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N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-

Responsive Materials: Application to the Two-Photgn Imaging of

Hypochlorous Acid in Living Cells and Tissues

Yen Leng Pak,™ Sang Jun Park,™ Di Wu,"™ BoHyun Cheon,”® Hwan My

*[a]

and Juyoung Yoon

Abstract: N-Heterocyclic carbene (NHC) boranes undergo oxidative
hydrolysis to give imidazolium salts with excellent kinetic selectivity
for HOCI over other reactive oxygen species (ROS), including
peroxides and peroxynitrate. Selectivity for HOCI results from the
electrophilic oxidation mechanism of NHC boranes, which stands in
contrast to the nucleophilic oxidation mechanism of arylboronic acids
with ROS. The change in polarity that accompanies the conversion
of NHC boranes to imidazolium salts can control the formation of
emissive excimers, forming the basis for the design of the first
fluorescence probe for ROS based on the oxidation of B-H bonds.
Two-photon microscope (TPM) ratiometric imaging of HOCI in living
cells and tissues is demonstrated.
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Herein, we report the first fluorescence imaging probe for
ROS based on the selective oxidation of a B—H bond. This probe
(1-BH3) is composed of a NHC borane as the ROS reaction site,
and of a pyrene as fluorescence reporter. Because of its low
polarity, 1-BHj3 reversibly forms colloidal aggregates, facilitating
pyrene excimer emission."*'¥ Selective oxidative hydrolysis of
the B—H bonds of 1-BH3 by aq. HOCI results in the formation of
the imidazolium salt 1-H*, which exclusively emits as a distinct
monomeric species. 1-BH3; enables the ratiometric imaging of
biologically relevant HOCI levels in living cells and tissues using
TPM.I'®

This article is protected by copyright. All rights reserved.



Angewandte Chemie International Edition

The absorption and emission spectra of 1:HBr (10 yM) in
phosphate-buffered saline solution (PBS) (10 mM, 99:1
H,O:CH3CN, pH 7.4, 25°C) reflect those of an isolated pyrene
chromophore. By contrast, chromophore stacking is
unmistakable in the emission spectra of 1-BH;, which features
the characteristically broad pyrene excimer band centered near
477 nm (Figure S1). Addition of NaOCI to 1-BHs results in its
immediate conversion to a species indistinguishable from 1-HBr
(Figures 1 and S1). Analysis of the reaction mixture by ESI-MS
confirmed the disappearance of 1:BH3, and its conversion to the
imidazolium salt 1-H* (Figure S2).
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Figure 1. Fluorescence titration of 1-BH; (10 uM) upon addition of NaOCI (0-
100 uM) in PBS (10 mM, pH 7.4) after 1 min at room temperajure, with
excitation at 350 nm. Inset: Photographs of 1-BH; before (left) and
the addition 10 equiv. of NaOCI under UV irradiation (365 nm).

decreases ca. 540-fold in less than one minute upon the ad
of 100 yM NaOCI (Figure S3; t1, = 1.5 s for [1-BH;]-[HOCI/OCI”
= 1x10"° M?). The detection limit for HOCI/OCI™ in this ratio i
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In dry f 2:BH; to 2-BCl; is instantaneous
(< 30 s), and likely eds through the intermediacy of
2-BH.CI and 2-BHCI,. Chlorinated products are not seen when
e oxidatio'arried out in buffered CD3CN-D,0. Instead, the

ppearad@ of 2:-BH; is accompanied by the growth of 2-H",
ing a 2:1 stoichiometry of ‘BuOCI to 2-BH; (Figure S13).
cid was identified as the ultimate B-containing by-product.
BH,0D is observed as plausible intermediate, indicating

hydrolysis mechanism that involves the electrophilic attack of the
tetracoordinate  NHC borane by HOCI/BuOCLE"""2 This

and their esters, which proceeds through the nucleophilic
k of OCIT (or HO,,, ONOO’) on the Lewis acidic
oordinate boron center. NMR kinetics experiments carried out
ith 2-BH; and ‘BuOOH or H,0, reveal kinetic selectivities for
hypochlorites over peroxides as high as 10%: 1, resulting from
the electrophilic oxidation mechanism of NHC boranes (Figures
S20-S26).

The bio-imaging capability of 1-BH3s using TPM was then
investigated. For the in situ detection of ROS, TPM is an
attractive method because it uses lower energy light (>700 nm)
as the excitation source, limiting photodamage, cellular
autofluorescence, and artificial ROS generation.!"! In addition,
ratiometric imaging using dual detection windows can rule out
experimental artifacts, such as a heterogeneous distribution of
the probe, and instrumental variability. After incubation of 1:-BH;
for 30 min in live HelLa cells, TPM images were collected with
various excitation sources (690-740 nm). Images obtained from
excitation at 710 nm were the brightest (Figure S27). They
displayed bright emission throughout the cell, except in the
nucleus region.

After NaOCI treatment of the cells, spectral changes that
parallel those seen in solution occur, allowing for ratiometric
image analysis (Fgreen/Foiue) With 380—420 nm (Fuue) and 480-
600 nm (Fgeen). Clearer images were obtained using this ratio
(Fgreen/Foiie) than with its inverse (Fowe/Fgreen); therefore the
former was chosen for the analyses.
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Scheme 1. Mechanistic insight from the NMR titration of 2-BH; with ‘BuOCI as surrogates for 1-Bl
pathway most consistent with the observed stoichiometry, and dashed arrows alternate plausible path

The average emission ratios (Fgreen/Foive) Of 1-BH3 labeled Hela
cells gradually change with NaOCI treatment in a dose-
dependent manner (Figure S28). Standard MTT assay indicates
that 1-BHs has no marked cytotoxicity to cells at the low
micromolar concentrations used in TPM imaging experiments
(Figure S29). The probe is highly photostable under the imaging
conditions (Figure S30). Moreover, the values of the Fyreen/Foiue
ratios for 1-BH; labeled cells remained nearly constant for 2 h,
which is likely due to the fast response of the probe to HO
living cells (Figure S31). These outcomes indicated that 1-
able to detect HOCI in live cells using ratiometric TPM imaging,
with minimal interference of cytotoxicity and photobleac
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100 nm blue-shift in emission that occur within
nds, is Cell permeable, and shows low cytotoxicity. These
tageous properties made 1-BH; suitable for the ratiometric
ation by TPM of both exogenous and endogenous HOCI,
lls and tissues. Forthcoming extensions of this design
eporters that are less sensitive to aggregation
effects th pyrene excimer formation will be required to
improve sensitivity in extended assays, Moreover, foreseeable
applications of this B-H bond oxidation trigger extend beyond
lumjnescent probes, and to other families of ROS-responsive
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Figure 3. Pseudocolored ratiometric TPM images of RAW 264.7 cells
incubated with 1-BH; (5 pM). (a) Control image. (b) Cells pretreated with
NaOCI (200 pyM) for 30 min and then incubated with 1-BH;. (c) Cells
pretreated with LPS (100 ng mL-1) for 16 h, IFN- y (50 ng mL-1) for 4h, PMA
(10 nM) for 30 min and then incubated with 1-BH; for 30 min. (d) Cells
pretreated with LPS for 16 h, IFN-y for 4h, PMA (10 nM) + 4-ABAH (50 uM) for
4h and then 1-BH; for 30 min. (e) Cells pretreated with LPS for 16 h, IFN-y for
4h, PMA (10 nM) + FFA (50 uM) for 4h and then 1-BH; for 30 min. (f) Average
Fgreen/Foiue intensity ratios in the TPM images. Images were acquired using 710
nm excitation and emission windows of 380-420 nm (blue) and 480-600 nm
(green). Scale bars = 20 pm.
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COMMUNICATION

Bleached Boranes: NHC boranes
are oxidatively hydrolyzed to
imidazolium salts with high kinetic
selectivity for HOCI over other reactive
oxygen species. This reactivity is
harnessed in the two-photon
fluoresence imaging probe 1-BHj3, the
first ROS-responsive material that rely
on a B-H bond oxidation as triggering
event.
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