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Experiments using arrays of cDNA targets to compare patterns of gene expression are beginning to play a prom-
inent role in biogerontology, but drawing reliable conclusions from the resulting data sets requires careful appli-
cation of statistical methods that discriminate chance events from those likely to reflect real differences among
the samples under study. This essay discusses flaws in the logic of studies that base their conclusions on ratio cal-
culations alone, reviews the multiple comparison traps inherent in high throughput systems that test a very large
number of mRNAs simultaneously, and advocates a two-stage design in which significance testing applied to ex-
ploratory data is used to guide a second round of hypothesis-testing experiments conducted in a separate set of
experimental samples.

 

EW methods for the simultaneous assessment of the
level of expression of hundreds or thousands of

mRNA levels in individual cell or tissue samples have
caught the attention of cell and molecular biologists, geron-
tologists among them. The lure is obvious: Instead of labori-
ous, one-at-a-time assays for a handful of cytokines, cell cy-
cle regulators, surface proteins, or transcription factors,
high-throughput approaches seem to promise a cornucopia
of quantitative gene expression data from which to select
the most promising candidate genes for further analysis, as
well as “expression fingerprints” that are as informative,
and as detailed, as real fingerprints or DNA restriction frag-
ment length polymorphism patterns. Articles presenting

 

lists of mRNAs allegedly over- or underexpressed in the
tissues of aged rodents (1) or in tissues derived from skin
biopsies of young or aged human donors (2) have appeared
in prominent peer-reviewed journals and are sure to be
merely the vanguard of a flood of articles reporting the ef-
fects of age, species, mutations, diets, antioxidants, and dis-
ease states on patterns of gene expression in multiple tissue
and cell sources. These articles have included, and will con-
tinue to include, lists of specific mRNAs found to be altered
to a specific degree (e.g., 2-fold or 10-fold changes) by the
factor of interest, accompanied by a discussion of patterns
perceived within the data set: arguments that the list of al-
tered genes includes many genes involved in antioxidant de-
fenses, or cell cycle control, or responses to specific hor-
mones, etc.

This essay presents the viewpoint that the design and in-
terpretation of the most prominent gene expression studies
published to date—as well as the majority of those now be-
ing presented at meetings or making their way through the
review queue—are seriously flawed, that the data sets are
filled with false-positive results, and that conclusions made
on the basis of such fragile foundations are likely to prove
misleading and premature.

The goal of such studies is usually to produce a listing of
the genes whose expression distinguishes two samples of

 

interest, for example, the muscle of young mice from that
of old mice. For these lists to be useful as tests of specific
ideas about aging and as guides for further work, it is impor-
tant that most of the findings be reproducible (i.e., likely to
produce equally large effects in replicate sets of samples).
What criteria, then, should be used to ensure that such lists
of age-sensitive genes contain only a small proportion of
false positives (i.e., nonreproducible findings)? We will
consider two sorts of criteria: (i) that the list should include
all genes with a young/old ratio over some arbitrary value
and (ii) that the list should include all genes where the two
age groups meet some statistical significance test that com-
pares effect size with its variance among subjects, such as
the Student’s 

 

t

 

 test. A recent review (3) provides a more
comprehensive analysis of the statistical problems and op-
portunities involved in extracting biological insights from
expression data sets and cites many useful articles describ-
ing alternate approaches to microarray-based data mining.

 

Ratio-Based Criteria (Young/Old [or Test/Control] 
Without Formal Significance Testing)

 

The two most prominent early reports of age-sensitive
gene expression have eschewed significance testing and re-
lied instead upon ratio-based criteria, so we will consider
option (i) first. Presumably such a ratio-based criterion
should be set high enough that few genes would reach the
arbitrarily selected threshold by chance alone. Many inves-
tigators in this area, including those who have published
their work in prominent journals, have selected an arbitrary
criterion—typically a 2-fold but sometimes a 1.5-fold
change—as the threshold for inclusion in their list of inter-
esting results. We therefore performed a simulation study to
see how often sets of random data would produce high ra-
tios by chance. This simulation, based on the report of Lee
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and colleagues (2), used a random number generator to pro-
duce fictional data for sets of 10,000 genes for each of six
individuals, three of whom were considered the young co-
hort and three of whom were arbitrarily designated old.
Each set of 10,000 random numbers followed the normal
distribution with a mean of 100 units and a preselected 

 

SD

 

.
We then recorded the percentage of the genes for which the
mean value of young samples was either twofold higher
than old or less than 50% of the old value. The article by
Lee and colleagues cited above in fact employed a some-
what different calculation, specifically the mean value of
the young/old ratios taken across the set of nine possible
pairs from three young and three old mice. We therefore
tabulated the number of genes that exceeded various thresh-
olds using this criterion as well.

Table 1 shows the results of this simulation study. For a
data set in which, for example, all of the genes show a coef-
ficient of variation (CV 

 

5

 

 100 

 

3

 

 

 

SD

 

 divided by the mean)
of 30%, the table shows that 58 genes would produce, by
chance, a mean young/old ratio of 2

 

3

 

 or higher. The crite-
rion used in the study by Lee and colleagues (2) would in-
crease the number of false positives from 58 to 212 (i.e.,
2.1% of the genes examined). At this CV, only 1 gene per
10,000 would produce a fourfold change by chance alone,
although the calculation adopted by Lee and colleagues
would produce 16 false positives with fourfold changes. A
less restrictive threshold (i.e., a 1.5-fold change) would pro-
duce false positives for 6.9% of the genes tested, or 10.1%
using Lee and colleagues’ criterion.

Table 1 also shows that the expected number of false pos-
itives depends greatly on the 

 

SD

 

 among individual test sam-
ples (individual mice in the example under consideration).
This variation will combine the effects of technical factors
(array quality, label activity, quality of the RNA prepara-
tion, etc.) with biological variance reflecting real differ-
ences among individual animals, donors, or cell cultures.
There is at present little published data from which one can
derive estimates of the variation to be expected in studies of
gene expression. Estimates of this distribution will become
more widely available when authors begin to publish vari-

 

ance levels in addition to mean values, and these will be
useful in calculating estimates of statistical power prior to
beginning a study. Biological traits can vary widely even
among genetically identical inbred animals. The catalog
compiled by Phelan (4) provides some indication of the
variance to be expected. This review lists CV values for 49
miscellaneous traits taken from 24 different reports. The
median CV value in these reports is 22%, and 30% of the
traits show CV values in excess of 45%. Our own data on
variance in liver gene expression in mouse liver (see Figure
1) found that 80% of the genes tested had CVs 

 

.

 

 30% and
that 56% of the genes had CVs 

 

.

 

 50%. It thus seems very
likely that other gene array experiments will frequently en-
counter genes where CVs exceed 30% to 50% for at least
some fraction of the tested genes. The number of false posi-
tives, determined on the basis of a ratio threshold, can in-
crease very rapidly if even a small proportion of the genes
are highly variable among the animals or test samples. If,
for example, a mere 10% of the genes in a given study have
CVs 

 

5

 

 40%, then Table 1 implies that one should expect to
see 28 false positives per 10,000 genes using a 2

 

3

 

 criterion,
or 81 false positives using the calculation adopted by Lee
and colleagues (1). Although the article by Lee and col-
leagues does not include the data on variation among sam-
ples that would be required to estimate false-positive rates,
it is noteworthy that its comparison of muscle from 5-month
and 30-month old mice reported 2

 

3

 

 changes in 1.8% of the
6347 genes analyzed, approximately the number of false-
positive results to be expected if all of the genes tested have
CVs 

 

5

 

 30% or if 10% of the genes have CVs 

 

5

 

 60%.
The number of false positives to be expected depends

greatly on the actual 

 

SD

 

 values in the set of genes under
study, which will in turn vary with age, strain, cell type, in-
tervention, etc. Each investigator should be able to use his or
her own data set to produce an estimate of the number of ex-

 

Table 1. Simulation Study Results (Three Mice per Group)

 

Mean Young/Mean Old Mean of Nine Ratios

Criterion

 

.

 

1.5

 

3 .

 

2

 

3 .

 

3

 

3 .

 

4

 

3 .

 

1.5

 

3 .

 

2

 

3 .

 

3

 

3 .

 

4

 

3

 

CV 

 

5

 

 10 2 0 0 0 1 1 1 1
CV 

 

5

 

 15 7 0 0 0 10 3 3 1
CV 

 

5

 

 20 102 0 0 0 165 6 0 0
CV 

 

5

 

 25 312 8 0 0 485 43 4 1
CV 

 

5

 

 30 690 58 1 1 1005 212 49 16
CV 

 

5

 

 35 976 138 7 1 1439 450 149 70
CV 

 

5

 

 40 1337 287 19 3 1988 808 288 138
CV 

 

5

 

 45 1668 472 54 15 2435 1208 565 291
CV 

 

5

 

 50 1853 583 103 27 2694 1490 736 409
CV 

 

5

 

 60 2434 989 268 96 3334 2131 1278 818
CV 

 

5

 

 70 2737 1276 381 183 3820 2702 1662 1071
CV 

 

5

 

 80 2930 1534 549 283 4061 3062 2084 1455
CV 

 

5

 

 90 3073 1682 661 327 4312 3400 2401 1711
CV 

 

5

 

 100 3150 1814 789 440 4491 3635 2666 1976

Figure 1. Distribution of coefficients of variation (CV 5 100 3 SD
divided by the mean) for 153 genes expressed in the liver of Ames
control stock mice aged 5 months, from data collected on n 5 4 ani-
mals. CV values represented by midpoint of the range (e.g., CV 5 20
represents 15 , CV , 25), except that CV 5 100 assigned for all CVs .
95. (From Dozmorov, Bartke, and Miller [5]).
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pected false-positive results and to compare these with the
actual observations. Figure 1 shows an example of this ap-
proach from data generated during an analysis of liver sam-
ples from four mice, aged 5 months, of the Ames control
stock (5). The histogram shows the distribution of CVs
among the 153 genes expressed in the liver among the 588
target cDNAs arrayed on a Clontech (Palo Alto, CA)

 

 

 

nylon
membrane. This empirical distribution of CVs can be used,
along with the simulation results collected in Table 1, to pro-
duce an estimate of the number of false positives to be ex-
pected. Table 2 shows an example of such a calculation and
shows that a test comparing three young to three old mice,
producing CVs distributed as in Figure 1, would produce ap-
proximately 28 false-positive results for 1.5-fold changes, 12
false positives with a 2

 

3

 

 criterion, and 4 false positives for a
3

 

3

 

 change. Thus, if analysis of the actual data shows that 23
genes produce changes of 2

 

3

 

 (compared with 12 expected
false positives), we would expect future work to show that
about half of these would prove authentic but that the other
half would represent merely chance effects.

The calculations shown in Tables 1 and 2 provide only
rough approximations. For one thing, each simulation was
based on a set of random numbers; therefore, replicate sim-
ulations yield slightly different results. Second, the simula-
tions were based on the assumption that gene expression
values are normally distributed. This assumption is incor-
rect because in many real data sets the distribution is
skewed, with a preponderance of genes expressed at low
levels. Third, in real data sets CVs tend to be higher for
genes expressed at low levels, because for genes near the
detection threshold measurement errors become progres-
sively larger relative to biological variation. The calculation
shown in Table 2 also makes the simplifying assumption
that variation in samples from old mice is the same as in
samples from young mice. Although these calculations pro-
vide only a rough guide, they do give an idea of the magni-
tude of the false-positive problem and of the likelihood that
tests of additional animals will prove fruitful.

One violation of the normality assumption deserves spe-
cial mention: instances in which the levels of expression of

a specific gene turn out to be bimodal among individual
subjects. Documentation of genuine bimodality requires
fairly large sample sizes, but even in small samples such
genes are associated with very large CVs. Of the 153 genes
shown in Figure 1, 15 have CVs 

 

.

 

 100. (Actually, Table 2
produces underestimates of the false-positive rate because it
assigns CVs 

 

5

 

 100 to all genes where CV 

 

.

 

 100.) Most of
these genes show high-level expression in only one or two
of the four mice tested, with zero or near-zero expression in
the other animals. Genes like these whose expression is spo-
radic among similar mice are particularly likely to give very
high ratios in small series of this kind. If for a particular
gene the distribution of expression among mice is truly bi-
modal or contains an occasional outlier—assumptions that
cannot be tested without much higher numbers of animals—
then assessment of the effects of age, treatment, or genotype
on expression may be particularly difficult. Demonstration
that genes with high ratios appear in two independent short
series does not provide an adequate test against type I errors
because genes with high variance will indeed frequently ap-
pear to differ, by ratio, between small groups of subjects
even if there is no real effect of the diet or genotype under
study.

The number of expected false-positive results depends on
the number of mice (or other samples) tested in the study.
Table 3 shows simulation results for varying 

 

SD

 

 (from 10%
to 50% of the mean) for study designs utilizing two, three,
four, or five animals in each of the two test groups. Using a
criterion of a twofold change, for example, experiments in
which CVs 

 

5

 

 30% will yield 223 false positives if only two
mice are used per group but will yield a mere six false posi-
tives if five mice are used per group. For CVs of 50%, and
for designs with 

 

n

 

 

 

5

 

 2 mice per group, as many as 143 genes

 

Table 2. Calculation of Number of Expected False Positives for 
Various Effect Levels Using an Empirical Distribution of 

 

SD

 

s

 

No. Genes
(

 

N

 

 

 

5

 

 153)
CV 

(Range)

Expected False Positives 
per 100 Genes

Expected False Positives 
per 153 Genes Expressed 

in Young Liver

1.5

 

3

 

2

 

3

 

3

 

3

 

4

 

3

 

1.5

 

3

 

2

 

3

 

3

 

3

 

4

 

3

 

8 5–15 2 0 0 0 0 0 0 0
13 15–25 1 0 0 0 0 0 0 0
21 25–35 7 1 0 0 1 0 0 0
18 35–45 13 3 0 0 2 1 0 0
19 45–55 19 6 1 0 4 1 0 0
22 55–65 24 10 3 1 5 2 1 0
14 65–75 27 13 4 2 4 2 1 0
11 75–85 29 15 5 3 3 2 1 0
7 85–95 31 17 7 3 2 1 0 0

20 95–105 32 18 8 4 6 4 2 1
Totals 28 12 4 2

 

Table 3. Numbers of False Positives Expected in Surveys of 
10,000 Genes: Various Combinations of 

 

SD

 

 and Numbers of Mice 
per Group

 

Young/Old Ratio

 

SD

 

Mice per Group

 

.

 

1.5

 

3 .

 

2

 

3 .

 

3

 

3 .

 

4

 

3

 

10 2 5 3 0 0
10 3 2 0 0 0
10 4 1 0 0 0
10 5 0 0 0 0
20 2 278 9 0 0
20 3 102 0 0 0
20 4 35 0 0 0
20 5 14 0 0 0
30 2 1123 223 16 2
30 3 690 58 1 1
30 4 406 14 0 0
30 5 214 6 0 0
40 2 1921 668 135 48
40 3 1337 287 19 3
40 4 1015 146 5 0
40 5 731 66 4 0
50 2 2465 1071 310 143
50 3 1853 582 103 27
50 4 1479 373 34 8
50 5 1125 198 14 0
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per 10,000 would by chance produce false-positive findings
even when using a fourfold change as the criterion for accep-
tance; however, this number falls to near zero when 

 

n 

 

5

 

 5
mice per group. Calculations similar to those shown in Ta-
bles 1, 2, and 3 can be used to estimate the number of false
positives expected for any given empirical distribution of
CVs. We recommend that those groups wishing to report
gene array results without formal statistical evaluation of
significance should accompany their reports of two- and
threefold changes with a comparison table showing the num-
bers of false-positive results to be expected from their exper-
imental design and observed distribution of CVs.

 

Criteria Based Upon Formal Significance Testing

 

An alternate approach is to base conclusions on formal
significance testing using a conventional statistical criterion,
an idea that is common outside the realm of gene-expression
screening but has yet to make much headway among users
of this cutting-edge technology. One plausible starting point
would be to compute the Student’s 

 

t

 

 test statistic for each
gene in the set of interest as an index of how likely it would
be to obtain the observed distribution of gene expression
values by chance alone. Purists would object that it is not
possible, for 

 

n

 

 

 

,

 

 5 or so, to check the assumptions on which
the 

 

t

 

 test is based (normality and equality of variance), but
even they may admit that a statistical test that includes in-
formation about interanimal variation is an improvement on
ratio-based tests that ignore variance entirely. Genes with
low interanimal variation will yield high values (i.e., low
probabilities) of the 

 

t

 

 statistic given modest age or genotype
effects (two- to fourfold, for example) and deserve more
confidence than those in which large intersubject variation
produces a nonsignificant p(

 

t

 

). Some laboratories specializ-
ing in array-based screening are beginning (6) to restrict
their conclusions to genes where p(

 

t

 

) 

 

,

 

 .05, the conven-
tional criterion for rejection of the null hypothesis of no
effect.

A key problem with a 

 

t

 

-test–based approach in the context
of gene expression screening is that it ignores multiple com-
parison artifacts. Consider a hypothetical situation in which
a postdoctoral scientist decides to measure expression levels
of 10,000 genes in each of 20 young and 20 old mice and to
make her biological interpretations on the basis of those
genes where the age effect is large and consistent enough to
reach p(

 

t

 

) 

 

,

 

 .05. Alas, unbeknownst to this researcher, a dis-
gruntled technician has switched the identification codes on
all the mice at random, so that the nominally “young” group
actually contains an equal number of young and old animals.
Among 10,000 genes, however, 1 in every 20 will, entirely
by chance, reach p(

 

t

 

) 

 

5

 

 .05; the postdoc, not knowing of the
deception, is pleased to find 500 genes that show “signifi-
cant” age effects, and she makes her interpretation and con-
ducts years of follow-up analyses on the basis of these en-
tirely spurious and unreproducible findings. The problem,
well described in most elementary statistics texts, is that a
significance criteria of .05 does not protect against false-pos-
itive conclusions in a large series of tests.

The Bonferroni procedure is the accepted way to adjust
significance criteria in such a situation. When testing 1000
hypotheses simultaneously, for example, one would use as

 

criterion a 

 

p

 

 value of .05/1000 

 

5

 

 .00005. Such a criterion is
very conservative in the sense that it tends to produce large
numbers of false negative conclusions; it tends, in other
words, to make it hard to accept as proven hypotheses that
are in fact true. If an experiment testing 1000 genes pro-
duces 

 

p

 

 values 

 

,

 

.00005 for, say, 8 genes, one could confi-
dently conclude that all eight genes are likely to distinguish
old from young mice; there would be only 1 chance in 20
that 

 

any

 

 of the eight effects is due to chance alone. Produc-
ing such a high 

 

p

 

 value requires either very large numbers
of animals or very small interanimal SDs—much smaller
than are seen in practical cases. (Evidence that the experi-
mental system in question gives very reproducible values
for replicate aliquots of the same sample is not germane; the
variation in weight among a set of laboratory members, for
example, is not diminished by weighing them on a scale ac-
curate at the microgram level.) If a survey of 10,000 genes
shows that 20 of them reach p(

 

t

 

) 

 

5

 

 .001, it is likely that
some of these 20 will prove reproducible in subsequent
tests, but it is not possible to know which ones without fur-
ther experimental data.

One way of dealing with this problem is to use a two-
stage experimental design. The first stage is used for hy-
pothesis generation: all genes are tested and ranked in order
of statistical probability. In a typical case, few if any of the
genes will show a sufficiently large age effect, with suffi-
ciently low interanimal variance, to meet the Bonferroni cri-
terion (

 

p

 

 

 

5

 

.000005 for a set of 10,000 genes), but some are
likely to provide suggestive evidence of a real effect, say

 

p

 

 

 

,

 

 .001. The second stage, then, involves testing a separate
set of animals, using either the array method or some other
convenient test (RT-PCR or RNAse protection assays, for
example) for each of these genes that shows the most ex-
treme probabilities in the initial survey. If, for example, the
initial screen generates a list of 25 genes where 

 

p

 

 

 

,

 

 .001,
the second, hypothesis-testing phase of the study can em-
ploy a value of 

 

p

 

 

 

5

 

 .05/25 

 

5 .002 as its criterion for hy-
pothesis confirmation; any genes that reach this level in the
second stage can be accepted as age-sensitive, at least in this
organ, genotype, and age range.

This method—like any method using small number of
animals to examine traits with high variance—is likely to
suffer from a high false negative rate: those genes that show
above-average interanimal variance will not produce signif-
icant p values at any stage of the analysis in tests that use
only 5 to 10 mice per group. Investigators who have in-
vested considerable effort in large-scale gene scanning sur-
veys may therefore wish to make public—either in a formal
report or in an associated electronic archive—lists of genes
that show relatively large effects (say two- or threefold
changes) even if these do not approach statistical signifi-
cance; genes that show large effects, even with high interan-
imal variation, may still deserve further attention if the pat-
terns of expression suggest or refute specific biological
theories of interest.

If the cost of the animals (or human samples or cell lines)
is relatively small compared with the overall cost of the test-
ing program, it may be useful to carry out the initial first-
stage survey using pools instead of individuals. If, for ex-
ample, a group of 24 young mice can be tested as six pools
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of 4 animals, the statistical analysis must treat this as n 5 6
replicates, but the variation among the six pools is likely to
be a good deal less than the variation expected from among
six individual animals. Comparing six pools of young sam-
ples with six pools of old samples should increase the num-
ber of genes that achieve some arbitrary p value (e.g., p ,
.001) in the initial screen, and genes that appear promising
in this initial survey can then be retested using fresh sam-
ples from individual animals of the age or treatment groups
of interest. It may be possible to develop specialized meth-
ods for determining the optimal pooling strategy for the ini-
tial screening step, but it will be difficult to reduce these to
simple rules because the decision will depend on the cost of
each assay relative to the cost of preparing each sample and
because the optimal pooling plan will differ for genes with
different CVs.

Alternate Approaches to Data Interpretation
Expression data sets can be used to address other ques-

tions of interest beyond the issue of which specific genes
are altered by aging, genotype, or intervention. The most at-
tractive of these involve analysis of groups of genes defined
either a priori by their known involvement in biological
pathways of interest or a posteriori because they are ob-
served to exhibit similar patterns of expression across sets
of related samples. These two approaches are fundamentally
different, and each presents its own set of pitfalls, but each
deserves (and is receiving) intensive exploration. In the a
priori approach, one could begin by assigning each gene to
one or many overlapping sets: a gene for Ras, for example,
might be placed in sets corresponding to oncogenes, to G
proteins, to substrates for PK-C, to regulators of Raf, to
genes responding to serum signals, and to many other cate-
gories. The expression data can then be used to seek exam-
ples of sets that show coordinate response to the interven-
tion, diet, or age effect of interest. This approach, though
promising, presents many difficulties, including complexi-
ties of feedback pathways, incomplete assessment of genes
and pathways of interest, lack of consensus about pathway
assignment, and the likelihood that the number of function-
ally defined gene sets will approach or exceed the number
of individual genes and thus fail to reduce the number of
statistical comparisons. Testing hypotheses on the basis of
sets of functionally related genes requires that investigators
specify their gene sets prior to examining their actual data to
avoid circularity, and requires that hypotheses be tested not
merely by listing genes within categories that do show par-
allel effects but instead by presentation of categorized genes
that do or do not show the expected effects.

In addition, there is a repertoire of methods for defining
clusters of genes based on similar (or, more generally, cor-
related) patterns of responses—for example after antigenic
or nutrient stimulation, across different tissue types, or
among sets of individual tumors. There is at present, how-
ever, no consensus as to which of the many alternative pro-
cedures are optimal for extracting biological information
from these correlation matrices. Claverie (3) includes an ex-
cellent introduction to these approaches with an outline of
the problems involved. At their best (7), clustering methods
can reveal previously unsuspected relationships among

genes not known to exhibit coordinated regulation and can
provide new diagnostic tools for sorting individual tumors
or individuals on the basis of expression patterns. Effective
application of these clustering methods, however, requires
not merely sophisticated selection among alternate cluster-
ing algorithms, but also very large numbers of tested indi-
viduals—numbers well beyond the small sample sizes so far
tackled by experimental gerontologists.

SUMMARY

The preceding discussion suggests several guidelines for
the design, reporting, and evaluation of experiments that use
gene array screening.

1. Bonferroni-adjusted significance criteria should be used
to assess the likelihood that a particular effect of age,
diet, drug, or mutation may have arisen by chance varia-
tion alone.

2. Studies reporting lists of gene expression differences that
do not meet these adjusted significance thresholds (e.g.,
where .05 . p . .0001 for a study of 500 expressed
genes) should be considered as hypothesis generating (i.e.,
as a prelude to hypothesis-testing studies in which a small
subset of the original gene set is retested on additional
samples not evaluated in the initial survey). Because two-
stage analyses of this kind are expensive, groups of inves-
tigators pursuing similar questions may find it cost effec-
tive to combine their datasets, using the work of one group
to test hypotheses generated by the other.

3. Publications that include lists of genes selected on the
basis of ratio calculations (e.g., young/old ratios) should
also report significance tests for each gene for which an
effect is postulated. These publications should also in-
clude the outcome of a simulation study, such as the one
presented in Tables 1, 2, and 3, that provides information
about the number of expected false-positive results that
would be generated using the numbers of samples (or
pools) given the distribution of variance values observed
during the study.

4. Reports of differential gene expression should not be
published unless they contain either significance tests or,
at least, calculated estimates of the number of expected
false positives, because without this information it is not
possible to evaluate the likelihood that the results repre-
sent chance effects alone.

5. Research proposals that include gene array approaches
should include a formal power analysis so that reviewers
can judge whether the number of samples to be tested is
likely to produce statistically significant results for a use-
ful proportion of the genes to be surveyed. Because such
a power analysis depends critically on the distribution of
variance values among the genes in the array, researchers
who compile tables listing these variance levels should
consider archiving them in publicly accessible (typically
electronic) forms as a guide to others who are consider-
ing the use of similar technology in their own work.
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