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Intermolecular sp3 C–H Amination of Complex Molecules  
Nicholas D. Chiappini, James B. C. Mack and J. Du Bois* 

Dedication ((optional)) 

Abstract: A general and operationally convenient method for 
intermolecular amination of sp3 C–H bonds is described. This technology 
allows for efficient functionalization of complex molecules, including 
numerous pharmaceutical targets. The combination of pivalonitrile as 
solvent, Al2O3 as an additive, and phenyl sulfamate as a nitrogen source 
affords differential reaction performance and substrate scope. Mechanistic 
data strongly implicate a pathway for catalyst decomposition that initiates 
with solvent oxidation, thus providing rationale for the marked influence of 
pivalonitrile on this reaction process. 

Due to the ubiquity of nitrogen containing molecules in Nature, 
pharmaceuticals, and agrochemicals, the development of reaction 
technologies for the construction of C–N bonds remains a problem 
of central importance.[1a-f] As a general process, the selective 
oxidation[2a,b] of C–H bonds to form amine derivatives offers 
numerous salient features, not the least of which is the ability for 
late stage diversification of existing molecular architectures.[3a-r]  
Arguably, the full potential of this technology has not been realized 
owing to the limited substrate scope and performance of available 
intermolecular C–H amination reactions.  Here, we disclose a 
general and efficient method for the single step amination of 
complex molecules, a process that uses one equivalent of substrate, 
minimal reaction additives, and a convenient nitrogen source 
(Figure 1). Mechanistic studies identify a link between solvent 
oxidation and catalyst stability, and provide a basis for 
understanding improved turnover numbers under the new protocol.  

 

 
Figure 1. General method for sp3 C–H amination.[2b] 

 
Previously disclosed reports of intermolecular C–H amination 
demonstrate good to excellent performance on substrates bearing a 
limited number of heteroatom groups.[2b],[3d,m,n,p-r] These processes, 
however, often fail to show comparable efficacy on densely 
functionalized complex molecules and polar substrates such as 
salts of basic amines and azacycles. Intent to solve these problems, 
we became interested in testing amination reactions in polar 
solvent media to facilitate dissolution of nitrogen-rich substrates 
and amine salts.  Exploratory reactions were conducted utilizing a 
substrate derived from isomenthol 1a and PhOSO2NH2 (PhsNH2) 
as the nitrogen source. This sulfamate was selected for its ease of 
synthesis and the chromatographic stability of the sulfonamidated 
products.[4] Different base additives, including MgO, molecular 
sieves, and Al2O3, were also examined as part of this study.[5]   
With i-PrOAc as solvent, the effectiveness of 1 mol% [Rh2(esp)2], 
PhOSO2NH2, and Al2O3 closely matched a previously disclosed 

method from our lab[2b] (entries 1, 2, Table 1), each giving < 50% 
of the desired product 2a.[6] Switching to alternative reaction 
solvents such as DMA and DMF was, unsurprisingly, found to 
arrest the Rh-catalyzed process (entries 3, 4, Table 1). We were 
encouraged, however, that other high dielectric solvents, including 
sulfolane, propylene carbonate, and CH3CN, afforded reasonable 
levels of conversion to the sulfamate product 2a (entries 6–8). The 
reaction performed in sulfolane also produced a side product, 
which was identified as the C3-sulfonamidated sulfolane.  This 
result prompted us to consider other solvents that would be 
impervious to oxidation. From this analysis, t-BuCN and PhCN 
were revealed as superior solvents for C–H amination reactions, 
providing a substantial increase in the formation of 2a (entry 10, 
11).  Interestingly, the combination of i-PrOAc with 10% t-BuCN, 
propylene carbonate, or sulfolane (entries 12–14) showed evident 
improvement over the reaction conducted in neat i-PrOAc, 
suggesting that the ability of these agents to coordinate [Rh2(esp)2] 
might have some role in improving catalyst turnover numbers. 
 
Table 1. Optimizing conditions for Rh-catalyzed C–H amination of 1a 

 

Entry   Yielda,b  RSMb Solvent 

1 47 13 i-PrOAcc 

2 45 22 i-PrOAc 
3 5 60 N,N-dimethylacetamide 
4 0 75 N,N-dimethylformamide 
5 25 57 2,2,2-trifluoroethanol 
6 35 61 sulfolane 
7 33 59 propylene carbonate 
8 37 45 CH3CN 
9 35 47 i-PrCN 

10 80 10 t-BuCN 
11 75 12 PhCN 
12 64 22 9:1 i-PrOAc/t-BuCN 
13 60 23 9:1 i-PrOAc/propylene carbonate 
14 58 31 9:1 i-PrOAc/sulfolane 

[a] Reactions were performed at ambient temperature for 6 h in the indicated 
solvent with 1 mol % [Rh2(esp)2], 1.0 equiv of 1, 1.3 equiv of PhOSO2NH2, 1.5 
equiv of PhI(OPiv)2, and 4.0 equiv Al2O3. [b] Percent recovered starting 
material (RSM) estimated by 1H NMR integration against methyl benzoate as a 
standard. [c] Reaction performed with 1.3 equiv 2,6-difluorophenyl sulfamate 
(DfsNH2) in place of PhOSO2NH2, 2.0 equiv PhI(OAc)2, 0.5 equiv 
PhMe2CCO2H, 4 equiv MgO, and 5Å molecular sieves, providing product as 
corresponding DfsNH2 derivative.[2b]  

Using our new protocol, we have examined reaction performance 
with an array of functionally diverse starting materials (Table 2, 
Table S1).  Archetypal substrates for atom-transfer C–H oxidation 
reactions such as cycloheximide (2b), estrone (2c), and sclareolide 
(2d), in addition to numerous active pharmaceutical ingredients 
(2g, 2k, 2o, 2p) can be successfully functionalized in synthetically 
useful yields (40–75%). The reaction generally delivers product 
and recovered starting material, and shows exceptional selectivity 
for oxidation of benzylic and tertiary C–H bonds.  Substrates 
bearing stereogenic centers proximal to the site of amination 
demonstrate modest levels of diasteroselectivity (cf, 2c, 2d, 2m). 
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As expected for a reaction of this type, electron-deficient, and 
sterically encumbered substrates generally afford lower product 
yields;[1f],[2c] however, if limiting substrate is not a strict 
requirement, use of 2–3 equivalents typically leads to product 
conversions that are nearly quantitative with respect to the nitrogen 
source. Importantly, the sulfamate products can be unmasked to the 
corresponding 1° amines by heating with pyridine in aqueous 
CH3CN (Figure 2).[2b,7] These conditions are tolerant of other 
hydrolytically sensitive functional groups, including aryl acetates, 
β-acyloxy ketones, lactones, and methyl esters.  

Table 2. C–H amination of complex molecule substrates[a] 

 
[a] All reactions were conducted at ambient temperature under air with non-
anhydrous solvent for 6 h on 0.15 mmol scale using 1.0 equiv substrate in  
t-BuCN with 1 mol % [Rh2(esp)2], 1.3 equiv PhOSO2NH2, 1.5 equiv PhI(OPiv)2, 
and 4 equiv Al2O3. Percent yield of recovered starting material is shown in 
parentheses. [b] Isolated as 5:1 mixture of diastereomers; [c] Isolated as 1:1 
inseparable mixture of regioisomers; [d] Ar = p-C6H4F, isolated as 1.25:1 
inseparable mixture of regioisomers; [e] Ar = 1,3-benzodioxol-5-yl, 20:1 
diastereomer ratio; [f] 20:1 diastereomer ratio. Further exposition of substrate 
scope and limitations can be found in Supporting Information.  
 
We have conducted a series of experiments to understand the 
origin of the marked performance enhancement imparted by  
t-BuCN in intermolecular C–H amination reactions.  A long-
standing question in our lab has been the identity and role of the 
ligand coordinated to the distal Rh-center in the putative metal-
nitrene oxidant.[8,9]  The affinity of nitrile groups for axial 

coordination to dirhodium complexes and the use of t-BuCN as 
solvent seemingly removes this ambiguity.[10]  UV-visible 
spectroscopy of the [Rh2(esp)2] complex indicates that CH3CN,  
t-BuCN, and PhCN have similar σ-donating strengths and are, not 
surprisingly, more electron-donating than i-PrOAc, sulfolane, and  
 

 
Figure 2. Deprotection of N-alkyl phenylsulfamates. Products were obtained 
as trifluoroacetate salts following preparative reversed-phase HPLC 
purification (see Supporting Information for details). 
 
propylene carbonate (Figure 3).[9-11] As we and others have 
demonstrated previously, intermolecular C–H amination reactions 
result in one-electron catalyst oxidation to furnish the red-colored 
Rh(II)/Rh(III) dimer.[12]  The stability and lifetime of this complex 
is critical for achieving high reaction turnover numbers.  It is 
possible that the nitrene-bound Rh(II)/Rh(III) dimer itself functions 
as a competent oxidant for C–H functionalization.[8]  A strongly 
coordinating solvent such as t-BuCN could help to stabilize the 
oxidized complex, thus enabling increased turnover numbers.  
Such an explanation, however, is incomplete, as the reaction is 
decidedly more effective in t-BuCN and PhCN than in CH3CN. 
 

 
Figure 3. UV-visible spectra of [Rh2(esp)2] in t-BuCN !, MeCN !, PhCN !, i-
PrOAc !, sulfolane !, and propylene carbonate ! are shown above.  The 
axial ligand donor strength of these solvents if reflected in the λmax (*) of the 
lower energy π*→σ* band.[10d,11] 

 
We have noted previously that C–H amination reactions performed 
in CH2Cl2 can result in solvent oxidation to liberate chloride ion.[2a]  
Based on these insights, we have evaluated performance 
differences in protio- and deuterio- solvents for the oxidation of 1a 
(Table 3). Deuterated solvents, particularly CD3CN, clearly 
outperform the corresponding protiated forms.  These data give 
weight to the proposal that solvent oxidation, even in CH3CN, is 
deleterious to reaction turnover.[13]   
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Table 3. Effect of solvent deuteration on C–H amination performance. 

 

[a] Reactions were conducted with 1.0 equiv substrate in solvent with 1 mol % 
[Rh2(esp)2], 1.3 equiv PhOSO2NH2, 1.5 equiv PhI(OPiv)2, 4 equiv neutral Al2O3. [b] 
Turnover numbers (TON) were determined by 1H NMR integration against methyl 
benzoate as a standard. 

To examine whether solvent has an influence on [Rh2(esp)2] 
stability, we have developed an assay to quantify the amount of 
intact catalyst at a given time point over the course of the reaction. 
Due to the low catalyst loading employed in this process and the 
paramagnetic nature of the Rh(II)/Rh(III) dimer, we have modified 
the H2(esp) ligand to include a 19F-label (Figure 4).  The sensitivity 
of 19F NMR allows us to perform the amination reaction under our 
standard protocol and to record a strong F-signal of the [Rh2(F-
esp)2] adduct.  Attempts to follow the reaction progress in real-time 
by 19F NMR, however are complicated by paramagnetic line-
broadening.  We have thus resorted to quenching the reaction by 
addition of Zn powder at a fixed time point.  The red color of the 
Rh(II)/Rh(III) dimer is extinguished upon addition of the reducing 
agent, and the blue-green color of [Rh2(F-esp)2] is restored.  19F 
NMR allows us to quantify against an internal standard (1,3-
dbromo-2,5-difluorobenzene) the percentage of Rh(II)/Rh(II) 
dimer remaining in solution. 

 

 
Figure 4.  Assay of intact [Rh2(F-esp)2] as a function of reaction time 
performed using quantitative 19F NMR (details are in supporting information). 
 

For reactions performed in t-BuCN, our analysis indicates that 
~20% of [Rh2(F-esp)2] is present one hour after initiating the 
reaction (Figure 4). By contrast, reactions conducted in CH3CN or 
CH2Cl2 show ~5% of the intact complex along with two 
uncharacterized species, neither of which correspond to free H2(F-
esp) ligand (see Supporting Information for details).  Differential 
levels of catalyst decomposition are also noted at both the 15 min 
and 3 h marks.  These data give evidence that the choice of solvent, 
namely t-BuCN vis-à-vis CH3CN or CH2Cl2, influences 
[Rh2(esp)2] lifetime and, possibly, the pathway(s) for degradation. 

Interestingly, quantitative 19F NMR analyses of spent reaction 
mixtures reveal a substantial deficit in the mass balance of F-esp-
derived material.  We have discovered that a considerable amount 
of free ligand (~25%) is associated with the Al2O3 solids; 
nevertheless, the mass balance remains incomplete.  Current efforts 
are aimed at identifying the fate of this missing material and 
associated catalyst decomposition products. 

We have developed a general method for intermolecular C–H 
amination capable of generating sulfamate derivatives of complex 
molecules, including APIs and natural products. The streamlined 
process utilizes limiting quantities of substrate, 1 mol % of 
commercially available [Rh2(esp)2], PhI(OPiv)2, and Al2O3. The 
identification of t-BuCN as solvent affords substantial 
improvements in catalyst turnover and unprecedented reaction 
scope.  Hallmarks of this method also include product selectivity 
and outstanding mass balance.  Mechanistic investigations have 
shown that a larger fraction of the dirhodium catalyst remains 
intact for reactions performed in t-BuCN.  Additional studies 
comparing amination performance in protio- and deuterio- solvents 
intimate a correlation between solvent oxidation and catalyst 
decomposition.  Future studies are aimed at understanding stepwise 
details of the mechanism(s) for catalyst decomposition with the 
goal of informing subsequent efforts in catalyst design and reaction 
development. 
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