Kinetics of the Reactions of CF_3O_x Radicals with NO, O₃, and O₂

Andrew A. Turnipseed, Stephen B. Barone, and A. R. Ravishankara*

Aeromony Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80303, and The Cooperative Institute for Research in Environmental Sciences and the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309

Received: November 23, 1993; In Final Form: February 16, 1994*

The technique of pulsed laser photolysis/pulsed laser-induced fluorescence detection of CF₃O was used to study the stratospherically important reactions of CF₃O radicals with NO (k_5) , O₃ (k_4) , and O₂ (k_6) and that of CF₃-OO with NO (k_2) and O₃ (k_3) . Over the temperature range 233-360, K, $k_5(T) = (3.34 \pm 0.68) \times 10^{-11} \exp[(160 \pm 45)/T] \text{ cm}^3$ molecule⁻¹ s⁻¹. At 298 K, $k_2 = (1.57 \pm 0.38) \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ in agreement with past work. The reactions of CF₃O and CF₃OO with O₃ were found to be slow with rate coefficients at 298 K of $k_4 = (2.5^{+0.7}_{-1.5}) \times 10^{-14} \text{ cm}^3$ molecule⁻¹ s⁻¹ and $k_3 \le 7 \times 10^{-15} \text{ cm}^3$ molecule⁻¹ s⁻¹, respectively. No reaction of CF₃O with O₂ was observed at 298 or 373 K, leading to an upper limit of $k_6 \le 4 \times 10^{-17} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 373 K. The implications of these results to the chemistry of CF₃O_x radicals and O₃ in the stratosphere are discussed.

Introduction

It is now established that the chlorine and bromine contained in chlorofluorocarbons (CFCs) and halons catalytically destroy ozone in the polar stratosphere.¹ These compounds are also implicated in the midlatitude O_3 loss observed over the past decade.^{2,3} Therefore, production of CFCs and halons are being phased out,⁴ and compounds which are removed significantly in the troposphere or do not contain any chlorine or bromine are being considered as possible substitutes. Two classes of such compounds are the hydrofluorocarbons (HFCs) and the hydrochlorofluorocarbons (HCFCs). It has been assumed that HFCs, even if they reach the stratosphere, do not destroy ozone.³ In the case of HCFCs, only those which carry very little chlorine to the stratosphere are deemed acceptable on a temporary basis. They are considered as only interim replacements to be eventually phased out of production.⁴

There is a growing body of evidence from end-product studies⁵⁻⁸ for the release of the CF₃ group during the atmospheric degradation of CF₃-containing HFCs and HCFCs. Once released into the atmosphere, the CF₃ radicals are quickly converted into CF₃O and CF₃OO through the reactions

$$CF_3 + O_2 + M \rightarrow CF_3OO + M \tag{1}$$

$$CF_3OO + NO \rightarrow CF_3O + NO_2$$
 (2)

Recent studies have shown that CF₃O radicals are similar to OH radicals in their reactivity towards hydrocarbons and alkenes,⁹⁻¹¹ with the CF₃O reactions appearing to be faster at 298 K in most cases. Of chief concern, therefore, is the reactivity of CF₃O radicals toward ozone. It has been suggested¹² that CF₃O and CF₃OO can participate in a catalytic ozone destruction cycle via

$$CF_3OO + O_3 \rightarrow CF_3O + 2O_2 \tag{3}$$

$$CF_3O + O_3 \rightarrow CF_3OO + O_2 \tag{4}$$

analogous to the HO_x cycle involving HO₂ and HO. If this is an efficient cycle in the atmosphere, the ozone depletion potential (ODP = a measure of how efficiently a compound destroys stratospheric ozone relative to CFC-11, CFCl₃, on a unit weight

basis) for many HFC compounds would not be negligible, and their suitability as CFC substitutes would be questionable.

The efficiency of the above cycle is also determined by other reactions of CF_3O and CF_3OO which can terminate the catalytic cycle. One such reaction is that of CF_3O with NO, which has been observed to be a rapid bimolecular reaction:^{9,11b,13}

$$CF_3O + NO \rightarrow CF_2O + FNO$$
 (5)

To determine the ODP of CF₃-containing compounds, the rate coefficients for reactions 3 and 4, as well as the rate coefficients for all competing loss processes (such as reaction 5) must be accurately known. Therefore, we have initiated a series of studies aimed at evaluating the CF₃O_x radical chemistry. Since this work was initiated, and part of it reported, other indirect studies of reactions 3 and 4 have appeared in the literature.¹⁴⁻¹⁶ They will be quoted and discussed in the Discussion section.

In this study, the technique of pulsed laser photolysis/pulsed laser-induced fluorescence, for direct detection of the CF₃O radicals, was used to study the reactions In addition, information

$$CF_3O + NO \rightarrow CF_2O + FNO$$
 (5)

$$CF_3O + O_3 \rightarrow products$$
 (4)

$$CF_3O + O_2 \rightarrow CF_2O + FO_2$$
 (6)

on the rate coefficients for the reactionswere also obtained. We

$$CF_3OO + NO \rightarrow NO_2 + CF_3O \tag{2}$$

$$CF_3OO + O_3 \rightarrow CF_3O + 2O_2 \tag{3}$$

$$O(^{3}P) + CF_{3}O \rightarrow products$$
 (7)

recently reported our assessment of the ODP of several HFCs due to the reactions of CF_3O_x radicals.¹⁷ In this report, the details of the methodology employed to obtain the rate coefficients used in our assessment are given. Furthermore, our previous assessment was based on mostly data at 298 K. We have extended these studies to include a measure of the temperature dependence of the CF₃O reaction rate coefficients. In the accompanying paper¹⁸ the reaction rate coefficients of CF₃O with hydrocarbons, the

^{*} Address correspondence to this author at NOAA/ERL, R/E/AL2, 325 Broadway, Boulder, CO 80303.

[•] Abstract published in Advance ACS Abstracts, April 1, 1994.

Reactions of CF_3O_x Radicals

major reactive pathways for CF_3O radical loss in the troposphere, are reported.

Experimental Section

A detailed description of the experimental apparatus, photolytic generation of CF₃O, and the methodology for its detection by LIF is given in the accompanying paper.¹⁸ Therefore, only a brief description will be given here. CF₃O radicals were generated by 193-nm photolysis of either bis(trifluoromethyl) peroxide (CF₃-OOCF₃) or a mixture of $CF_3Br/O_2/NO$ using an excimer laser $(0.1-6.0 \text{ mJ pulse}^{-1} \text{ cm}^{-2}, \sim 20 \text{ ns wide, } 5-10 \text{ Hz}).$ CF₃O concentrations were probed by exciting the $\tilde{A}(^{2}A_{1}) \leftarrow \tilde{X}(^{2}E)$ (0-0 band) electronic transition at 350.33 nm^{10,18,19} using a XeCl excimer laser-pumped dye laser (0.4–4 mJ pulse⁻¹ cm⁻², \sim 8 ns wide, 5-10 Hz). The red-shifted fluorescence was collected orthogonal to the photolysis and probe beams by a 5-cm focal length lens, passed through an aperture and a bandpass filter (λ = 365 ± 6 nm), and imaged onto a slit in front of a photomultiplier tube. The signal from the photomultiplier tube was fed into a gated charge integrator and to a microcomputer for data analysis. The delay time between the photolysis and the probe beam was varied between 10 μ s and 50 ms, to construct the temporal profile of CF_3O . The energy of the photolysis and the probe beams were monitored by disk calorimeters to check the stability of their fluence.

All experiments were carried out in a large excess of He (Bureau of Mines, $\geq 99.9997\%$) under slow gas flow conditions (linear velocity of $2-10 \text{ cm s}^{-1}$) with the gas flow being orthogonal to the photolysis laser axis. CF3Br (Great Lakes Chem. Corp., >99%), N_2 (Scott Gases, $\geq 99.9995\%$), O_2 (Scott Gases, $\geq 99.99\%$), and CH₄ (Scott Gases, >99.99%) were added above the reaction cell to the main flow of He via calibrated mass flow meters. NO (Scientific Gases, 99.0%) was passed through a silica gel trap at dry ice temperatures into a 12-L glass bulb and diluted with He $(\approx 0.5-2.0\%)$; the concentrations of NO in these mixtures were determined manometrically. NO was added to the main flow just at the entrance to the reactor to reduce any possible reactions with other constituents in the main flow. The concentrations of these gases in the reactor were calculated from the individual mass flow rates and the cell pressure, which was measured by a capacitance manometer. CF₃OOCF₃ was synthesized by Prof. Darryl DesMarteau of Clemson University and had a stated purity of 99% with the major impurity being CF_3OCF_3 (<1% by FTIR). It was added to a 4-L stainless steel cylinder and diluted with He to generate $\approx 1-4\%$ mixtures. This mixture was added to the main flow just upstream of the reaction cell. Its concentration in the gas mixture flowing through the cell was measured on-line by absorption at 184.9 nm ($\sigma = 1.07 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}$, measured during this work) after exiting the reactor. Ozone was purified as described previously²⁰ and diluted with He (1-2.5%)in a blackened 12-L bulb. About 20 Torr of O2 was usually added to help stabilize the O_3 in the mixture. The concentrations of O_3 in the gas mixture flowing through the reactor were measured by UV absorption at 253.7 nm ($\sigma = 1.15 \times 10^{-17}$ cm² molecule⁻¹).²¹

The reactor temperature was regulated by flowing cooled methanol or heated ethylene glycol from temperature-regulated baths through its jacket. The temperature across the reaction volume (the intersection of the photolysis and probe lasers) was measured by a calibrated thermocouple inserted through a movable injector opposite the photomultiplier tube under gas flow conditions identical to those in the experiments. The temperature across the reaction volume was constant and is accurate to ± 0.5 K.

Results

The details of the chemistry and data analysis were different for the various reactions. Therefore, for ease of presentation, we will discuss the reactions individually.

Figure 1. Plot of k' vs [NO] at T = 298 K. Δ , P = 100 Torr of He; O, 35 Torr of He; \triangle , 20 Torr of He. The line is the linear least-squares fit to all of the data.

 TABLE 1: Rate Coefficients for the Reaction of CF₃O With NO

<i>T</i> , K	pressure He, Torr	[NO], 10^{14} molecule cm ⁻³	$[CF_{3}O]_{0}$, ^{<i>a</i>} 10 ¹¹ molecule cm ⁻³	$(k_5 \triangleq 2\sigma),^b 10^{-11}$ cm ³ molecule ⁻¹ s ⁻¹
360	100	0.20-3.30	5.0	5.18 ± 0.16
327	100	0.20-3.30	5.0	5.66 ± 0.18
298	70¢	0.40-16.0	d	5.46 ± 0.40
	20	0.30-2.30	4.0	5.80 ± 0.16
	35	0.60-3.00	4.0	5.54 ± 0.15
	98	0.28-2.80	5.0	5.69 ± 0.24
	108	0.40-4.00	1.0-5.0	5.43 ± 0.30
			av at 298 K	5.62 ± 0.48
279	100	0.24-3.10	7.0	5.93 ± 0.48
260	100	0.25-3.50	7.0	5.97 ± 0.34
247	100	0.35-3.10	7.0	6.46 ± 0.18
233	100	0.24-3.40	4.0	6.73 ± 0.34

^a [CF₃O]₀ is calculated assuming a CF₃O quantum yield from CF₃OOCF₃ photolysis at 193 nm of 2 and an absorption cross section of $\sim 6 \times 10^{-20}$ cm² molecule⁻¹. ^b σ is obtained from the precision of a linear least-squares fit of the k'vs [NO] data. ^c This experiment employed the 193-nm photolysis of CF₃Br/O₂/NO as the source of CF₃O; all other experiments used CF₃OOCF₃ photolysis at 193 nm. ^d In this system CF₃O is generated not directly but via the CF₃OO + NO reaction. The initial CF₃ concentrations (which were converted rapidly to CF₃OO) were approximately (2-7) $\times 10^{12}$ molecules cm⁻³.

CF₃O + NO (k_5). The CF₃O + NO reaction was studied by 193-nm photolysis of CF₃OOCF₃ (~8 × 10¹⁴ molecules cm⁻³) to generate CF₃O in an excess of NO ({2-40} × 10¹³ molecules cm⁻³) and buffer gas (20-108 Torr of He). The CF₃O temporal profile was governed by the reactions

$$CF_3OOCF_3 + h\nu \rightarrow 2CF_3O$$
 (8a)

 $CF_3OOCF_3 + h\nu \rightarrow other photoproducts$ (8b)

$$CF_3O + NO \rightarrow products$$
 (5)

$$CF_3O \rightarrow loss$$
 (9)

where reaction 9 represents diffusive loss of CF_3O out of the reaction zone (the intersection of the two laser beams) as well as loss due to reactions with the CF_3OOCF_3 precursor, other photolytically produced radicals, and possible impurities. In an excess of [NO], the CF_3O loss rate obeys pseudo-first-order kinetics. The temporal profile of CF_3O can be described by

$$[CF_3O]_t = [CF_3O]_0 \exp(-k't)$$
(I)

where $k' = k_5[NO] + k_9$. In the absence of [NO], the CF₃O

Figure 2. CF₃O temporal profiles following the 193-nm photolysis of CF₃Br $(1.1 \times 10^{16} \text{ molecules cm}^{-3})$, O₂ (5 Torr) and NO: curves are (a) [NO] = $9.2 \times 10^{13} \text{ molecules cm}^{-3}$ and (b) [NO] = $2.23 \times 10^{14} \text{ molecules cm}^{-3}$. The lines are fits to eq III.

decays were exponential with a time constant of $k_9 \approx 50-80$ s⁻¹. Profiles of CF₃O were strictly exponential under all conditions. The rate coefficients for reaction 5 were obtained from the slopes of plots of k'vs [NO] (Figure 1). Table 1 shows a summary of the obtained rate coefficients and the experimental conditions employed to measure them. At room temperature, the measured rate coefficient was found to be independent of total He pressure (20-108 Torr), photolysis fluence (1-5.5 mJ pulse⁻¹ cm⁻²), and addition of 5 Torr of O₂.

At 298 K, a second source of CF₃O was also used to check for possible systematic errors. Here CF₃Br $(1.1 \times 10^{16} \text{ molecules} \text{ cm}^{-3})$ was photolyzed at 193 nm in an excess of O₂ (5–15 Torr), NO ({0.4–16} × 10¹⁴ molecules cm⁻³) and buffer gas (70 Torr of He). The temporal profile of CF₃O was observed to be a double exponential (Figure 2), rising from [CF₃O]₀ = 0 to a maximum and then exponentially decaying away. The major reactions occurring in this system are thought to be

$$CF_3Br + h\nu \rightarrow CF_3 + Br$$
 (10)

$$CF_3 + O_2 + M \rightarrow CF_3OO + M \tag{1}$$

$$CF_3OO + NO \rightarrow CF_3O + NO_2$$
 (2)

$$CF_3O + NO \rightarrow products$$
 (5)

$$CF_3O \rightarrow loss$$
 (9)

$$CF_3OO \rightarrow loss$$
 (11)

$$CF_3OO \rightarrow CF_3O$$
 (12)

Reaction 12 is any process other than reaction 2 that produces CF_3O from CF_3OO and is assumed to be first order in CF_3OO . In the above mechanism, the CF_3O temporal profile should be described by the equation

$$[CF_{3}O]_{t} = \frac{(k_{2}[NO] + k_{12})[CF_{3}OO]_{0}}{k'_{a} - k'_{d}}[e^{-k'_{d}t} - e^{-k'_{a}t}]$$
(II)

where $k'_a = k_5[NO] + k_9$ and $k'_d = k_2[NO] + k_{11} + k_{12}$. When NO is present, k'_a should be larger than k'_d (using the accepted value²¹ for k_2 and our measured value for k_5). In this case the CF₃O rise is governed by k'_a and the decay by k'_d . The profiles were fit by a nonlinear least-squares fitting routine to the equation

Figure 3. Plots of (a) k'_a and (b) k'_d vs [NO] obtained from the photolysis of CF₃Br (1.1 × 10¹⁶ molecules cm⁻³), O₂ (5 Torr) and NO. See text for description of k'_a and k'_d . These lines are linear least-squares fits.

$$[CF_3O]_t = A \exp(-k'_a t) + B \exp(-k'_d t)$$
(III)

where k'_a is the pseudo-first-order appearance rate coefficient and k'_d is the pseudo-first-order decay rate coefficient of CF₃O. Plots of k'_a and k'_d vs [NO] were linear (see Figure 3), with slopes of $k_5 = (5.46 \pm 0.40) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ and } k_2$ = $(1.57 \pm 0.35) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively.

When CF_3Br/O_2 was photolyzed, a production of CF_3O was also observed even in the absence of NO ($k' \sim 500-1200 \text{ s}^{-1}$). At long times this CF_3O decayed with a loss rate coefficient comparable to that measured for CF_3O alone in He (k₉). The appearance rate of CF_3O and the magnitude of the signal varied with both photolysis laser fluence and CF_3Br concentration, suggesting that CF_3O is formed via reactions of photolysis products such as

$$2CF_3OO \rightarrow 2CF_3O + O_2 \qquad \Delta^\circ H = -16 \text{ kcal mol}^{-1} \quad (13)$$

Br + CF₃OO
$$\rightarrow$$
 BrO + CF₃O $\Delta^{\circ}H = -6 \text{ kcal mol}^{-1}$
(14)

In the absence of NO, $k_{11} + k_{12}$ is larger than k_9 . Therefore, the appearance rate of CF₃O is governed by k'_d and the decay by k'_a in this case. The intercept of the k'_a vs [NO] plot was approximately equal to the appearance rate coefficient in the absence of NO; therefore, we feel that CF₃O production from these reactions is adequately accounted for by assuming reaction 12. This will be further discussed in the next section.

The variation of k_5 with temperature is shown in Figure 4 and is described by the expression $k_5(T) = (3.34 \pm 0.68) \times 10^{-11}$ exp[{160±45)/T] cm³ molecule⁻¹ s⁻¹ over the temperature range 233-360 K. The errors reported are 2σ (precision and an estimated systematic uncertainty of ±10% in [NO] and ±1% in T). The value at T = 298 K is $k_5(298$ K) = (5.62±0.74) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ where the error bars are the 95% confidence limits and include the error in [NO]. Both NASA/JPL²¹ and IUPAC/CODATA²² panels have adopted the following format for representing the uncertainties in the parameters which describe the error limits of a given rate coefficient at temperature T:

$$f(T) = f(298)\{\exp[(\Delta E/R)(1/T - 1/298)]\}$$
 (IV)

where f(298) and f(T) are the uncertainties in the rate coefficient at 298 K and at temperature T, respectively, and $\Delta E/R$ is the uncertainty in the activation energy. For reaction 5, f(298) =1.2 and $\Delta E/R = \pm 50$ at the 95% confidence level.

Figure 4. Observed rate coefficients for k_5 vs 1000/T. O, P = 98 and 108 Torr of He; \triangle , P = 35 Torr of He; \triangle , 20 Torr of He; \diamond , P = 70 Torr of He and CF₃O produced by CF₃Br/O₂/NO photolysis. The line is the least-squares fit to the data. Error bars are 2σ and include only the experimental precision.

 $CF_3O + O_3(k_4)$. In the study of the reaction

$$CF_3O + O_3 \rightarrow \text{products}$$
 (4)

only CF₃OOCF₃ photolysis could be used as the CF₃O radical source. Even here, the photolysis of O₃ by the 193-nm radiation used to generate CF₃O could cause complications. At laser fluences of 1.0-4.5 mJ pulse⁻¹ cm⁻², where concentrations of O atoms reached (1.5-7.0) × 10¹² cm⁻³, the CF₃O temporal profiles were nonexponential (Figure 5c). Initially, CF₃O decayed rapidly $(k' \approx 100-500 \text{ s}^{-1})$ and then, at longer reaction times, exhibited a slower exponential decay (50-80 s⁻¹). This initial fast decay rate coefficient increased with increasing photolysis laser fluence. Addition of N₂ or O₂ (5 Torr) did not influence the observed profile. We attribute the initial fast decay to the reaction of O(³P) atoms with CF₃O:

$$O(^{3}P) + CF_{3}O \rightarrow O_{2} + CF_{3}$$
 $\Delta^{\circ}H = -14 \text{ kcal mol}^{-1}$
(7a)

$$\rightarrow CF_2O + FO \qquad \Delta^{\circ}H = -30 \text{ kcal mol}^{-1}$$
(7b)
$$\rightarrow CF_3OO (+M) \qquad \Delta^{\circ}H = -50 \text{ kcal mol}^{-1}$$
(7c)

To reduce the effects of the $O + CF_3O$ radical chemistry, the extent of O₃ photolysis was suppressed by using low photolysis fluences ($\leq 0.3 \text{ mJ pulse}^{-1} \text{ cm}^{-2}$) and high [CF₃OOCF₃] (~5 × 10^{15} molecules cm⁻³). This combination allowed for the generation of $[CF_3O]_0 \approx 2 \times 10^{11}$ molecules cm⁻³ ($\sigma_{193} \approx 6 \times 10^{-20}$ cm² molecule⁻¹) while generating $< 7 \times 10^{11}$ cm⁻³ of O atoms. Under these conditions, the temporal profiles of CF₃O were exponential (Figure 5b) and the pseudo-first-order rate coefficient, k' = $k_4[O_3] + k_9$, varied linearly with O_3 concentration ([O_3] = (0.5-3.2) \times 10¹⁵ molecule cm⁻³) as shown in Figure 6. (Note that the fraction of O₃ photolyzed was always $\sim 1 \times 10^{-4}$ and hence [O(³P)] scaled with [O₃].) As seen in Figure 6, addition of 13 Torr of O_2 to the reaction mixture did not affect the observed CF₃O decay rate coefficients. Addition of O2 scavenges any CF3 radicals (produced either photolytically or by subsequent reactions) and suppresses the reaction

Figure 5. CF₃O temporal profiles following the 193-nm photolysis of CF₃OOCF₃ and O₃. Curves are (a) $[O_3] = 0$, E = 0.27 mJ pulse⁻¹ cm⁻²; (b) $[O_3] = 1.94 \times 10^{15}$ molecules cm⁻³, E = 0.27 mJ pulse⁻¹ cm⁻²; and (c) $[O_3] = 1.20 \times 10^{15}$ molecules cm⁻³, E = 4.5 mJ pulse⁻¹ cm⁻². Lines on curves (a) and (b) are fits to eq I. Error bars are the 2σ precision of the experimental data. The dashed line on curve (c) is a fit of the short time data to eq (I) and is used to estimate k_7 (the CF₃O + O(³P) reaction).

Figure 6. Plot of k' vs $[O_3]$ at T = 298 K. Conditions are $[CF_3OOCF_3] = 5 \times 10^{15}$ molecule cm⁻³; E = 0.27 mJ pulse⁻¹ cm⁻². O, P = 100 Torr of He; Δ , P = 100 of He with 13 Torr of O₂ added.

which could regenerate CF₃O and cause an underestimation of the CF₃O loss rate. From the slope of the weighted linear leastsquares fit to the data, a rate coefficient of $k_4 = (2.50 \pm 0.66) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ was obtained, where the reported error is 2σ and includes only the precision of the slope. The contributions due to possible systematic error in the measurement of k_4 along with other possible complications from the reactions of photoproducts are discussed in the next section.

We also studied this rate coefficient at 373 K. At these high temperatures and conditions needed to suppress the O atom production (high [CF₃OOCF₃] and low photolysis fluence, as described earlier), a reaction between CF₃O and CF₃OOCF₃ (or an impurity in the CF₃OOCF₃) became significantly fast and made it difficult to observe small changes in the measured decay rates with [O₃]. Yet, we did obtain a value of $k_4 = (3.7 \pm 1.5)$ $\times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ with rather large error bars. Even though this value is, within the stated uncertainty, the same as that at 298 K, it may indicate that k_4 increases with temperature. But it does suggest that the reaction is not much faster at the lower temperatures characteristic of the stratosphere.

 $CF_3OO + O_3$ (k_3). The only radical species that we were monitoring during the present study is CF_3O . Yet, by observing

Figure 7. Back-to-back CF₃O temporal profiles from the 193-nm photolysis of CF₃Br $(1.1 \times 10^{16} \text{ molecules cm}^{-3})$ and O₂ (5 Torr) with (a) [NO] = 1.04×10^{14} molecules cm⁻³ and (b) [O₃] = 1.22×10^{15} molecules cm⁻³. Laser fluence was 0.6 mJ pulse⁻¹ cm⁻². The lines are nonlinear least-squares fit to eq III.

the production of CF₃O from reaction 3, we can get a rough value for k_3 . Reaction 3 is most likely the rate-limiting step in the catalytic cycle described in the introduction, and an estimation of k_3 is very useful.

Using $CF_3Br/O_2/NO$ photolysis as a reference system, we measured the ratio of k_4/k_3 by comparing the CF₃O signal when NO was replaced with O₃ in back-to-back runs. These experiments also employed the use of low photolysis fluence (E < 0.7mJ pulse⁻¹ cm⁻²) to reduce the photolysis of O₃. Typically the NO concentration was maintained at $\approx 1 \times 10^{14}$ molecules cm⁻³, while the O₃ concentration was varied in the range (1.0–4.0) $\times 10^{15}$ molecules cm⁻³.

Initially, $CF_3Br/O_2/NO$ was photolyzed and the CF_3O temporal profile was measured and fitted to eq III. The preexponential factor (A in eq III) is

$$A = k'_{\rm d} [\rm CF_3OO]_0 / \{k'_{\rm a} - k'_{\rm d}\}$$
 (V)

when $k_2[NO] + k_{12} \gg k_{11}$ (which is the case in the present experiments). A signal proportional to $[CF_3OO]_0$ was calculated from the coefficients obtained in the fit. NO was then replaced by O₃ and a second temporal profile was measured (see Figure 7). CF₃O was observed to rise to a maximum ($k'_a \approx 500-700$ s⁻¹) and then slowly decay ($k'_d \approx 50-80$ s⁻¹). If we assume that only reactions 3 and 4 govern the CF₃O temporal profile, the CF₃O signal should reach a steady state concentration governed by

$$[CF_{3}OO]_{ss}/[CF_{3}O]_{ss} = k_{4}/k_{3}$$
 (VI)

The observed CF₃O concentrations would not be constant because both CF₃OO and CF₃O are removed by loss processes other than reactions 3 and 4 such as diffusion. If we assume these losses to be small, by mass balance, $[CF_3OO]_{ss} = [CF_3OO]_0 - [CF_3O]_{ss}$. Then, the ratio of k_4/k_3 can be determined by using the maximum CF₃O signal in the run with O₃ present ($[CF_3O]_{ss} \approx [CF_3O]_{max}$) and the signal calculated for $[CF_3OO]_0$ in the NO run. For eight back-to-back runs, a value of $k_4/k_3 = 7.5 \pm 2.5$ (2σ , precision only) was measured.

There are several complications in these experiments which suggest that the CF₃O temporal profile is not governed solely by reactions 4 and 3. The appearance rate coefficient, k'_a , did not vary with $[O_3]$ within the uncertainty of our nonlinear leastsquares fits and was much faster than expected from our measured value for k_4 . As mentioned in the last section, photolysis of the CF_3Br/O_2 mixture (without NO) also led to a production of CF_3O . The temporal profile of CF_3O in the absence of O_3 was very similar to that when O_3 is present. Therefore, it is difficult to make definite conclusions about the photochemistry involved upon O_3 addition. However, the most probable reactions of the various radicals generated in this experiment (CF_3OO , Br, BrO, $O(^3P)$) all will likely produce CF_3O :

BrO + CF₃OO
$$\rightarrow$$
 Br + O₂ + CF₃O
 $\Delta^{\circ}H = -12 \text{ kcal mol}^{-1}$ (16)

$$O(^{3}P) + CF_{3}OO \rightarrow O_{2} + CF_{3}O$$

 $\Delta^{\circ}H = -69 \text{ kcal mol}^{-1} (17)$

$$D(^{3}P) + CF_{3}Br \rightarrow Br + CF_{3}O$$

$$\Delta^{\circ}H = -36 \text{ kcal mol}^{-1} (18)$$

These production reactions are in addition to reactions 13 and 14 and only add to the maximum CF₃O signal. Therefore, our measurement of k_4/k_3 is likely a lower limit for this ratio. Therefore, we feel confident that $k_4/k_3 \ge 5$. Using the measured value of k_4 , we calculate $k_3 \le 7 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹.

 $CF_3O + O_2$ (k₆). The reaction

$$CF_3O + O_2 \rightarrow FO_2 + CF_2O \qquad \Delta H^\circ = +10 \text{ kcal mol}^{-1}$$
 (6)

was studied by photolyzing CF₃OOCF₃ ($\sim 1 \times 10^{15}$ molecules cm⁻³) at 193 nm in an excess of O_2 ({1-6} × 10¹⁷ molecules cm⁻³). No evidence for production of O atoms from O₂ photolysis was observed. Previous work in our lab has shown that the ≈ 1.5 -m path length of the 193-nm photolysis laser through the laboratory to the reactor cell is sufficient to remove any laser light that can photodissociate O_2 . Any effects of O_2 on the diffusional loss of CF_3O was accounted for by substituting N_2 for the added O_2 . At 298 K, no reaction was observed and an upper limit of $k_6 \leq 2 \times$ 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ was obtained. However, due to the overwhelming abundance of O2 relative to other reactants in the atmosphere, even such a slow reaction could completely dominate the CF_3O loss. Since the barrier to reaction is estimated by thermochemistry²³ to be at least 10 kcal mol⁻¹, it may be measurable at higher temperatures. Therefore, we attempted to measure this rate coefficient at 373 K. Again, no reaction again could be observed at 373 K upon addition of 19 Torr of O₂. Within the 2σ error bars of the measured decay slopes, we estimate that $k'_6 \leq 20 \text{ s}^{-1}$. This leads to an upper limit of $k_6 \leq 4 \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 373 K. When O₂ was added, CF₃O could possibly be regenerated via the sequence

$$CF_3O + O_2 \rightarrow FO_2 + CF_2O \qquad \Delta H^\circ = +10 \text{ kcal mol}^{-1}$$
 (6)

 $FO_2 + M \rightleftharpoons F + O_2 + M$ $\Delta H^\circ = +13 \text{ kcal mol}^{-1}$ (19)

Δ

 $F + CF_3OOCF_3 \rightarrow CF_3OF + CF_3O$

$$H^{\circ} = +2 \text{ kcal mol}^{-1}$$
 (20)

obscuring any CF₃O loss. Even though reaction 20 is endothermic, it may be significant at elevated temperatures. To test this possibility, a small amount of CH₄ ([CH₄] = 5×10^{13} molecules cm⁻³) was added to the reaction cell. This amount of CH₄ was small enough not to cause any observable change in k' due to CF₃O + CH₄ reaction (k_{CH_4} (373 K) = 4.9×10^{-14} cm³ molecule⁻¹ s⁻¹),¹⁸ but it was easily enough to scavenge any F atoms produced via photolysis or reaction 19 due to the rapid reaction^{21,22}

$$F + CH_4 \rightarrow HF + CH_3$$
 (21)

Note that reaction 20 is endothermic and, hence, much slower than the collision frequency. Upon addition of the CH_4 with 19

Torr of O_2 , no increase in the CF₃O decay was observed, and we conclude that CF₃O is not being regenerated by this mechanism in our system. Some preliminary experiments have shown that the 248-nm photolysis of CF₃OOCF₃ produces a small amount of F atoms. We do not, however, observe an increase in CF₃O at short reaction times when only CF₃OOCF₃ is photolyzed; thus, reaction 20 is an unlikely source of CF₃O in the above experiments.

Discussion

 $CF_{3}O + NO(k_{5})$. The rate coefficient for the reaction of CF₃O with NO has been reported to be $k_5 = (2.0 \pm 1.0) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K from an earlier study by our colleagues Bevilacqua et al. in the NOAA laboratory.9 This value is nearly a factor of 3 lower than the value reported here. In the present study, CF₃O was generated directly and not via the CF₃OO radical, and heterogeneous wall loss of CF3O was absent. Bevilacqua et al. produced CF_3O via the $CF_3OO + NO$ reaction (similar to our CF₃Br/O₂/NO photolysis system) and monitored its rise and decay. By independently measuring the rate coefficient for the $CF_3OO + NO$ reaction, they estimated the $CF_3O + NO$ rate coefficient using computer simulations of the measured CF_3O temporal profiles.⁹ A subsequent study by Jensen et al.²⁴ using the same apparatus but a direct source of CF₃O (unlike the indirect $CF_3OO + NO$ source used by Bevilaqua et al.) yielded a rate coefficient of $k_5(295 \text{ K}) = (5.1 \pm 1.1) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}$ s⁻¹, in good agreement with our value obtained using the PLP/ PLIF system. Jensen et al.24 have discussed the possible reasons for the lower value measured by Bevilacqua et al. and the new value supersedes that of Bevilacqua et al. The value published recently by Schested and Nielsen¹³ of $k_5(295 \text{ K}) = (5.2 \pm 2.7)$ \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ is also in good agreement with the measurement reported here.

Since the quantum yield for CF₃O production from the 193nm photolysis of CF₃OOCF₃ is not known, it was necessary to determine if reactions of any other photoproducts could be affecting the observed CF₃O temporal profiles. Three likely photodissociation products (in addition to CF₃O) are F atoms and CF₃ or CF₃OO radicals. If F atoms were produced, regeneration of CF₃O is possible via reaction 20. However, if this reaction were significantly fast, a time-dependent production of CF₃O should be observed when no reactants were present. The CF₃O temporal profiles measured with only CF₃OOCF₃ and He were strictly exponential with a time constant of $\approx 50-80$ s⁻¹ in the absence of any reactant. Therefore, if reaction 20 occurs, its effects are negligible on the observed CF₃O temporal profiles. If photolysis of CF₃OOCF₃ yields CF₃OO radicals, then a slow production of CF₃O via reaction 2 could occur and lead to an underestimate of k_5 . Computer simulations of reactions 2, 5, 9, and 11 suggest that nonexponential CF₃O temporal profiles (exhibiting a regeneration of CF₃O at along times) should be observed in our data if CF₃OO was produced with a significant quantum yield ($\Phi(CF_3OO) \ge 0.35$). However, our observed CF₃O temporal profiles were strictly exponential until >95% of the CF₃O had reacted away. To test for the presence of CF₃ radicals, 5-10 Torr of O_2 was added. In the presence of O_2 , any CF_3 should be converted to CF₃OO. Generation of CF₃O should then be observed as discussed for the case of CF_3OO . Addition of O_2 had no effect on the CF₃O temporal profiles. Furthermore, if reactions between two radicals were influencing the measurement of k_5 , the measured rate coefficient we obtained should depend upon laser fluence. However, the measured value of k_5 was independent of the laser fluence. These observations suggest that photolytic production of CF3 and CF3OO is small enough not to influence our measured rate coefficients.

A second photolytic system $(CF_3Br/O_2/NO)$ at 298 K was also used to further check for possible systematic errors. CF_3Br photolysis at 193 nm is known to generate Br (along with CF_3) with unit quantum yield.²⁵ Upon addition of 5 Torr of O_2 , reaction 1 should go to completion within a few microseconds $(k_1(100 \text{ Torr}) \approx 4.7 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}).^{21}$ The temporal profile of CF₃O should then be primarily governed by the consecutive reactions 2 and 5. When the production rate is faster that the loss rate in a series of consecutive reactions, the rate of appearance of the intermediate species (here, CF₃O) is governed by the faster removal process and the loss by the slower formation process. From the appearance of CF₃O, a rate coefficient for reaction 5 was measured to be in excellent agreement with that obtained using CF₃OOCF₃ photolysis. From the disappearance of CF₃O a value for the rate coefficient of the reaction

$$NO + CF_3OO \rightarrow NO_2 + CF_3O$$
(2)

was found to be $k_2 = (1.57 \pm 0.38) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (the quoted uncertainty is at the 95% confidence level including a ±10% uncertainty in [NO]). This is in excellent agreement with the recommended value²¹ and provides a confirmation of the photochemistry assumed here.

As briefly discussed in the results section, photolysis of only CF_3Br/O_2 at 193 nm showed a production of CF_3O . The dependence of the appearance rate coefficient upon laser fluence and [CF₃Br] suggested that this CF₃O is produced by photolytically generated radicals reacting with each other or with a stable precursor. Since initial radical concentrations were relatively high $([CF_3]_0 = [Br]_0 \approx (2-7) \times 10^{12}$ molecules cm⁻³), radicalradical reactions are likely. Reaction 13 and 14 are the most likely candidates to explain the observed CF₃O profiles. The rate coefficient for reaction 13 has been measured to be k_{13} = 1.8×10^{-12} cm³ molecule⁻¹ s⁻¹ by both Nielsen *et al.*²⁶ and Maricq and Szente.²⁷ Reaction 14 has not been studied to our knowledge. For the production of $[CF_3]_0 = [Br]_0 \approx 7 \times 10^{12}$ molecules cm⁻³, the observed appearance rate (from the fit to eq III which assumes first-order kinetics) was $\sim 1500 \text{ s}^{-1}$, suggesting that reaction 14 may be quite rapid. If reaction 14 is responsible for the CF_3O production, then addition of NO will not have a significant effect upon this CF₃O production, since the combination of halogens with NO is relatively slow²⁸ compared to reactions 2 and 5. The fitted appearance rate coefficient in the absence of NO was within the 1σ error bars of the intercept of the k'_a vs [NO] plot, suggesting that the chemistry generating CF₃O in the absence of NO is not significantly altered when NO was added. Therefore, we feel that this system does provide a reliable measurement of the rate coefficient of reaction 5.

The rate coefficient for reaction 5, shown in Figure 4, exhibits a slight negative temperature dependence. Jensen *et al.* also observe a weak negative temperature dependence.²⁴ This is not unexpected for a fast radical-radical reaction. It may occur via a short-lived intermediate:

$$CF_3O + NO \rightleftharpoons [CF_3ONO]^* \rightarrow CF_2O + FNO$$

which rapidly decomposes to products. The low-pressure flow tube studies of Jensen et al.²³ yields the same rate coefficient as that measured here at higher pressures and suggests that k_5 is independent of pressure (from 1 to 100 Torr of He). The value of k_5 reported by Schested and Nielson (which is in good agreement with that reported here) was measured in 900 mbar of SF₆,¹³ supporting the conclusion that k_5 is pressure independent. Thus, the [CF₃ONO]* intermediate, if formed, decomposes very rapidly and is not stabilized by collisions. Our data do not rule out, however, the possibility that a small fraction of the intermediates could be stabilized under atmospheric conditions. Niki and coworkers^{11b} have observed quantitative conversion of CF₃O to FNO and CF₂O in reaction 5 and observed no evidence for the formation of CF₃ONO or other products in an atmosphere of air.

 $CF_3O + O_3(k_4)$. Indications of unwanted photochemistry were apparent in our system at high photolysis laser fluences, as described in the last section. Since the absorption cross section of O_3 at 193 nm is approximately a factor of 7 larger than that of CF_3OOCF_3 , significant amounts of O_3 were photolyzed. Addition of N_2 did not alter the observed CF_3O profiles, suggesting that $O({}^1D)$ produced by O_3 photolysis ($\Phi{O({}^1D)} = 0.5$)²⁰ was not the cause of the observed secondary chemistry. Furthermore, at the high concentrations of O_3 used, $O({}^1D)$ would be consumed on a much shorter time scale ($\tau < 20 \ \mu s$) than the time scales for CF_3O observations. Addition of O_2 also did not affect the observed CF_3O temporal profiles, suggesting CF_3 radicals, which would be converted to CF_3OO upon O_2 addition, was negligible. However, reactions of $O({}^3P)$ atoms ($\{1.5-7.0\} \times 10^{12} \text{ cm}^{-3}$) could not be ruled out. $O({}^3P)$ was generated both by direct photolysis of O_3 and via the reactions of $O({}^1D)$ and $O_2({}^1\Sigma)$, the other photoproducts of O_3 photolysis at 193 nm,²⁰ with O_3 :

$$O(^{1}D) + O_{3} \rightarrow O(^{3}P) + O(^{3}P) + O_{2}$$
 (22a)

$$\rightarrow 2O_2$$
 (22b)

$$O_2(^{1}\Sigma) + O_3 \rightarrow O(^{3}P) + 2O_2$$
(23)

By calculating the total concentrations of $O({}^{3}P)$ produced by the above processes and fitting the initial CF₃O decay to eq I, we estimate that the reaction of $O({}^{3}P)$ with CF₃O occurs with a rate coefficient of $k_7 \approx 5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. Such a fast rate coefficient is to be expected for an exothermic radical-radical reaction.

At low laser fluences the photolysis of O_3 was minimized to make $[O]_0 \le 7 \times 10^{11}$ cm⁻³. Under these conditions exponential decays of CF₃O were observed. These low fluence decays of CF₃O were still not affected by addition of 13 Torr of O₂. As described in the previous section, the addition of O₂ suppresses the possible reaction

$$CF_3 + O_3 \rightarrow CF_3O + O_2 \tag{15}$$

Such a reaction could obscure the CF_3O decay or slow it down. If F atoms were photolytically produced, then the large concentrations of O₃ used in these experiments would rapidly set up a steady state of F and FO radicals:

$$F + O_3 \rightarrow FO + O_2 \tag{24}$$

$$FO + O_3 \rightarrow F + 2O_2$$
 (25)

There is some controversy whether reaction 25 is rapid or not^{21} which would affect both $[F]_{ss}$ and $[FO]_{ss}$. However, F atoms could regenerate CF₃O only via reaction 20, which, as described previously, was not observed to be important. FO could generate CF₃O via the reaction

$$FO + CF_3OOCF_3 \rightarrow CF_3OOF + CF_3O$$
 (26)

To our knowledge the heat of formation of CF₃OOF is not known, but by assuming the O-O bond energy in CF₃OOF is the same as in CF₃OOH ($\Delta^{\circ}H_{\rm f} = -196$ kcal mol⁻¹),²³ we estimate that $\Delta^{\circ}H_{\rm f}$ (CF₃OOF) ≈ -179 kcal mol⁻¹. This makes reaction 26 exothermic by 2 kcal mol⁻¹ and a possible source of interference. Reaction 26 can be ruled out to a large extent since it will be independent of [O₃]. If reaction 26 were very important, a production of CF₃O should have been observed at low ozone concentrations. However, only exponential decays of CF₃O were observed, even at low [O₃].

Another secondary reaction which may interfere with the measurement of k_4 is

$$O(^{3}P) + CF_{3}OOCF_{3} \rightarrow CF_{3}O + CF_{3}OO$$

 $\Delta^{\circ}H = -2 \text{ kcal mol}^{-1}$ (27)

This possibility, which could generate CF₃O, was investigated by photolyzing CF₃OOCF₃/O₃ mixtures at 248 nm in 100 Torr of N₂. At 248 nm, the O₃ cross section is \approx 5000 times larger than that of CF₃OOCF₃.^{21,29} Low concentrations of O₃ (\sim 5 × 10¹³ molecules cm⁻³) and high CF₃OOCF₃ (3 × 10¹⁵ molecules cm⁻³) were used to generate O(³P) concentrations on the order of (1.0– 2.0) × 10¹² cm⁻³ while not generating a measurable amount of CF₃O from CF₃OOCF₃ photolysis. Under these conditions, production of CF₃O was not observed even out to 40 ms. Thus, we can place an upper limit for $k_{27} \le 5 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹. Since this reaction is slow, it cannot contribute to lowering the value of k_4 .

At 298 K, we report a rate coefficient of $k_4 = (2.5^{+0.7}_{-1.5}) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹. The error bars are chosen to include the observed experimental error, as well as taking into account the uncertainties in $[O_3]$ (±5%) and contribution from reaction 7 to the measured decays of CF₃O. The latter uncertainty was estimated via computer simulations of the sequence of reactions 4, 7, 9, 11, 22, and 23 using the known laser fluence and $[O_3]$ to calculate the initial radical concentrations. The rate coefficient for reaction 7 was set at 5×10^{-11} cm³ molecule⁻¹ s⁻¹ (since this estimation was also based on a similar calculation of the oxygen atom concentration), while k_4 was varied in the range (0.15–2.5) $\times 10^{-14}$ cm³ molecule⁻¹ s⁻¹.

Our measured value of k_4 is much slower than the earlier estimate of Biggs et al.12 These investigators estimated at 298 K value of $\sim 1 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ from experiments where O_3 loss was observed following CF₃Cl photolysis. The rapid O_3 loss observed in such experiments may be due to the presence of other free radicals. Our measured low value is consistent with the directly measured value of $k_4 \le 4 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ of our colleagues, Jensen et al.24 It is also consistent with several recent indirect studies of the $CF_3O + O_3$ reaction which were reported during the completion of this work. Upper limits of $\leq 10, 5, \text{ and } 3 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ were reported by Nielsen}$ and Schested,¹⁴ Maricq and Szente,¹⁶ and Wallington et al.,¹⁵ respectively. This rate coefficient is also consistent with the growing body of evidence suggesting that the reactivity of CF₃O is similar to that of OH.^{11,18} The OH + O_3 reaction has a similar rate coefficient of 6.8×10^{-14} cm³ molecule⁻¹ s⁻¹ at 298 K.²¹ As stated in the last section, it appears that k_4 increases with increasing temperature, but the uncertainty of the data is too large to conclusively ascertain the temperature dependence. The rate coefficient for reaction 4 would be expected to exhibit a positive temperature dependence based on analogy with the $OH + O_3$ reaction, which has an activation energy of 1880 cal mol^{-1,21} Therefore, it is very unlikely to be faster at stratospheric temperatures than the value reported at 298 K.

 $CF_3OO + O_3$ (k₃). To fully evaluate the role of CF_3O_x in possible stratospheric ozone depletion, the rate coefficients and products of the reaction of $CF_3OO + O_3$ must also be well characterized. If rapid, reaction 3 may also act to regenerate CF₃O on a fast time scale, thereby causing an underestimate of the $CF_3O + O_3$ rate coefficient in this study. To get a measure of the k_3 relative to k_4 , we photolyzed CF₃Br/O₂ mixtures to generate CF₃OO. By monitoring the production of CF₃O when either NO or O₃ was present, we could obtain k_4/k_3 . As described in the previous section, we measured $k_4/k_3 = 7.5 \pm 2.5$, and the production of CF₃O from the photolysis of CF₃Br/O₂ alone appeared quite similar to the temporal profile when O₃ was added. In several runs it was even difficult to observe the difference between the two profiles. We were unable to gain an unequivocal explanation for the chemistry which produced CF_3O in this system. However, as explained earlier, nearly all the possible secondary reactions that could be taking place produce CF₃O. The only exception is reaction 7. This reaction consumes CF_3O (lowering [CF₃O]_{max}) and possibly produces CF₃OO (via formation of CF₃ in channel 7a). Under our experimental conditions, the most likely fate for $O(^{3}P)$ atoms are its reactions with CF₃OO and BrO radicals which are present at much higher concentrations than CF₃O ([CF₃OO] \approx [BrO] = 3 \times 10¹² molecules cm⁻³, $[CF_{3}O]_{max} \le 2 \times 10^{11} \text{ molecules cm}^{-3}$). The measured $[CF_{3}O]_{max}$ was also independent of $[O_3]$ (the photolytic source of O atoms), suggesting that reaction 7a could not have been significant. Therefore, we report our ratio as a lower limit, $k_4/k_3 \ge 5$, yielding an upper limit for reaction 3, $k_3 \le 7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. This is consistent with $k_3 \le 3 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹, measured by Jensen et al., who monitored CF₃OO directly in an excess of O₃ and the presence of a CF₃O scavenger.²⁴ The studies of Nielsen and Schested14 and Maricq and Szente16 (both of whom monitored CF₃OO directly by UV absorption) report upper limits for reaction 3 of $\leq 5 \times 10^{-14}$ and $\leq 1 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹, respectively, which is consistent with the limit reported here.

 $CF_3O + O_2$. No reaction could be observed between CF_3O and O₂ at both 298 and 373 K. At 373 K, we report an upper limit of $k_6 \le 4 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. No complications due to the possible formation of F atoms could be observed. Assuming that the endothermicity of the reaction ($\Delta^{\circ}H = +10$ kcal mol⁻¹) is the minimum barrier to the reaction, the upper limit at 373 K leads to calculated value at 298 K of $k_6 \leq 1.5 \times 10^{-18} \text{ cm}^3$ molecule⁻¹ s⁻¹. At the lower stratospheric temperatures (≈ 220 K), this rate coefficient should be $< 5 \times 10^{-21}$ cm³ molecule⁻¹ s⁻¹. End product analysis studies carried out by Chen et al.^{11b} also observe no evidence for reaction 6 at 298 K in an atmosphere of air.

Implications for the Stratosphere. The rate coefficients measured here have recently been used in both a 2-D dynamicalphotochemical model and a semiempirical estimation to determine the ODP of several important CF₃-containing HFCs.¹⁷ Those calculations indicated that the competition between the CF₃O + O_3 reaction and the chain termination reaction of $CF_3O + NO$ primarily determines the ODP for these compounds. In addition, the reaction of CF₃O with CH₄ (reported in the accompanying paper)18 could also be a termination step depending upon the fate of the CF₃OH product. At all altitudes in the stratosphere, reaction 5 is the major sink for CF₃O, and the CH₄ reaction becomes important at low altitudes (10-20 km). CF_3O_x radicals were found to be at least a factor of 1000 less effective at catalytically destroying ozone relative to Cl-catalyzed reactions. For calculations involving HFC 134a (lifetime of 15 years)¹⁷ and HFC 23 (lifetime between 270 and 405 years),^{17,30} all possible scenarios led to ODPs of $<5 \times 10^{-4}$. The best estimate of the ODP for HFC 134a was $(1-2) \times 10^{-5.17}$ Our present findings essentially substantiate those in our previous paper.

Our previous calculations did not consider the reaction of CF₃O $+ O_2$ as a possible loss; however, at temperature characteristic of the lower stratosphere (where CF_3O_x reactions are the most important with regard to ozone depletion), ${}^{17}k_6 < 5 \times 10^{-21} \text{ cm}^3$ molecule⁻¹ s⁻¹ as mentioned earlier and should play a negligible role. Reaction 7 has been discussed by Li and Francisco³¹ as possibly being involved in a catalytic ozone depletion cycle.³² Their ab initio study concluded that reaction 7 either proceeded through channel 7a or produced an excited CF₃OO molecule. Our estimate of $k_7 \approx 5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ is the same magnitude of the rate coefficient for reaction 5. Since NO concentrations in the stratosphere up to 40 km are at least an order of magnitude greater than that of $O(^{3}P)$ atoms, catalytic ozone depletion due to reaction 7 cannot be significant. It should be noted that Li and Francisco did not consider that the excited CF₃OO could rearrange and eliminate FO and CF₂O (reaction 7b). This would be analogous to the elimination of FNO and CF₂O from a short lived CF₃ONO complex which is possibly

formed in reaction 5. Such a channel for $CF_3O + O(^{3}P)$ would make this reaction a chain termination step in the stratosphere. Although not necessary for understanding the atmospheric chemistry of CF_3O_x , it would be of interest to clarify both the rate coefficient and product channels for reaction 7.

Acknowledgment. We thank Drs. David Dixon and Mark McFarland, the DuPont Nemours Co., the Alternate Fluorocarbons Environmental Acceptability Study (AFEAS), and Prof. Darryl DesMarteau of Clemson University for the CF₃OOCF₃ sample. We are also grateful to our colleagues Drs. S. Solomon, C. J. Howard, and N. R. Jensen for helpful discussions and to Dr. G. Moortgat for the UV absorption spectrum of CF₃OOCF₃. This work was funded in part by NOAA's Climate and Global Change program.

References and Notes

1) Rowland, F. S. Annu. Rev. Phys. Chem. 1991, 42, 731.

(2) Stolarski, R. S.; Bloomfield, P.; McPeters, R. D.; Herman, J. R. Geophys. Res. Lett. 1991, 18, 1015.

(3) (a) Scientific Assessment of Stratospheric Ozone: 1989, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 20. (b) Scientific Assessment of Ozone Depletion: 1991, World Meterological Organization, Global Ozone Research and Monitoring Project, Report No. 25.

(4) Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act, UNEP, 1987; Revised, 1990, London Amendment.

(5) Wallington, T. J.; Hurley, M. D.; Ball, J. C.; Kaiser, E. W. Environ. Sci. Technol. 1992, 26, 1318.

(6) Edney, E. O.; Driscoll, D. Int. J. Chem. Kinet. 1992, 24, 1067.
(7) Sehested, J.; Ellerman, T.; Nielsen, O. J.; Wallington, T. J.; Hurley,

M. D. Int. J. Chem. Kinet. 1993, 25, 701.
 (8) Tuazon, E. C.; Atkinson, R. J. Atmos. Chem. 1993, 17, 179.

(9) Bevilacqua, T. J.; Hanson, D. R.; Howard, C. J. J. Phys. Chem. 1993, 97. 3750.

97, 3750.
(10) Saathoff, H.; Zellner, R. Chem. Phys. Lett. 1993, 206, 349.
(11) (a) Chen, J.; Zhu, T.; Young, V.; Niki, H. J. Phys. Chem. 1993, 97,
7174. (b) Chen, J.; Zhu, T.; Niki, H. J. Phys. Chem. 1992, 96, 6115. (c)
Chen, J.; Zhu, T.; Niki, H. Geophys Res. Lett. 1992, 19, 2215.
(12) Biggs, P.; Canosa-Mas, C. E.; Shallcross, D. E.; Wayne, R. P.; Kelly,
C.; Sidebottom, H. W. STEP-HALOCSIDE/Alternative Fluorocarbon

Environmental Acceptability Study Workshop, March 1993, Dublin.

- (13) Schested, J.; Nielsen, O. J. Chem. Phys. Lett. 1993, 206, 369
- (14) Nielsen, O. J.; Schested, J. Chem. Phys. Lett. 1993, 213, 433.
- (15) Wallington, T. J.; Hurley, M. D.; Schneider, W. F. Chem. Phys. Lett. 1993, 213, 442.

(16) Maricq, M. M.; Szente, J. J. Chem. Phys. Lett. 1994, 213, 449.

(17) Ravishankara, A. R.; Turnipseed, A. A.; Jensen, N. R.; Barone, S. B.; Mills, M.; Howard, C. J.; Solomon, S. Science 1994, 263, 71.

(18) Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R., J. Phys. Chem., following paper in this issue. (19) Li, Z.; Francisco, J. S. Chem. Phys. Lett. 1991, 186, 336.

(20) Turnipseed, A. A.; Vaghjiani, G. L.; Gierczak, T.; Thompson, J. E.; Ravishankara, A. R. J. Chem. Phys. 1991, 95, 3244.

(21) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling; JPL Publication 92-20, Jet Propulsion Laboratory, Pasadena, CA, 1992

(22) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr., R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125. (23) Batt, L.; Walsh, R. Int. J. Chem. Kinet. 1883, 15, 605.

(24) Jensen, N. R.; Hansen, D. R.; Howard, C. J., manuscript in preparation

(25) Talukdar, R. K.; Vaghjiani, G. L.; Ravishankara, A. R. J. Chem. Phys. 1992, 96, 8194.

(26) Nielsen, O. J.; Ellerman, T.; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1992, 24, 1009

(27) Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1992, 96, 4925. (28) Baulch, D. L.; Duxbury, J.; Grant, S. J.; Montague, D. C. J. Phys.

Chem. Ref. Data 1981, 10, Supplement No. 1.

(29) Moortgat, G., private communication.

(30) Schmoltner, A. M.; Talukdar, R. K.; Warren, R. F.; Mellouki, A.; Goldfarb, L.; Gierczak, T.; McKeen, S. A.; Ravishankara, A. R. J. Phys. Chem. 1993, 97, 8976.

(31) Li, Z.; Francisco, J. S. Chem. Phys. Lett. 1993, 209, 151.

(32) Note that the cycle proposed by Li and Francisco does not lead to efficient O₃ loss as discussed in ref 17.