Importance of Blocking Layers at Conducting Glass/TiO₂ Interfaces in Dye-sensitized Ionic-liquid Solar Cells

Jiangbin Xia,¹ Naruhiko Masaki,¹ Kejian Jiang,¹ Yuji Wada,² and Shozo Yanagida^{*1} ¹Center for Advanced Science and Innovation, Osaka University, Suita, Osaka 565-0871 ²Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871

(Received November 30, 2005; CL-051484; E-mail: yanagida@mls.eng.osaka-u.ac.jp)

Thin Nb₂O₅ film works as a potential blocking layer when deposited between fluorine-doped tin oxide and nanocrystalline TiO₂ layer, improving V_{oc} and conversion efficiency of the dyesensitized TiO₂ solar cells using ionic liquid electrolytes.

In dye-sensitized TiO₂ solar cells (DSCs) that compose of a dye-adsorbed nano-TiO₂ layer on fluorine-doped tin oxide (FTO) glass cathode as the window electrode, redox electrolytes as charge carrier and the counter anode electrode, unidirectional charge flow with no electron leakage at the interfaces is essential for the high energy-conversion efficiency. Recently, much attention^{1–3} has been paid to improve the performance of the ionicliquid DSCs because of their features such as high ionic conductivity, nonvolatility, electrochemical stability, and nonflammability.^{4–6}

According to the unidirectional electron-transporting principle of DSCs, there are four important interfaces in the devices as shown in Figure 1. These are, the interface of FTO/TiO₂, TiO₂/ dye, dye/electrolyte, and electrolyte/counter electrode (usually platinized FTO electrode). Recently, many researchers pay much attention to the interface of TiO₂/dye especially through core–shell structured electrodes by introducing Nb₂O₅, SrTiO₃, and Al₂O₃^{7–11} for TiO₂ electrode surface modification. However, except for the establishment of model for DSCs,^{12–15} few groups investigate the modification of the interface of FTO/TiO₂ and its effectiveness by employing a compact TiO₂ layer.^{12b,15}

In this letter, we first develop Nb₂O₅ as blocking layer which gives an improvement in open-circuit photovoltage (V_{oc}) and fill factor, leading to respectable energy-conversion efficiency in ionic-liquid DSCs. The improvement may come from the Nb₂O₅ forming potential barrier between FTO and

Figure 1. Schematic views of interfaces in the DSC device and the electron transfer of the new structured electrode.

 TiO_2 , which can suppress back electron transfer from FTO to electrolytes without lowering conductivity between them as shown in Figure 1.

The spray pyrolysis method^{12a} with different precursors listed in Table 1 has been applied to form the corresponding metal oxide layers on FTO during the fabrication of the structured FTO/*metal oxide*/porous TiO₂ (Nanoxide-T, Solaronix, 5.5 μ m) electrodes. The general procedure is as follows; each ethanol solution (0.02 M) of the precursor was sprayed layer-by-layer appropriate repetitions onto the FTO substrate keeping over 400 °C. Then, the substrates with the blocking layers were annealed at 500 °C for 1 h (some XRD data refer to supplementary information). The Ru dye, Z-907 (Ru-520 DN, Solaronix) and the ionic-liquid electrolyte composed of HMImI (1-hexyl-3-methylimidazolium iodide) with iodine ([I⁻]:[I₂] = 10:1) are employed for ionic-liquid DSCs. The cells without any blocking layer or with liquid electrolyte based on methoxyacetonitrile are also fabricated for comparison.

As shown in Table 1, while the blocking MgO, ZnO, Al₂O₃, Eu₂O₃, and SiO₂ layers do not give any improvement of V_{oc} , the Nb₂O₅ blocking layer improves V_{oc} effectively, with keeping respectable fill factors (FF), giving the high conversion efficiency as well as the TiO₂ blocking layer. Figure 2 presents the *J*–*V* curve of the novel type solar cell and that of nonblocked reference under AM 1.5 irradiation of 100 mW/cm².

Table 1. Comparison of the parameters of the ionic-liquid DSCs using mesoporous TiO_2 electrodes with several metal oxide blocking layers on FTO after optimization

Precursors	Blocking materials	V _{oc} /mV	J _{sc} /mA	FF	$\eta/\%$
_	none	580	8.30	0.57	2.8
а	TiO ₂	641	7.85	0.65	3.3
Nb(OCH ₂ CH ₃) ₅	Nb_2O_5	649	7.43	0.67	3.2
$Mg(OCH_3)_2$	MgO	590	7.38	0.64	2.8
Sn(CH ₃ COCHCO CH ₃) ₄	SnO ₂	578	8.63	0.57	2.8
Zn(CH ₃ COCHCO CH ₃) ₂	ZnO	572	4.44	0.54	1.4
Al(OCH(CH ₃) ₂) ₃	Al_2O_3	579	5.35	0.69	1.8
EuCl ₃	Eu_2O_3	621	6.06	0.61	2.3
Tetramethylcyclo- tetrasiloxane	SiO ₂	567	6.75	0.57	2.2
_	none ^b	704	10.17	0.68	4.9
Nb(OCH ₂ CH ₃) ₅	Nb ₂ O ₅ ^b	710	9.54	0.72	4.8

^aDiisopropoxytitanium bisacetylacetonate as precursor. ^bLiquid electrolyte: 0.1 M LiI, 0.3 M 2,3-dimethyl-1-propylimidazolium iodide, 0.05 M I₂, 0.5 M 4-*tert*-butylpyridine in methoxyacetonitrile.

Figure 2. J-V curves of cells employing Z-907 sensitized FTO/nano-TiO₂ (**I**) and FTO/Nb₂O₅/nano-TiO₂ electrodes (\blacktriangle) under AM 1.5 irradiation. (Electrolyte:HMImI:I₂ = 10:1).

When the thicker Nb₂O₅ layer (obtained by 50-times pyrolyses, being estimated as around \approx 50 nm) is employed, the device gives a great improvement of V_{oc} about 70 mV and better fill factor with the compensation of some lower J_{sc} and finally gives a 3.3% energy-conversion efficiency which is 15% higher than that of the reference. The great improvement of V_{oc} can be explained by the diode equation:^{16,17}

$$V_{\rm oc} = (nRT/F)\ln[(J_{\rm sc}/J_0) - 1]$$
(1)

where *n* is the ideality factor whose value is between 1 and 2, J_{sc} and J_0 are the photocurrent density under short circuit and reverse saturation current, respectively, R and F have the common meaning. The literature¹⁶ suggested that charge recombination at the nanocrystalline/redox electrolyte interface is expected to play a significant role in lowering the photovoltage. Acceptably, there are two recombination pathways occurring at the interface. The injected conduction-band electrons recombine with oxidized dye or triiodide and polyiodide redox species in the electrolyte. And usually the former reaction is ignored because of the rapid rate of reduction of oxide dye molecules by I⁻ ions. Many attempts have been done to suppress such back transfer reaction taken place at the surface of TiO_2 in the last several years using surface treatment of TiO_2 electrode.⁷⁻¹¹ On the other hand, the porous interfaces between FTO substrate and TiO_2 can also act as electron recombination sites, i.e., electron leakage sites especially in solid- or quasi-solid-state electrolytes like ionicliquid electrolytes. Our newly structured FTO/Nb₂O₅/TiO₂ electrode that should form 100-mV18 potential barrier can prohibit the recombination of injected electron in FTO with the redox electrolyte effectively, which means the enhancement of the electron collection at FTO, giving an improvement of shunt resistance and V_{oc} for the accumulation of injected electrons.

On the other hand, the improved fill factor maybe due to the lower series resistance.¹⁹ Such an explanation is supported by the evidence that the sheet resistance of Nb_2O_5 -doped SnO_2 is decrease compared with SnO_2 after high temperature calcination.²⁰

It should be noted that such kinds of structured electrode have less influence in liquid-electrolyte system and that this assures the fluid solvent molecules can easily penetrate into the porous FTO/TiO_2 interfaces, working as separators from the redox species. Since in solid state DSCs, or ionic-liquid DSCs, it is not easy to change the surface potential of TiO₂ by In summary, we have demonstrated that among the examined metal oxides, Nb₂O₅ can form an effective blocking layer at FTO/nano-TiO₂ interfaces and greatly improve V_{oc} and fill factor, proving the importance of blocking layer at FTO and TiO₂ interfaces in ionic-liquid DSCs.

This research was supported by the New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade and Industry.

References

- P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin, M. Grätzel, *J. Am. Chem. Soc.* 2005, 127, 6850.
- 2 H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, *Chem. Lett.* 2001, 26.
- 3 N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida, *Chem. Commun.* 2005, 740.
- 4 R. Hagiwara, Y. Ito, J. Fluorine Chem. 2000, 105, 221.
- 5 T. Welton, Chem. Rev. 1999, 99, 2071.
- 6 A. B. McEwen, H. L. Ngo, K. LeCompte, J. L. Goldman, J. Electrochem. Soc. 1999, 146, 1687.
- 7 A. Zaban, S. G. Chen, S. Chappel, B. A. Gregg, *Chem. Commun.* 2000, 2231.
- 8 S. M. Yang, Y. Y. Huang, C. H. Huang, X. S. Zhao, *Chem. Mater.* 2002, 14, 1500.
- 9 Y. Diamant, S. G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B 2003, 107, 1977.
- T. Taguchi, X. T. Zhang, I. Sutanto, K. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima, *Chem. Commun.* 2003, 2480.
- 11 E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc. 2003, 125, 475.
- 12 a) L. Kavan, M. Grätzel, *Electrochim. Acta* 1995, 40, 643.
 b) S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, *Chem. Commun.* 2005, 4351.
- 13 B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, J. Phys. Chem. B 2001, 105, 1422.
- 14 a) P. J. Cameron, L. M. Peter, J. Phys. Chem. B 2003, 107, 14397. b) P. J. Cameron, L. M. Peter, J. Phys. Chem. B 2005, 109, 7392.
- 15 B. Peng, G. Jungmann, C. Jäger, D. Haarer, H. W. Schmidt, Thelakkat, *Coord. Chem. Rev.* **2004**, *248*, 1479.
- 16 S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, J. Phys. Chem. B 1997, 101, 2567.
- 17 M. Grätzel, Prog. Photovoltaics 2000, 8, 171.
- 18 K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 1998, 10, 3825.
- 19 G. Kron, U. Rau, J. H. Werner, J. Phys. Chem. B 2003, 107, 13259.
- 20 N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, *Vacuum* 2002, 66, 365.