

Available online at www.sciencedirect.com

Carbohydrate Research 341 (2006) 29-34

Carbohydrate RESEARCH

Chemoenzymatic synthesis of the 3-sulfated Lewis^a pentasaccharide

Annie Malleron, Yaël Hersant and Christine Le Narvor*

Laboratoire de Chimie Organique Multifonctionnelle, UMR 8614, GDR 2590, Bât. 420, Université de Paris Sud, F-91405 Orsay, France

> Received 12 July 2005; accepted 13 October 2005 Available online 4 November 2005

Abstract—The sulfated pentasaccharide benzyl O-(3-O-sulfo- β -D-galactopyranosyl)-(1 \rightarrow 3)-O-[(α -L-fucopyranosyl)-(1 \rightarrow 4)]-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(β -D-galactopyranosyl)-(1 \rightarrow 4)-O- β -D-glucopyranoside sodium salt was synthesized using a chemo-enzymatic approach. Lacto-N-tetraose, obtained from two disaccharides [4-methoxybenzyl O-(2,3,4,6tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-O-benzylidene-2-deoxy-2-phtalimido- β -D-glucopyranoside and benzyl 2,6-di-Oacetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- β -D-glucopyranoside], was regioselectively sulfated at the 3 OH position of the terminal galactose using the stannylene procedure. The fucosylation of the sulfated tetrasaccharide was performed using soluble or immobilized fucosyltransferase FucT-III to give the title compound. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Chemo-enzymatic synthesis; Fucosyltransferase; Sulfated Lewis^a pentasaccharide

1. Introduction

Sulfated and sialylated Lewis^a and Lewis^x compounds are known to be good ligands for selectins, a family of adhesion molecules that mediates the interaction of circulating leukocytes with endothelial cells, a key step in their recruitment to sites of inflammation.¹ The synthesis of these compounds has been a great challenge for many groups.²

Due to their regio- and stereoselectivity, enzymes have proved to be powerful tools as catalysts in carbohydrate chemistry avoiding the protection and deprotection steps.³ In this respect, the enzymatic syntheses of these Lewis derivatives, or of some mimics, have been an intensive field of research.

The enzymatic synthesis of the sialylated Lewis^x compounds was made easier by the availability of the three enzymes necessary to their synthesis: (a) β -(1 \rightarrow 4) galactosyl transferase, (b) α -(2 \rightarrow 3) sialyltransferase and (c) α -(1 \rightarrow 3/4) fucosyltransferase.⁴

Regarding the Lewis^a derivatives, the situation is quite different. β -(1 \rightarrow 3) galactosyltransferase, one of the key

enzymes for the synthesis of these compounds, has been cloned but is not easily available to be of use in a preparative scale. Thus, its use in synthesis has only been reported once⁵ and the chemical synthesis remains the best way to obtain Gal- β -(1 \rightarrow 3)-GlcNAc linkage. This has been demonstrated in our group where Lubineau et al. have reported the chemical synthesis of the 3^{IV}-sulfated Lewis^a pentasaccharide, the most powerful monovalent ligand for human E-selectin known until now.^{6,7}

Our interest in the chemo-enzymatic synthesis of oligosaccharides^{4b,8} led us to use the fucosyltransferase FucT-III in this synthesis since it was already reported that natural and cloned fucosyltransferases were able to accept sulfated oligosaccharides as substrates.^{9,10}

We thus describe here a chemo-enzymatic approach to the title compound based on the enzymatic fucosylation of the sulfated tetrasaccharide lacto-*N*-tetraose **11** using the FucT-III.

2. Results and discussion

The synthetic strategy adopted in this paper was based on the enzymatic fucosylation of tetrasaccharide 11 obtained from the two disaccharides (4 and 8).

^{*} Corresponding author. E-mail: chlenarv@icmo.u-psud.fr

^{0008-6215/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2005.10.004

Disaccharide **4** was synthesized with 71% yield by glycosylation of the acceptor 2^{11} with the 2,3,4,6-tetra-*O*-acetyl-galactopyranosyl α -trichloroacetimidate 3^{12} in the presence of trimethylsilyl trifluoromethane sulfonate (Scheme 1).¹³

A *p*-methoxybenzyl group at the anomeric position was chosen for its facile introduction and the possibility to remove it before the activation step for tetrasaccharide synthesis. However during its cleavage (\rightarrow 4), we obtained a small quantity of the 4,6-diol by-product derived from the hydrolysis of the benzylidene group. We thus chose to remove this protecting group and to acetylate the diol. In this way, the cleavage of the *p*-methoxybenzyl group using ammonium and cerium nitrate in MeCN-water gave disaccharide 6 with 87% yield. Then, 6 was transformed in the usual way into trichloroacetimidate 7 (93%).

Glycosylation of 7 with the known protected derivative lactose $\mathbf{8}$,¹⁴ catalyzed by trimethylsilyl trifluoromethane sulfonate according to the Schmidt procedure,¹⁵ provided tetrasaccharide $\mathbf{9}$ in 50% yield.

Conversion of the phtalimido group into the acetamido group under standard conditions afforded tetrasaccharide **10** in 86% yield after purification by reverse phase chromatography (C-18 column).

The sulfate group was then regioselectively introduced at position 3 of the galactose moiety by stannylenedirected sulfation.^{6,16,17} Compound **10**, having 12 free hydroxyl groups, was thus heated at reflux with 1 equiv of dibutyltin oxide in 1:5 DMF–benzene for 16 h, then after removal of the benzene, 1.1 equiv of sulfur trioxide–trimethylamine complex was added. The 3^{IV}-sulfated tetrasaccharide **11** was thus obtained in 54% yield after purification on DEAE-Sephadex and elution with triethylammonium hydrogen carbonate buffer (Scheme 2).

The fucosylation of **11** was then achieved using a recombinant FucT-III, expressed in CHO cells.¹⁸ Two sites of fucosylation are available on the sulfated tetra-saccharide **11** leading to an hexasaccharide. Indeed, disaccharide Gal- β -(1 \rightarrow 3)-GlcNAc and the lactose residue are substrates for the enzyme, but we can expect to stop the reaction at the pentasaccharide stage, as the Gal- β (1 \rightarrow 3)-GlcNAc residue is six times better substrate at 1 mM than disaccharide lactose according to de Vries.¹⁹

In order to minimize the formation of the hexasaccharide, fucosylation of acceptor 11 was therefore monitored by RP-HPLC at 1 mM using 1 equiv of GDPfucose with 1 mU of enzyme for 1 μ mol of substrate. The enzyme was used as a solution or immobilized on Ni²⁺–NTA–Agarose through its 6His tag, as described previously in our group.²⁰

After 18 h of incubation, we found 34% of starting material 11, 64% of pentasaccharide 1 and 2% of hexasaccharide for both enzymatic preparations (soluble and immobilized). After 42 h, 80% of pentasaccharide 1, 10% of tetrasaccharide 11 but also 10% of hexasaccharide ride could be detected.

For a preparative scale (20 μ mol of tetrasaccharide), we chose to perform the incubations at 1 mM with soluble and immobilized enzyme and to stop the reaction after 18 h. After purification on reverse phase chromatography (C-18 column), **1** was isolated in 51% yield in the case of soluble enzyme and 62% yield with immobilized one. In each case, the unreacted tetrasaccharide **11**

Scheme 1. Synthesis of tetrasaccharide. Reagents and conditions: (a) 2 (1 equiv), 3 (1.5 equiv), Me₃SiOTf (0.1 equiv), CH₂Cl₂, rt, 3 h, 71%; (b) CAN, CH₃CN/H₂O, 0 °C, 15 min, 87%; (c) CCl₃CN, NaH, CH₂Cl₂, 0 °C, 30 min, 93%; (d) 7 (1.15 equiv), 8 (1 equiv), Me₃SiOTf, CH₂Cl₂, -10 °C, 5 h, 50%.

Scheme 2. Reagents and conditions: (a) (i) $CH_2CH_2NH_2$, EtOH, reflux, 20 h, (ii) Ac_2O , MeOH, 86%; (b) (i) Bu_2SnO (1.1 equiv), DMF-benzene reflux, 16 h, (ii) SO_3 ·Me₃N (1.1 equiv) 54%; (c) GDP-fucose (0.95 equiv), soluble FucT-III or immobilized FucT-III MnCl₂ (20 mM), 100 mM MES buffer pH 6.4, 37 °C, 7 h, 50–60%.

(45%) was recovered. Only traces of hexasaccharide were isolated.

In conclusion, the pentasaccharide 3-sulfated Lewis^a has been synthesized using a chemo-enzymatic approach. We have shown that enzymatic fucosylation of the intermediate tetrasaccharide could be achieved with a minimum formation of the hexasaccharide by-product. We are currently extending the use of these conditions to the synthesis of Lewis^a oligosaccharide on a soluble support.

3. Experimental

3.1. General methods

All moisture-sensitive reactions were performed under an argon atmosphere using oven-dried glassware. All solvents were dried over standard drying agents and freshly distilled prior to use. Flash column chromatography was performed on Silica Gel 60 A C.C (6–35 μ m). Reactions were monitored by TLC on Silica Gel 60F₂₅₄ plates with detection by UV at 254 nm and by charring with 10% H₂SO₄ in EtOH or 2% orcinol in 10% H₂SO₄ in EtOH. Optical rotations were measured on a Jasco DIP 370 digital polarimeter. IR spectra were recorded on a Bruker IF S66. NMR spectra were recorded with Bruker AM-250 or AMX-360 spectrometers; ¹³C spectra were performed at 60 or 100 MHz. The chemical shifts spectra are given relative to Me_4Si in CDCl₃ and to acetone (δ 2.22 and 30.5 ppm) for spectra performed in D₂O. Mass spectra were obtained with a Finnigan MATT 95 apparatus using ESI. Elemental analyses were performed at the CNRS (Gif sur Yvette, France).

FucT-III was obtained within a French network (G3) devoted to the production and studies of recombinant glycosyltransferases. GDP-fucose was synthesized according to published procedures.²¹

3.2. 4-Methoxybenzyl O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-O- β -benzylidene-2-deoxy-2-phtalimido- β -D-glucopyranoside (4)

A soln of Me₄SiOTf (66 µL in 3.3 mL of CH₂Cl₂) was added dropwise to a cooled suspension (0 °C) of the alcohol **2** (3.34 g, 9.74 mmol), 2,3,4,6-tetra-*O*-acetyl- α -D-galactopyranosyl α -D-galactopyranosyl trichloroacetimidate **3** (4.8 g, 9.74 mmol) and 4 Å powdered molecular sieves in CH₂Cl₂ (20 mL). After 3 h at rt, the reaction mixture was neutralized with Et₃N. The solvent was evaporated and the residue was purified by flash chromatography (2:3–29:21 EtOAc–petroleum ether) to give **4** (3.9 g, 71.2%) as a powder. R_f 0.30 (2:1 toluene– EtOAc); $[\alpha]_D^{29}$ –32 (*c* 2, CHCl₃); ¹H NMR (CDCl₃, 250 MHz): δ 7.75 (m, 4H, arom NPht), 7.60–7.40 (m, 5H, arom), 6.90 (d, 2H, *J* 9 Hz, H-9, H-9'), 6.45 (d, 2H, *J* 9 Hz, H-10, H-10'), 5.60 (s, 1H, H-7), 5.19 (d,

1H, $J_{3,4}$ 3.5 Hz, H-4^{II}), 5.12 (d, $J_{1,2}$ 9 Hz, H-1^I), 4.99 (dd, 1H, $J_{1,2}$ 8.5 Hz; $J_{2,3}$ 10.5 Hz, H-2^{II}), 4.74 (d, 1H, J 12.5 Hz, Ph–CH), 4.73 (dd, 1H, J_{2,3} 11 Hz, J_{3,4} 3.5 Hz, H-3^{II}), 4.73 (dd, 1H, $J_{2,3}$ 11 Hz, $J_{3,4}$ 10 Hz, H-3^I), 4.5 (d, 1H, $J_{1,2}$ 8.5 Hz, H-1^{II}), 4.42 (d, 1H, $J_{1,2}$ 12.5 Hz, Ph–CH), 4.41 (dd, 1H, J_{6,6'} 11 Hz, J_{5,6} 4.5 Hz, H-6^I), 4.31 (dd, 1H, $J_{1,2}$ 9 Hz, $J_{2,3}$ 11 Hz, H-2^I), 4.06 (dd, 1H, $J_{6,6'}$ 11 Hz, $J_{5,6}$ 9 Hz, H-6^{II}), 3.67 (s, OCH₃), 3.63 (ddd, 1H, $J_{5,6}$ 4.5, $J_{5,6'}$ 10 Hz, $J_{4,5}$ 9 Hz, H-5^I), 3.48 (dd, 1 H, $J_{5,6}$ 6 Hz, $J_{5,6'}$ 8.5 Hz, H-5^{II}), 2.07, 1.91, 1.84, 1.52 (4s, 12H, CH₃CO). ¹³C (CDCl₃, 60 MHz): δ 170.17, 169.95, 168.75 (C=O), 159.02 (C-Ph), 113.43 (2C-Ph), 101.47 (C-7), 100.40 (C-1^{II}), 97.26 (C-1^I), 80.74 (C-4^I), 60.67 (C-6^{II}), 55.24 (C-2^I), 54.90 (CH₃O), 20.57, 20.51, 20.40, 20.01 (CH₃CO); HRMS Calcd for $C_{44}H_{45}NO_{17}$ [M+Na⁺]: 870.2580. Found 870.2589.

3.3. 4-Methoxybenzyl O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phtalimido- β -D-glucopyranoside (5)

A soln of 4 (3.5 g, 4.13 mmol) in 70% AcOH (60 mL) was stirred at 50 °C for 4.5 h. The solvent was evaporated and coevaporated with toluene. The residue was dissolved in pyridine (35 mL) and Ac₂O (15 mL) overnight at rt. Coevaporation with toluene followed by flash chromatography (1:1 petroleum ether-EtOAc) gave 5 (3.26 g, 94%) as a powder. $R_{\rm f}$ 0.26 (2:1 EtOAcpetroleum ether); $[\alpha]_D^{29} - 27$ (c 1.4, CH₂Cl₂); ¹H NMR (CDCl₃, 200 MHz): δ 7.80 (m, 4H, arom NPht), 6.92 (d, 2H, J 9 Hz, H-9, H-9'), 6.52 (d, 2H, J 9 Hz, H-10, H-10'), 5.20 (d, 1H, $J_{3,4}$ 3.5 Hz, H-4^{II}), 5.08 (t, 1H, $J_{3,4} = J_{4,5}$ 10 Hz, H-4^I), 5.00 (d, 1H, $J_{1,2}$ 8 Hz, H-1^I), 4.93 (dd, 1H, $J_{1,2}$ 8 Hz, $J_{2,3}$ 10 Hz, H-2^{II}), 4.72 (d, 1H, CH₂Ph), 4.67 (dd, 1H, J_{2.3} 9 Hz, H-3^I), 4.61 (dd, 1H, H-3^{II}), 4.40 (d, 1H, Ph-CH), 4.13 (d, 1H, H-1^{II}), 3.80-3.72 (m, 2H, H-5, H-5^{II}), 3.70 (s, 3H, OCH₃), 2.14, 2.11, 2.05, 1.86, 1.84 (4s, 12H, CH₃CO). ¹³C (CDCl₃, 60 MHz): δ 170.70, 170.13, 169.98, 169.10, 168.95 (C=O), 159.01 (C-Ph), 113.43 (2C-Ph), 100.23 (C-1¹¹), 96.40 (C-1^I), 60.48 (C-6^{II}), 55.33 (C-2^I), 54.85 (CH₃O), 20.59, 20.37, 20.23, 20.12 (CH₃CO). Anal. Calcd for C₄₃H₄₅NO₁₇: C, 56.92; H, 5.38; N, 1.66; O, 36.04. Found: C, 56.42; H, 5.41; N, 1.48; O, 36.33.

3.4. O-(2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phtalimido- β -D-glucopyranosyl trichloroacetimidate (7)

Cerium ammonium nitrate (21.8 g, 3.86 mmol, 10 equiv) was added to a vigorously stirred soln of **5** (3.26 g, 3.86 mmol) in 9:1 MeCN–water (25 mL) at 0 °C. After 15 min, the reaction mixture was diluted with CH_2Cl_2 then washed with KHCO₃ and water, dried and concentrated to give after flash chromatography **6** (2.43 g, 3.36 mmol, 87%) as a powder.

A mixture of 6 (2.43 g, 3.36 mmol), CCl₃CN (3.4 mL, 3.36 mmol) and NaH (cat) in CH₂Cl₂ (8 mL) was stirred for 30 min at 0 °C. Then, the mixture was filtered through a silica gel column (1:1 petroleum ether-EtOAc containing 0.1% Et₃N) to give 7 (2.7 g, 93%) as a powder. $R_{\rm f}$ 0.36 (1:1 EtOAc-petroleum ether); $[\alpha]_{\rm D}^{29}$ +23 (c 1.2, CH₂Cl₂); ¹H NMR (CDCl₃, 200 MHz): δ 8.6 (s, 1H, C=NH), 7.95-7.73 (m, 4H, Ph), 6.33 (d, 1H, J_{1,2} 9 Hz, H-1¹), 5.25 (d, 1H, $J_{3,4}$ 3.5 Hz, H-4¹¹), 5.19 (dd, 1H, $J_{3,4} = J_{4,5}$ 10 Hz, H-4^I), 4.98 (dd, 1H, $J_{1,2}$ 8 Hz, $J_{2,3}$ 10 Hz, H-2^{II}), 4.85 (dd, 1H, $J_{2,3}$ 10.5 Hz, H-3^I), 4.67 (dd, 1H, H-3^{II}), 4.61 (dd, 1H, H-2^I), 4.25 (d, 1H, H-1^{II}), 2.13, 2.12, 2.08, 2.07, 1.87 (4s, 12H, CH₃CO). ¹³C (CDCl₃, 60 MHz): δ 170.84, 170.25, 170.08, 169.25, 169.05 (C=O), 160.67 (OC=N), 100.49 (C-1^{II}), 93.60 (C-1^I), 90.07 (CCl₃), 61,79, 60.48 (C-6^I, C-6^{II}), 54.46 (C-2^I), 20.70–20.26 (CH₃CO).

3.5. Benzyl O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phtalimido- β -D-glucopyranosyl-(1 \rightarrow 3)-2,6-di-O-acetyl- β -D-galactopyr-anosyl-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- β -D-glucopyranoside (9)

A mixture of 7 (1.085 g, 1.25 mmol), 8 (0.69 g, 1.08 mmol) and powdered molecular sieves 4 Å in CH₂Cl₂ (5 mL) was stirred during 15 min at rt. Then, the temperature was decreased at -30 °C and a soln of Me₃SiOTf (11 μ L, 0.05 mL) in CH₂Cl₂ (430 μ L) was added dropwise and the mixture was stirred at -10 °C during 5 h. Et₃N was added and the mixture was concentrated. Flash chromatography (1:1 petroleum ether–EtOAc) gave **9** (715 mg, 50%) as a syrup. $R_{\rm f}$ 0.27 (1:2 petroleum ether–EtOAc); $[\alpha]_{\rm D}^{29}$ –3 (c 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 250 MHz): δ 8–7.80 (m, 4H, arom Ph), 7.40–7.20 (m, 5H, Ph), 5.30 (d, 1H, J_{3.4} 3.5 Hz, H-4^{IV}), 5.15 (d, 1H, $J_{1,2}$, H-1^{III}), 4.43 (d, 1H, $J_{1,2}$ 7.5 Hz, H-1^{IV}), 3.94 (d, 1H, $J_{3,4}$ 3 Hz, H-4^{IV}), 2.13, 2.10, 2.09, 2.07, 2.06, 1.99, 1.97, 1.87, 1.60 (9s, 18H, CH₃CO). ¹³C (CDCl₃, 60 MHz): δ 171.35–169.14 (C=O), 100.21, 100.12, 98.96, 98.33 (C-1^I, C-1^{II}, C-1^{III}, C-1^{IV}), 62.80, 62.15, 61.78, 60.54 (C-6^I, C-6^{II}, C-6^{III}, C-6^{IV}), 55.16 (C-2^I), 20.62–20.00 (CH₃CO). Anal. Calcd for C₆₁H₇₃NO₃₃: C, 54.33; H, 5.46; N, 1.04; O, 39.17. Found: C, 54.21; H, 5.46; N, 0.96; O, 39.19.

3.6. Benzyl *O*- β -D-galactopyranosyl- $(1\rightarrow 3)$ -*O*-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1\rightarrow 3)$ -*O*- β -D-glactopyranosyl- $(1\rightarrow 4)$ -*O*- β -D-glucopyranoside (10)

A mixture of ethylene diamine (2 mL) and **9** (0.67 g, 0.49 mmol) in EtOH (8 mL) was refluxed for 20 h. After cooling, the soln was concentrated and the residue was extracted with water, dried and treated with Ac₂O (1.5 mL) in MeOH (8 mL). After addition of Et₃N (50 μ L), the mixture was stirred for 3 h at rt, then concentrated. Purification on a C-18 column (1:0–9:1

water–MeOH) gave **10** (338 mg, 0.42 mmol, 86.5%) as a powder. $[\alpha]_D^{29} - 3$ (*c* 1.3, water); ¹H NMR (D₂O, 200 MHz): δ 7.50–7.3 (m, 5H, arom Ph), 4.88 (d, 2H, CH₂Ph), 4.69 (d, 2H, CH₂Ph), 4.66 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{III}), 4.50 (d, 1H, $J_{1,2}$ 8.5 Hz, H-1^I), 4.39 (d, 2H, $J_{1,2}$ 8 Hz, H-1^{II}, H-1^{IV}), 4.10 (d, 1H, $J_{3,4}$ 3 Hz, H-4^{II}), 3.29 (t, 1H, H-2^I), 1.96 (s, 3H, CH₃CO). ¹³C (D₂O, 60 MHz): δ 172.80 (C=O), 126.55 (Ph), 101.30 (C-1^{IV}), 100.73, 100.36 (C-1^{II}, C-1^{III}), 98.82 (C-1^I), 79.80 (C-3^{II}), 76.17 (C-4^I), 58.80 (C-6^{II}, C-6^{IV}), 58.30 (C-6^{III}), 57.90 (C-6^I), 52.50 (C-2^{III}), 20.03 (CH₃CO); LRMS Calcd for C₃₃H₅₁N₂₁ [M+Na⁺]: 820.27. Found 820.2.

3.7. Benzyl *O*-(3-sulfo- β -D-galactopyranosyl)-(1 \rightarrow 3)-*O*-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-*O*- β -D-galactopyranosyl-(1 \rightarrow 4)-*O*- β -D-glucopyranoside sodium salt (11)

A mixture of 10 (152 mg, 0.19 mmol) and dibutyltinoxide (53 mg, 0.21 mmol) in DMF-benzene (1:5, 30 mL) was boiled for 16 h under reflux with continual removal of water using a Dean-Stark apparatus. Then, benzene was removed and the dibutylstannylene derivative was treated with the Me₃N-sulfur trioxide complex (29 mg, 0.21 mmol) at rt for 28 h. The reaction mixture was then diluted with MeOH and neutralized with NaHCO₃. After evaporation, the compound was extracted with water and purified on DEAE Sephadex A-25 column, eluted with a 0.1 M triethylammonium hydrogen carbonate buffer (pH 8). Fractions containing the starting compound were pooled to give 10 (21 mg, 14%). Fractions containing the sulfated tetrasaccharide 11 (99.7 mg, 54%) were pooled and twice lyophilized. $[\alpha]_{D}^{29}$ -8 (c 0.266, water); ¹H NMR (D₂O, 250 MHz): δ 7.50-7.30 (m, 5H, arom Ph), 4.95 (d, 2H, CH₂Ph), 4.77 (d, 2H, CH₂Ph), 4.74 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{III}), 4.57 (d, 2H, $J_{1,2}$ 8 Hz, H-1^I, H-1^{IV}), 4.44 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{II}), 4.33 (dd, 1H, J_{2,3} 10 Hz, J_{3,4} 3.5 Hz, H- 3^{IV}), 4.30 (d, 1H, H-4^{IV}), 4.15 (d, 1H, $J_{3,4}$ 3.5 Hz, H-3^{II}), 3.35 (m, 1H, H-2^I), 2.04 (s, 3H, CH₃CO). ¹³C (D₂O, 60 MHz): δ 126.22 (Ph), 100.94 (C-1^{IV}), 100.66, 100.21 (C-1^{II}, C-1^{III}), 98.76 (C-1^I), 80.17 (C-3^{II}), 77.86 (C-3^{IV}), 76.2 (C-4^I), 58.80 (C-6^{II}, C-6^{IV}), 58.30 (C-6^{III}), 57.80 (C-6^I), 52.31 (C-2^{III}), 19.95 (CH₃CO); LRMS (negative mode) Calcd for $C_{33}H_{50}NO_{24}SNa [M-Na^+]$ 876.24. Found 876.4.

3.8. Benzyl *O*-(3-sulfo- β -D-galactopyranosyl)-(1 \rightarrow 3)-*O*-[(α -L-fucopyranosyl)-(1 \rightarrow 4)]-*O*-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 3)-*O*- β -D-galactopyranosyl-(1 \rightarrow 4)-*O*- β -D-glucopyranoside sodium salt (1)

3.8.1. Method A (using the soluble FucT-III). Tetrasaccharide **11** (20 mg, 20 μ mol), GDP-fucose (15 mg, 19 μ mol), soluble FucT-III (16 mU), MnCl₂ (80 mg) were incubated at 37 °C for 7 h in 100 mM MES buffer (20 mL, pH 6.4). After addition of EtOH, the precipitate was removed and the supernatant was concentrated. Purification on C-18 column (1:0–49:1 water–MeOH) gave 1, which was converted to the sodium salt by passing through a column of Bio-Rad AG 50W-X8 resin (Na⁺ form). The freeze-dried eluate afforded 1 (10.8 mg, 51.5%). Tetrasaccharide 11 (9 mg, 45%) was also recovered.

3.8.2. Method B (using immobilized FucT-III). Tetrasaccharide 11 (20 mg, 20 µmol), GDP-fucose (15 mg, 19 µmol), immobilized FucT-III (15 mU), and MnCl₂ (80 mg) were incubated at 37 °C for 7 h in 100 mM MES buffer (20 mL, pH 6.4). After centrifugation, the supernatant was concentrated. Purification on column C-18 (\rightarrow 1:0–98:2 water–MeOH) gave 1, which was converted to the sodium salt by passing through a column of Bio-Rad AG 50W-X8 resin (Na⁺ form). The freezedried eluate afforded 1 (13 mg, 62%) 6.5 mg of tetrasaccharide 11 (45%) was recovered.

Compound 1: $[\alpha]_D^{29} - 33$ (*c* 0.6, water); ¹H NMR (D₂O, 400 MHz): δ 7.50–7.35 (m, 5H, arom Ph), 5.02 (d, 1H, $J_{1,2}$ 3.5 Hz, H-1^V), 4.93 (d, 2H, CH₂Ph), 4.86 (q, 1H, H-5^V), 4.75 (d, 2H, CH₂Ph), 4.70 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{III}), 4.60 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{IV}), 4.55 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{II}), 4.60 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{IV}), 4.55 (d, 1H, $J_{1,2}$ 8 Hz, H-1^{II}), 4.32–4.25 (m, 2H, H-4^{IV}, H-3^{IV}), 4.15 (d, 1H, $J_{3,4}$ 3.5 Hz, H-4^{II}), 3.30 (t, 1H, H-2^I), 2.04 (s, 3H, CH₃CO), 1.17 (d, 3H, CH₃). ¹³C (D₂O, 100 MHz): δ 128.76 (Ph), 102.51, 102.12 (C-1^{II}, C-1^{III}, C-1^{IV}), 100.56 (C-1^V), 97.53 (C-1^I), 81.62 (C-3^{II}), 79.76 (C-3^{IV}), 77.90 (C-4^I), 75.51 (C-3^{III}), 61.08, 60.52, 59.62, 59.00 (C-6^I, C-6^{III}, C-6^{III}, C-6^{IV}), 55.42 (C-2^{III}), 21.87 (CH₃CO), 14.89 (C-6^V). LRMS (negative mode) calcd for C₃₉H₆₀NO₂₈SNa [M-Na] 1022.3. Found 1022.5.

Acknowledgements

The authors thank Prof. Lubineau for helpful discussions, CNRS and University of Paris-Sud, for financial supports.

References

- 1. Rosen, S. D. Annu. Rev. Immunol. 2004, 22, 129– 156.
- 2. Unger, F. M. Adv. Carbohydr. Chem. Biochem. 2001, 57, 207-435.
- Koeller, K. M.; Wong, C. H. *Glycobiology* 2000, 11, 1157– 1169.
- (a) Ichikawa, Y.; Lin, Y.-C.; Dumas, D. P.; Shen, G.-J.; Garcia-Junceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson, J. C.; Wong, C. H. J. Am. Chem. Soc. 1992, 114, 9283–9298; (b) Bintein, F.; Augé,

C.; Lubineau, A. *Carbohydr. Res.* **2003**, *338*, 1163–1173; (c) Blixt, O.; Norberg, T. J. Org. Chem. **1998**, *63*, 2705–2710; (d) Öhrlein, R.; Baisch, G.; Katopodis, A.; Streiff, M.; Kolbinger, F. J. Mol. Catal. B: Enzyme **1998**, *5*, 125–127.

- Baisch, G.; Öhrlein, R.; Streiff, M.; Kolbinger, F. *Bioorg. Med. Chem.* **1998**, *8*, 751–754.
- Lubineau, A.; Le Gallic, J.; Lemoine, R. Bioorg. Med. Chem. 1994, 2, 1143–1151.
- Yuen, C.-T.; Bezouska, K.; O'Brien, J.; Stoll, M.; Lemoine, R.; Lubineau, A.; Kiso, M.; Hasegawa, A.; Bockovich, N. J.; Nicolaou, K. C.; Feizi, T. J. Biol. Chem. 1994, 269, 1595–1598.
- Renaudie, L.; Daniellou, R.; Augé, C.; Le Narvor, C. Carbohydr. Res. 2004, 339, 693–698.
- Scudder, P. R.; Shailubhai, K.; Duffin, K. L.; Streeter, P. R.; Jacob, G. S. *Glycobiology* **1994**, *4*, 929–933.
- Ikeda, N.; Eguchi, H.; Nishihara, S.; Narimatsu, H.; Kannagi, R.; Irimura, T.; Ohta, M.; Matsuda, H.; Taniguchi, N.; Honke, K. J. Biol. Chem. 2001, 276, 38588–38594.
- Lubineau, A.; Alais, J.; Lemoine, R. J. Carbohydr. Chem. 2000, 19, 151–169.

- 12. Schmidt, R. R.; Stumpp, M. Liebigs Ann. Chem. 1983, 1249–1256.
- Wong, T. C.; Haque, W.; Zahaeer Abbas, S.; Noujaim, A. A. J. Carbohydr. Chem. 1990, 9, 745–753.
- 14. Paulsen, H.; Paal, M. Carbohydr. Res. 1985, 137, 39-62.
- 15. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–123.
- Lubineau, A.; Augé, C.; Le Goff, N.; Le Narvor, C. Carbohydr. Res. 1998, 305, 501–509.
- 17. Guilbert, B.; Davis, N. J.; Pearce, M.; Aplin, R. T.; Flitsch, S. L. *Tetrahedron: Asymmetry* **1994**, *5*, 2163–2178.
- Bensilimane, C.; Chenu, S.; Tahrat, H.; Deparis, V.; Augé, C.; Cerutti, M.; Goergen, J. L.; Marc, A. In *Animal Cell Technology: Products from Cells, Cells as Product*; Bernard, A., Ed.; KAP: Dordrecht, 1999; pp 251–253.
- De Vries, T.; Srnka, C. A.; Palcic, M. M.; Swiedler, S. J.; van den Eijnden, D. H.; Macher, B. A. J. Biol. Chem. 1995, 270, 8712–8722.
- Augé, C.; Malleron, A.; Tahrat, H.; Marc, A.; Goregen, J.-L.; Cerutti, M.; Steeland, W. F. A.; Delannoy, P.; Lubineau, A. *Chem. Commun.* 2000, 2017–2018.
- Ichikawa, Y.; Sim, M. M.; Wong, C. H. J. Org. Chem. 1992, 57, 2943–2946.