF trans-CHLOROVINYL ALCOHOLS

J S Yadav, Prasad K Deshpande and G V M Sharma Indian Institute of Chemical Technology, Hyderabad 500 007, India

Abstract A highly efficient protocol for the synthesis of chiral <u>trans</u>-1-chlorovinyl alcohols (2) from chiral 2,3-epoxychloride is described by using stoicheiometric amount of LiNH₂ or LDA.

During our continuing programme¹ on biologically active hydroxy unsaturated fatty acids, we have developed a methodology to prepare optically pure terminal alkynols from chiral substrates² and achiral allyl alcohols³. During this study of chiral propargyl alcohols (3) from the corresponding chloroepoxides (1), we observed that elimination reaction under controlled conditions, particularly with 1 eq of LDA in THF or LiNH₂ in liq. NH₃ leads to the isolation of the chiral intermediates trans-1-chlorovinyl alcohols (2). The chiral chlorovinyl alcohols are indeed important intermediates finding diverse use in the synthesis of natural products⁴, as they undergo C-C bond formation with ease. Notably, the recent discovery of the 1-chlorovinylic alcohols could be coupled stereospecifically⁵ with acetylenic and vinyltin moieties with the aid of Pd catalyst under mild and essentially neutral conditions, has increased their utility greatly. These chiral chlorovinyl alcohols are presently prepared⁶ by stereospecific Wittig olefination with α -hydroxyaldehydes or by using multistep processes.

Treatment of 1 with one equivalent of LDA in THF at -78° or $LiNH_2$ in liq. NH_3 at -33° afforded 2 in quantitative yield. The elimination reaction produced <u>trans</u>-vinyl chlorides and was found to be highly stereoselective. The <u>trans</u>-configuration was confirmed by analysis of ¹H NMR spectra. In addition, this reaction appears to be general, versatile and could be performed under mild conditions as evident from the Table. Using Sharpless asymmetric epoxidation⁸ as a complimentary protocol to prepare chirally defined 2,3-epoxy chlorides, this method could provide a variety of functionalized and enriched chiral building blocks in both the enantiomeric forms for the synthesis of natural products⁴.

We next examined the opening of 2,3-epoxychloride (1a) with one eq. of n-BuLi at -33° in THF. It resulted in a product mixture containing approximately 43, 20 and 36 per cent of chlorovinyl alcohol (2a), propargyl alcohol (3a) and the starting 2,3-epoxychloride (1a) respectively. It

Entry	Epoxy- chlorides	Base	eq	Crude yield %	Chlorovinyl alcohols*	Propargyl alcohol*
1	la	LiNH ₂ or LDA	1	92	2a (82)	-
2	la	$LiNH_2$ or LDA	3	81	-	3a (77)
3	la	n-BuLi	1	94 [§]	2a (41)	3a (19)
4	la	n-BuLi	3	83	-	3a (77)
5	lb	LiNH ₂ or LDA	1	95	2b (85)	-
6	ent. lc	$LiNH_2$ or LDA	i	89	ent .2c (79)	-
7	ld	LiNH, or LDA	1	96	2d (87)	-
8	ld	n-BuLi	l	93 [§]	2d (44)	3d (17)

Preparation of trans-chlorovinyl alcohols (2)

* Isolated yields (%) are given in parenthesis. § Also contains their unreacted epoxychlorides.

appears that n-BuLi reacts indiscriminately with both the epoxychloride (1a) and chlorovinyl alcohol (2a), formed during the course of the reaction, thereby giving a mixture of products. However, 3 eq. of n-BuLi at -33° C in THF always produced the propargyl alcohol (1a) as the sole product reported earlier.⁹ Thus LDA or LiNH₂ is the suitable base for the preparation of 2.

In conclusion, it is worth mentioning that the ease of preparing chirally enriched <u>trans</u>-1chlorovinyl alcohols (2) by this new method from the easily obtainable 2,3-epoxychlorides will permit one to tap the immense potential which these intermediates possess.

References and Notes

- E R Reddy and J S Yadav, J. Sc. Ind. Res., 48, 38 (1989) and references cited therein.
 a) J S Yadav, M C Chander and B V Joshi, Tetrahedron Lett., 29, 2737 (1988); b) J S
- Yadav, M C Chander and C S Rao, Tetrahedron Lett., 30, 5455 (1989).
 J S Yadav, "Synthesis and application of chiral propargyl alcohols", presented as an invited
- lecture at First NOST Conference held during December 4-8, 1988 at Hassan (India).
 a) J S Elder, J Mann and E B Walsh, Tetrahedron, 41, 3117 (1985); b) "Synthesis of Leukotri-
- enes" by J Rokach, Y Guindon, R N Young, J Adams and J G Alkinson in "Total Synthesis of Natural Products", Ed. J ApSimon, 7, 141 (1988), Wiley-Intersciences, New York and ref.6.
- a) V Ratovelomanana and G Linstrumelle, Tetrahedron Lett., 22, 315 (1981); b) K Sonogashira, V Tohda and N Hagihara, Tetrahedron Lett., 4467 (1975); c) J K Stille and M P Sweet, Tetrahedron Lett., 30, 3645 (1989) and references cited therein.
- 6. a) A F Kluge, K G Untch and J H Fried, J. Am. Chem. Soc., 94, 9256 (1972); b) Y Kitano, T Matsumoto, T Wakasa, S Okamoto, T Shimazaki, Y Kobayashi and F Sato, Tetrahedron Lett., 28, 6351 (1987) and references cited therein.
- 7. J = 13.5 Hz was observed uniformly for the vinylic proton in ¹H NMR spectra (300 MHz), which corresponds to <u>trans</u> products.
- a) K B Sharpless and T Katsuki, J. Am. Chem. Soc., 102, 5974 (1980); b) Y Gao, R M Hanson, J M Klunder, S Y Ko, H Masamune and K B Sharpless, J. Am. Chem. Soc., 109, 5765 (1987).
- 9. S Takano, K Samizu, T Sugihara and K Ogasawara, J. Chem. Soc. Chem. Commun., 1344 (1989) and also cf K C Nicolaou, M E Duggan and T Ladduwahetty, Tetrahedron Lett., 25, 2069 (1984).

IICT Communication No. 2552

Table

(Received in UK 13 June 1990)