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Abstract: We report the syntheses of first-generation derivatives of novel molecules that combine a ring-fused isothiazolone with
isothiazolopyridones and their in vitro evaluation as antibacterial agents. a 2-pyridone heterocycle: first-generation isothiazolopyridones
These compounds, containing a novel heterocyclic nucleus composed(|TPs).

of an isothiazolone fused to a quinolizin-4-one (at C-2 and C-3 of the ~ \y/ designed our synthetic pathway to yield an intermediate
quinolizin-4-one), were prepared using a sequence of seven Symheticcompound having the novel ITP ring system with a leaving

transformations. The solid-state structure of 7-chloro-9-ethyl-1-thia- ] ( halide) at C-7. W nsidered thi ; ht
2,4a-diazacyclopentapaphthalene-3,4-dione was determined by X-ray group {I.€., a hallde) a - WE considere S approach o

diffraction. The prepared derivatives of desfluoroisothiazolopyridones allow Introd_uctlon of Ch_emlcal dlver_s_lty durlr_]g t_he last step (_)f
exhibited (a) antibacterial activity against Gram-negative and Gram- the synthetic process via nucleophilic substitution of the labile
positive organisms, (b) inhibitory activities against DNA gyrase and group at C-7 with desired amines classical approach for the
topoisomerase IV, and (c) no inhibitory activity against human related quinolones to efficiently produce analogues for biological
topoisomerase 1. evaluation. Installation of a halide at C-7 also presents the
opportunity to prepare analogues containing carbon-linked

Fluorinated quinolones (fluoroquinolones) are an important endant arouns via palladium-catalvzed cross-counling meth-
class of broad-spectrum antibacterial agents that operate bacP group P y pling

o I . X odologies.
tericidally by inhibiting DNA gyrasé? (bacterial topoisomerase . . e
Il, the classical target) and topoisomerasé (& more recently The synthesis of ITPs began with low-temperature lithiation

. : . : it of 4-chloro-2-picoline with lithium diisopropylamide (LDA)
ecognizea trget, mporart patiulary 1 SIS BOSNE folwed by reacion of e generated i arion it iy
investigation of quinolones, the 4-pyridone-3-carboxylic acid lodide to give propylpyr|§1|n@1°|n 83%'y|eld (Scheme 1).' The
structure (Figure 1) remains a common feature of most potentSuccess Of. the synthesis .Of ITPs Te"e.d_ on the followmg key
inhibitors of DNA gyrase and topoisomerase V. Positions C-3 steps that mvo_lved formation Of q_umollzmloznmavmg sulfur
and C-4 (theS-keto acid group collectively) are considered at C-2. Reaction of ketene dithioacethé™ (generated by

necessary for the binding of quinolones to DNA gyrase in the successiye rgaction of diethy_l m_alona_te with _so_dium h_ydride,
ternary c}c:mplefé. Substit%tionq at the 3-position i%ygenerally carbon disulfide, and methyl iodide) with the lithium anion of

deleterious, although exceptions have been described. Replaceg (generated at low temperature using LDA as base) effected

ment of the 3-carboxylic acid group of quinolones with isosteres s.ubstltu.tmn of one 9f thg th|omethyl units ba to generatéia}
such as sulfonic acid, acetic acid, hydroxamic acid, phosphoricv'a a Michael adqm0ﬁellm|nat|0n proce:zs. _Subseq_uent rng-
acid, and sulfonamide resulted in reduced antibacterial activi- closure of the Michael adduda at 120°C in solutions OOf
ties® One successful strategy for replacement of the 3-carboxylic d_|methyl sulfoxide (DMSO) furnlshed qumoh;monﬂam 47 /°
acid group with retained (or enhanced) antibacterial activity Y"?Id (based orp). Further synthgtlc elaboration qf the. quino-
employed a ring-fused isothiazolone grégigure 1, isothia- lizinone core, namely introduction of the fused isothiazolone

4 . . . : i ted a challenge. There are mild methods known for
zoloquinolone). These fluorinated isothiazoloquinolones (ITQs) fing, presen - . . .
exhibited in vitro antibacterial activity and inhibition of DNA preparing fused isothiazolones (1,2-benzisothiazoH}(@hes)

gyrase that were superior to their 3-carboxylic acid counterparts from frameworks consisting of either a 2-mercaptobenzoic'écid

(parent quinolones)? More recently, 2-pyridoné3(quinolizin- or a 2-me-_rcaptobenzoét‘em0|ety. Our initial approach to
4-onesy-bioisosteres of quinolones where the nitrogen atom of prepare th_|s necessary scaffold was mar_npulan_on c_)f the me-
the quinolone core is interchanged with the bridgehead carbonthylated thlol4a using a two-step proceééﬂ_rst, QX|dat|on of
atom (Figure I)y-have emerged as outstanding broad-spectrum methyl thioetherla W'th. mchloro_perbenzmc acuh(r(_:PBA)
antibacterial agents that are potent against organisms that ard 9've ‘h‘? correspondln_g sulfox_|de a_nd, seg:ond, dlspIaC(_ement
resistant to many of the clinically utilized fluoroquinoloriés. of the sulfinyl group of this sulfoxide with sodium hydrosulfide.

Here, we report the syntheses and antibacterial evaluation ofReactmn ofda with m-CPBA |n.me'thylene chlor.lde at room
temperature generated sulfoxidein 88% yield; however,

E—. p i bo add on 03624 7000reaction of5 with sodium hydrosulfide did not effect displace-
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aReagents and conditions: (a) NaH (2 equiv), DMPQ) 15-30 min,
then CS (2—3 equiv), 0°C —rt, 1 h, then added alkyl halide {5 equiv),
rt, 15 h, 69-85%; (b) LDA (1.1 equiv), THF—~78 °C, 30 min, then Etl,
—78— —30°C, 1.5 h, 83%; (c) LDA (1.1 equiv), THF-78 °C, 1.5 h,
then added (1 equiv),—78— —15°C —rt, 2.5-4 h; (d) DMSO, 12C°C,
5.5-42 h, 24-47% (two steps); (en-CPBA (~1.1 equiv), CHCly, rt, 1

h, 88%; (f) TFA/anisole, 40C, 23 h; (g) hydroxylamin&-sulfonic acid
(4 equiv), NaHCQ (10 equiv), THF/HO, 79% (two steps).
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Figure 2. The solid-state structure of as determined by X-ray
diffraction. ORTEP view showing the atom-labeling scheme with
thermal ellipsoids drawn at 30% probability (top) and view of hydrogen-
bonded chains along the crystallograptvaxis (bottom). Selected bond
lengths (A) and angles (deg): SEE(7), 1.7264(18); S(BN(2),

. . . . 1.6913(16); N(2)-C(10), 1.377(2); O(2yC(10), 1.227(2); C(8)yC(10
reactions precluded the use of this method employing sodium 1 466(2() )C(g(gc(é) )1 412(3%) O((fgc((g)) 1. 231((2)) ,\1((8]‘_})_(_(:(9))
hydrosulfide. Our alternative strategy was replacement of the 1.449(2); C(8y-C(7)—S(1), 111.70(13); N(2}S(1)-C(7), 90.82(8);
methyl group ofda with a protecting group that is susceptible C(10)-N(2)—S(1), 116.43(13); N(2}C(10)-C(8), 107.91(16); C(#

to cleavage under mild conditions (nonnucleophilic nor nonre- C(8)-C(10), 113.06(16).

ductive). We chose the 4-methoxybenzyl group for this purpose

because it is cleaved under acidic conditiSrend because it ~An X-ray crystallographic study of a single crystal af
was adopted successfully in the synthesis of thio-containing confirmed the proposed structure of the novel ITP heterocycle
quinolones®17 The 4-methoxybenzyl thioethdb was prepared  (Figure 2). The amido hydrogen of the isothiazolo moiety, H(2),
in 24% yield from2 using the methods described above for the Was located from the electron difference map and refined to a
methyl analogueta. Treatment ofb with trifluoroacetic acid ~ distance of 0.93(2) A. The NH group was hydrogen bound to
containing anisole afforded the thio derivatiée To prevent ~ the carbonyl groups of an adjacent molecule with H@)
oxidative degradation 8, we reacted this compound directly ~ interatomic distances of 2.01 and 2.48 A for O(1) and O(2),
(without purification) with hydroxylaming-sulfonic acid under respectively. This interaction created infinitely extending chains
basic conditions to give the desired intermediate 79% yield of hydrogen-bonded molecules propagating along the crystal-
(based ortb). Extensive 2D NMR experiments established the lographicb-axis. The N(2)-O interatomic distances were 2.92
proton—carbon and carbercarbon connectivities within the A for both O(1) and O(2) of the adjacent molecule and the
pyridone portion of7, i.e., correlations were observed for all N(2)—H(2)—O angles were measured at 166.1 and 109d
carbons excluding the juxtaposed isothiazolo carbonyl carbon O(1) and O(2), respectively. In contrast, isothiazol-3-ols (the
(C-3) and quaternary carbon (C-3a). To obtain further structural hydroxy tautomers of isothiazol-3-ones) form hydrogen-bonded

information, we labeled with 15N via reaction o6 with ['5N]-
hydroxylamine©-sulfonic acid*® The 15N NMR spectrum of
[**N]-7 showed one resonance in the amido refflat 104.6

dimers in the solid stat€.

Our final synthetic step was adornment of the ITP nucleus
with traditionally favored nitrogen heterocycles and heteroaro-

ppm, indicating the presence of an isothiazolo moiety. Further- matic carbon isoster&s (Scheme 2). Displacement of the

more, its’®C NMR spectrum suggested that an isothiazolo ring
had formed with one carbon atom proximal to #id nucleus,

chloride of 7 with excess r@ac)-3-(dimethylamino)pyrrolidine
and piperazine proceeded smoothly under microwave irradiation

i.e., the carbonyl resonance at 166.8 ppm was observed as §MWI)22 in solutions of DMSO to give the corresponding

doublet § = 3.5 Hz), indicating a5N-2-N/*3C-3-C coupling.

nitrogen-coupled ITPBa and 8b in 63% and 60% yield,
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aReagents and conditions: (a) amine (6 equiv), DMSO, MWI (A2))
5 min, 60-63%,; (b) boronic acid (5 equiv), NaHG@L5 equiv), Pd(PP,
(15 mol %), DMF/RO, MWI (110 °C), 15 min, 76-79%.

Table 1. In Vitro Antibacterial Activities of ITP3

E. coli S. aureus

compd MIC DNA gyrase MIC Topo IV
CIP 0.02 (0.05) 0.3 0.25 (0.68) 2.3
NOR 0.06 (0.19) 0.6 0.50 (1.6) 35
8a 4.0 (11) 24 8.6-16 (22-45) 79

8b 4.0(12) 14 16 (48) 37
8c 0.25 (0.69) 04 0.125 (0.35) 8.1
8d 1.0 (2.6) 0.2 0.125 (0.32) 6.3

aMICs expressed img/mL (uM). E. coli = Escherichia coliATCC
25922 (Gram negative. aureus= Staphylococcus aureusTCC 29213
(Gram positive). Inhibition of DNA gyrase supercoiling ¢4 and topo-
isomerase |V (Topo IV) decatenation g4 are expressed inM.

respectively. Microwave-assisted Suzukliyaura cross-cou-
pling of chloride 7 with 4-pyridinylboronic acid and 2,6-
dimethyl-4-pyridinylboronic aci# afforded carbon-coupled
ITPs8c and8d in 76% and 79% yield, respectively.

Analogues8a—d were tested against Gram-negative and
Gram-positive bacteria (Table 1), and their activities were
compared with those of the fluoroquinolones ciprofloxacin (CIP)
and norfloxacin (NOR). The in vitro results in Table 1 are
reported as (a) minimum inhibitory concentrations (MREs)
againstE. coliandS. aureusand (b) inhibitory activities against
their respective target enzymes, DNA gyrdsand topo-
isomerase 1\28 The nitrogen-coupled analogueRa(and 8b)
showed moderate antibacterial activity, having MICs of4.0
16 ug/mL. The carbon-coupled analogu8s &nd8d), however,

demonstrated stronger antibacterial activity than the nitrogen-

coupled analogues, having MICs of 0.2260 ug/mL. In

Journal of Medicinal Chemistry, 2006, Vol. 49, No. 41

of their fluoro analogues compared with their respective
desfluoro analogues). We believe that installation of a fluoride
at C-6—giving second-generation fluoroisothiazolopyridoties
should substantially improve the antibacterial activity of this
class of compounds. This strategy, involving adaptation of the
concise synthetic route described in this report, is the focus of
work underway in our laboratory.

Supporting Information Available: Experimental procedures
and characterization data for all compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
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