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D E F O R M E D  S U P E R S Y M M E T R Y ,  q-OSCILLATOR A L G E B R A ,  A N D  
R E L A T E D  S C A T T E R I N G  P R O B L E M S  IN Q U A N T U M  M E C H A N I C S  

A. A. A n d r i a n o v ,  F. C a n n a t a ,  J.-P.  D e d o n d e r ,  and M. V.  Ioffe UDC 539.12;517.9 

We describe extensions of the supersymmetric quantum mechanics (SSQM) (in one dimension) which are 
characterized by deformed algebras. The supercharges involving higher-order derivatives are introduced, leading 
to a deformed algebra which incorporates a higher-order polynomial of the Hamiltonian. When supplementing 
them with dilatations, one finds the class of q-deformed S U S Y  systems. For a special choice of q-self-similar 
potentials, the energy spectrum is (partially) generated by the q-oscillator algebra. In contrast to the standard 
harmonic oscillators, these systems exhibit a continuous spectrum. We investigate the scattering problem in the 
q-deformed SSQM and introduce the notion of self-similarity in the momentum space for scattering data. An 
explicit model for the scattering amplitude of a q-oscillator is constructed in terms of a hypergeometric function. 
This model corresponds to a reftectionless potential with infinitely many bound states. A general 'method 
of realization of the q-oscillator algebra on the space of wave functions for a one-dimensional Schr6dinger 
Hamiltonian is developed. It shows the existence of non-Fock irreducible representations associated with the 
continuous part of the spectrum and directly related to the deformation. Bibliography: 24 titles. 

1. INTRODUCTION 

The deformed symmetries were introduced [1, 2] to characterize the integrability of some lattice models 
and conformal field theories [3, 4]. Later on, a number of examples of q-deformed symmetries or q-deformed 
spectrum-generating algebras were found in various quantum systems, in particular, in low-dimensional 
quantum-mechanical  (QM) models. 

A simple algebra which is realized on isospectral QM systems is the supersymmetric quantum-mechanical 
algebra [5, 6] of supercharges and a superhamiltonian. Two supersymmetric partners of a superhamiltonian 
are related (more technically intertwined) by supercharges which actually generate Darboux transformations 
[7] between two isospectral systems. Deformations of this algebra are provided by extended supercharges 
involving higher-order derivatives [8-10]. Such an extension leads to a higher-derivative SUSY (HSUSY) 
algebra [10] which incorporates a higher order polynomial of the Hamiltonian. On the other hand, when 
supplementing supercharges with dilatations, one reveals the class of q-deformed potential systems [11] on 
which the q-deformed oscillator algebra can be realized as a spectrum-generating algebra. 

The oscillator or Heisenberg-Weyl algebra was deformed in several ways [12, 13], and its representations 
have formally been classified [13-15]. Because of the significance of the conventional oscillator in many 
areas of modern quantum physics, new realizations of the q-oscillator algebra on the wave function space 
of a particular dynamical model are useful for an understanding of the rote of this algebra for physical 
systems. 

It is our goal to describe the interplay between polynomial deformations of the SUSY algebra referred to 
pairs of isospectral systems and q-deformations introduced into a SchrSdinger-type system by dilatations 
of coordinates. In this way, different realizations of the q-oscillator as a quantum system satisfying the 
Schr6dinger equation are found. 

As also for the harmonic oscillator (q = 1), the connection between the values of different energy lev- 
els and the corresponding wave functions [11] (or reflection and transmission coefficients [10]) becomes a 
consequence of the q-oscillator algebra. 

In order to reproduce a q-oscillator, it is necessary to identify the potentials in the Darboux-connected 
Hamiltonians up to a constant. This self-similarity property holds for the conventional harmonic oscillator 
and explains its equidistant energy spectrum. The dilated self-similarity condition [11, 16] naturally selects 
the potentials that  yield the energy spectra and wave functions of a q-deformed oscillator. The relation 
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between scattering amplitudes of two q-superpartners leads to the "dual" condition of self-similarity [10] 
(in the monlentum space). 

In Sec. 2, we outline the basics of one-dimensional SSQM [5, 6]. In Sec. 3, a SSQIvl with supercharges 
of second-order in derivatives is constructed in the most general form, and cases are pointed out where the 
superpartners cannot be constructed by iterations of two ordinary Darboux transformations. Thereby we 
classify all irreducible transformations involved in the construction of HSUSY systems with polynomially 
deformed superalgebras. 

In Sec. 4, we study the q-deformations of SUSY and HSUSY induced by the dilatation of the coordinates. 
The coexistence between a q-deformed SUSY algebra with the ordinary Hamiltonian and the ordinary SUSY 
algebra with the q-defomned Hamiltonian is established and further generalized to HSUSY. 

In Sec. 5, we introduce the closure, or self-similarity, condition into the q-deformed SUSYQM and then 
construct a q-oscillator model with local potential. The proof of the existence of a regular potential is 
discussed. Its polynomial generalization is obtained by the q-deformation of a polynomial superalgebra. 

In Sec. 6, we consider the q-oscillator algebra in the form [13] and give the classification of its represen- 
tations in terms of the central element. The decomposition of the Hamiltonian realization from Sec. 5 into 
irreducible q-oscillator representations is developed. Two types of q-oscillator representations appear and, 
while the Fock representation refers to the bound states, the non-Fock representations cover the continuous 
spectrum. 

In Sec. 7, the consequences of one-dimensional HSUSY are explored for scattering properties [17] of 
the partner Hamiltonians [18]. The relation between scattering amplitudes of two q-superpartners [10] is 
presented in Sec. 8. For scattering amplitudes, the "dual" condition of self-similarity (in the momentum 
space) is defined. An explicit construction satisfying this "dual" self-similarity is presented in terms of a 
hypergeometric function. This construction corresponds to the reflectionless potential. 

In Sec. 9, we analyze other possible realizations of the q-oscillator on the space of wave functions for 
a one-dimensional Schr6dinger Hmniltonian. In our approach, the local Hamiltonian, in general, is not 
bilinear in creation and annihilation operators but rather belongs to the universal enveloping q-oscillator 
algebra, i.e., to the algebra of polynomials (analytic flmctions) of the generators. Thereby the q-oscillator 
relations are considered as a kind of q-deformed (nonlinear) dynamical algebra. We state a general method 
of constructing a local Hamiltonian of Schr6dinger type with deformed spectrum generating algebras. The 
related mapping of energy levels is examined. The different fbrms of the q-oscillator algebra are described, 
and the constraints on their realization in terms of a Schr6dinger Hamiltonian are obtained. 

2. S U S Y  QUANTUM MECHANICS IN ONE DIMENSION 

SSQM is generated [5, 6] by the supercharge operators Q+ and Q -  = (Q+) t  which together with the 
Hamiltonian H of the system satisfy the relations 

(Q+)2 = O, [H,Q+] = O, (1) 

{Q+,  Q -  } = H = & ,  (2) 

where Q = Q+ + Q-  is the Hermitian supercharge operator. 
The one-dimensional representation is realized by the 2 • 2 supercharges 

0 ' (3) 

where 
a • ---- + 0  + W ( z )  

and the superhamiltonian is comprised of two ordinary Schr6dinger Hamiltonians, 

(h(1) 72 ) ( a ; a -  0 ) _ = _ 0 2 + ( W 2 + W '  
H =  0 h ) = a-a + 0 

= ( - 0  2 + W2)l  + or3 W' 

h (i) - - 0  2 + V (~)(x), 

(4) 

0) 
W 2 _ W p 

(5) 

2024 



where cr 3 is a Pauli matrix. 
A direct consequence of Eqs. (1), (2) is that all eigenvalues of H are nonnegative. In terms of components, 

the algebra defined by Eqs. (1), (2) means that  the Hamiltonians h (1) and h (2/ in Eqs. (5) are factorized. 
To express it differently, we can say that with a given factorizable Hamiltonian h 0), one can associate a 
supersymmetric partner h (2) such that both partners are linked by the intertwining relations 

h(1)a + = a+h (2) and a - h  O) = h(2)a - .  (6) 

These relations lead to the double degeneracy of all positive energ____y levels of H belonging to the ':bosonic" 

or "fermionic" sectors specified by the grading operator 7 = (_)N~- = cr3, where ~ is the fermion number 
operator. The grading operator comnmtes with the Hamiltonian H and anticommutes with the supercharge 
Q. Thus, the supercharge operator transforms eigenstates with v = +1 (bosons) into eigenstates with 
T = --1 (fermions) and vice versa. The boson and fermion wave functions are eigenfunctions of h0) and 
h (2), respectively. They are connected via Eqs. (6) by the operators a• 

e v ~ t g ( ~ ) = a - t 9 ( ~  ) and v @ r  ). (7) 

The existence of zero-energy states depends [6] on the asymptotics of the superpotential  W(x)  which appears 
in Eq. (4). For appropriate W ( x ) ,  they can arise either in the bosonic sector, i.e., 

a-~(1 ) ( x )  = O, 

or in the fermionic one, i.e., 
a+~(21(x)  = O. 

3. HIGHER-DERIVATIVE SSQM 

Now we study realizations where relations (1) are preserved but deformations of relation (2) are allowed. 
A nonstandard realization [9, 10] relies oll the use of higher-order derivative operators in the definition 
of the supercharges. Instead of the linear operators of Eq. (4), let us define the second-order differential 
operators 

A + = (A- )  t = 0 2 - 2.f(x)O + b(x). (8) 

Then, with Q = Q+ + Q - ,  Eq. (2) is transformed to 

{ Q + , Q - }  = (?2 = K .  

Thus, the quasihamiltonian /,:" is given by the conventional superalgebra, but  it is now a fourth-order 
differential operator, hence not of the Schr6dinger form. 

Let us assume that  there exists a diagonal Hamiltonian H of Schr6dinger type, 

H = 0 h ) ' (9) 

which commutes with the supercharges Q+ constructed from A + given in (8). Then, from intertwining 
relations similar to (6), 

h(1)A + = A+h (2) and A - h  (t) = h(2)A - ,  (10) 

it follows that the quasi.hamiltonian K comnmtes with H and, furthermore, is given in terms of H by 

A" : H 2 - 2 a l l  + ~, (11) 

where a and /3 are constants since [K, Q] = 0 and the spectra of h (1) and h (2) in the one-dimensional 
problem are nondegenerate. The intertwining relations (10) for H imply that  

f " ( x )  / \  d 
b(x) = f2(x)  - f ' ( x )  I f ' ( x )  1 2 + - -  (12) 

2f(x)  + \ 2 f ( x )  / 4f2(x)  ' 
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where 
d = / 3 -  ~2. (13) 

This condition is necessary and sufficient for the existence of a generalized polynomial HSUSY algebra 
defined by 

( Q •  [ H , Q + ] = 0 ,  { Q + , Q - } = Q 2 = ( H _ c ~ )  2 + d .  (14) 

By the use of Eq. (12), the potentials of the superpartner Hamiltonians can be expressed in terms of f (x )  
and its derivatives, 

g (1)'(2) ~--- : i :2y(x) + f2(x) + 2f(x----) \ 2 f ( x ) J  4f2(x----~ + a. (15) 

The eigenfunctions of h (1) and h (2) are obtained from each other by the action of the second-order differential 
operators A + according to Eqs. (7). 

One can factorize the elementary operators A + in terms of the ordinary superpotentials W1 and W2, 
introduced in Eq. (4), 

A + = a l+a 2+ = (O + Wl(x)) (0 + W2(x)). (16) 

In certain cases, they are connected by the ladder equation 

a i- a + = a + a~ + c or - W; + W12 = W~ + IJ~ + c, (17) 

where, without loss of generality, we assume c >_ 0 (superpotentials, supercharges, and other relevant 
operators will, thus, depend on c). This equation implies 

{ Q + , Q - }  = H(H - c), (18) 

where, for comparison with Eq. (11), 

~r = H + 9-2(c - 2~) = 0 a ;~ + + ~ " 

Obviously, c 2 = - 4 d  > 0. 
Factorization (16) arises [8, 9] from two successive standard SSQM transformations 

(h(1) 0 )  (aoai- 0 ) 
0 h = a l  a+ 

(20) 

and 0) 
0 h (2) = -0 a~a + (21) 

together with the ladder condition (17). 
Let us choose c = 2a, i.e., /3 = 0. Then the superpotentials W1,2 can be parameterized in terms of f (x )  

as follows: 
l/V1,2 = -4- 2 f '  ( z )  - c 

4f(x)  f (x) .  (22) 

The ladder equation (17) is meaningful only when the discriminant d is negative; it is the property that  
allows us to introduce the intermediate Hermitian Hamiltonian in Eqs. (20), (21). If d > 0, relation (17) 
cannot be satisfied; therefore, we refer to this class of second-order derivative SSQM as irreducible. 

Such a class represents a new primitive element in constructing supersymmetric ladders and, respectively, 
polynomial SSQM's. Clearly, the corresponding supercharge cannot possess any zero modes since it is 
bounded from below by the constant v/d, as shown by Eqs. (14). In order to avoid singular supercharges 
and potentials (15) in the case under discussion, we assume that  the function f ( x )  is nodeless. The 
generalization of the second-order derivative SUSY algebra to differential operators A + of higher order is 
straightforward and leads to polynomials in H on the right-hand side of Eq. (14). The ladder construction 
(20), (21) is constructed by primitive elements of the first and second order in derivatives. Thus, we obtain, 
in general, the following polynomial superalgebra: 

Q2= H ( H - c i ) ( ( H - a j ) 2 + d j )  d j>O.  (23) 
i+2j=n 
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4. q-DEFORMED SUSY QUANTUM MECHANICS 

In the framework of SSQM, a q-deformed SUSY algebra was constructed in a specific realization [11] 
exploiting the dilatation operator  

Tqf(X) : v/-qf(qx), TqOz : q-lO~:Tq, (24) 

represented also by the following pseudodifferential  operator:  

Tq = y~exp(inq xax), Tq t : Tj 1. (25) 

The q-deformed supercharges Q• are constructed from 

a + = (0 + W ( x ) )  TJ : a, a~- = Tq(-O + W(x)) -- a +, (26) 

+ in symbols of "creation" a + and "annihilation" 5 as in Eq. (3). The redefinition of Darboux operators aq 
operators is done for the purposes of modeling the q oscillator (see the next section). The "bosonic" and 
"fermionic" components  of the Hamil tonian (see Eq. (5)) are now q-deformed: 

h (1) _= a+aq = - 0 2  + W2(x) + W'(x) _-- fi5 +, 
(27) 

2 - + _02 h (2) - q aq aq : + q2I,V2(qx) - q t ~ ( q x )  -- q25+&. 

The coefficient q2 in h (~) is introduced in order to properly normalize the kinetic term. These Hamiltonians 
are not intertwined by means of the s tandard  SUSY algebra (see Eq. (6)) but satisfy the q-deformed 
intertwining relations: 

q2h(1)a+ = _qr,+h (2).o , q2aqh(t) : h(2)aq. (28) 

Thus,  a q-deformed SUSY algebra arises with the conventional form of Eqs. (1), (2), 

{ Q + , Q - } q : H ,  [ Q + , H ] q : [ H , Q - ] q = 0 ,  (29) 

in terms of the q-(ant i)commutators  (instead of the usual ones) 

IX, Y]q = XY - q2YX, {X, Y}q = XY + q2yx. (30) 

In the usual sense, the supercharges are not preserved now because they do not commute with the 
Hamiltonian. As a consequence, the superpartner Hamiltonians are no longer isospectral, but their spectra 
are related by the q-dilatation, q2E(Z) : E (2). Notice, however, tha t  there exists a different Hamil tonian 
(q-Hamiltonian/2/),  with rescaled h (2), which commutes  with supercharges and satisfies the superalgebra 

{ Q + , Q _ } :  ( h  (1) 0 ) 
0 q-2h(2) = / : / '  [/:/' Q• : 0. (31) 

The wave functions are connected by the operators a~: 

r (X aq~  (1), ~(1) C< a+g, (2). (32) 

Now let us combine the q-deformed SUSY with the polynomial  HSUSY (see Sec. 3) quan tum mechanics. 
The  factorizable construct ion of the second-order derivative q-deformed HSUSY algebra can be realized 
by means of a sequence of two q-deformations (26) with different dilatation parameters  ql and q2. 
components  of the q-supercharge are factorized: 

A + --1 + . a  + =qCl (O+Wl(x] ]T t - l (O+~ 'Vo(x] ]T t -  , , , ~ ,  - - , , ,  ~2 , ~ ,  
= ql aql q2 

The 

(33) 
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The supercharge components can be transformed to the form of a product of a second-order derivative 
operator and a single dilatation operator: 

A + = (0 + Wl(X))(c) + W2(x))Ttq, 

q = qt "q2; W2(x) -= q ~ l W 2 ( q l l x  ). 
(34) 

In this form, the generalization of the second order derivative SUSY is straightforward and can be performed 
following the method of See. 3 with the dilatation at the last step both for reducible (d _< 0) and for 
irreducible (d > 0) cases. 

As in the ordinary q-deformed case, the Hamil tonian H does not commute with the supercharge but 
satisfies Eqs. (29). The q-deformed SUSY algebra with the Hamiltonian H has the usual form (a3 is the 
Pauli matrix): 

Q+Q- + q4Q-Q+ = {Q+, Q-}q2 -- (H - aq1-{73) 2 -t- d.  q2(Z-aa), 

[Q+, Hlq = [H, Q-]q = 0. (35) 

There exists a q-Hamiltonian/2/ (31) which commutes with the supercharges. Moreover, in terms of/ i / ,  
the HSUSY algebra takes the usual form (14). 

Further  steps in extension of the higher-order derivative SUSY either lead to Eq. (23) with the q- 
Hamiltonian and the conventional SUSY or to its q-deformed version [9, 10] with the true Hamiltonian H 
and the primitive blocks defined in (35): 

{Q+,Q-}qn = 1-I ( H - c i ' q l - a a ) ( ( H - ( ~ j q l - a a ) 2 - t - d j ' q 2 ( l - a a ) )  ;, 
i+2j=n 

[Q+, = [H, = 0; > 0. (36) 

5. LOCAL HAMILTONIAN MODEL OF A q-OSCILLATOR 

This model is constructed from the q-deformed SUSYQM (27), (29) by imposing the closure condition 

h (z) = h  (2)+1.  

Then obviously, the operators (2 and it + satisfy the q-commutator relation 

&it+ _ q2it§ = 1, (37) 

which is an essential ingredient of the algebraic definition of a q-oscillator [13] (see Sec. 6). 
condition leads to the q-self-similarity equation for W(x) ,  

W' (x )  + qW~(qx) + W2(x) - q2W2(qx) = 1, 

The closure 

(38) 

where the prime stands for the derivative with respect to x. Obviously, for q = 1, the ordinary harmonic 
oscillator is reproduced with W(x)  = x /2  corresponding to a self-similar potential. Equation (38) can be 
considered on the entire axis, x E ( -c~ ,  +oo),  or on the semiaxis, x E [0, oo). In order to develop the 
expansion around x ~-- 0 or as x --* oo, it is convenient to express Eq. (38) in the operator form. Let us 
introduce the dilatation generator for Tq (25), 

D = xc)x, Dx  n = nx ~, Tq =- qD+�89 

and put 17d --= x W ( x ) .  Then, in the operator form, Eq. (38) appears as 

1 x2 1 -- qD 
( D  - 1)~7V = 1 + q-----5 1 ~ qD ~V2" 

(39) 

(40) 
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When expanding 
o ~  

~/(X) : E cnxn 
n~---1 

around the origin, one derives from (40) the set of recurrent relations for n > 1, 

1 1 __qn ;-1 
(n - 1)Cn -- 1 + q~6n,2 1 S q n  ~ ClCn-1, (41) 

/=1  

where ct is an arbi trary constant. The choice c~ = 1/(1 - q2) corresponds to the trivial solution where 
Cn = 0 ,  n r  I. 

From (41) it follows [11, 16] that,  for 0 < q _< 1, a solution regular on t he  entire axis arises for Cl = 

0, c2 = 1/(1 + q2). a s  a consequence, C2j+ l  ---- 0, "[/V(-x) : l/V(x), and W ( - x )  = - W ( x ) .  
The asymptotic expansion at infinity can be found from (40) in the same manner. We have 

I b2 (in x) 
W(x)ll=l>>l --- +@TT~_q2 + x ------5-- + 0 (  ), (42) 

where b2 ({•  In q) = b2 ({) is an arbitrary periodic function of { = In x (in particular, b2 = const). Obviously, 
it provides a decreasing potential, V(x) ~ 1/x 9-, ix] >> 1. Thus, the spectrum of Hanfiltonians with regular 
potential must have a continuous part. If the solution W(x)  is chosen to take a positive constant value 
as x --+ +oo and a negative one as x -+ - c o ,  then it tbllows from Eqs. (26) that  the normalizable ground 
state of h (1), fa0 "-- e x p ( - f  dxW(x)) ,  exists and represents the zero-mode of the annihilation operator a: 
in this case, the q-oscillator model contains a bound state spectrum. Then it makes sense to renormalize 
the Hamiltonians h (1),(2) so as to set zero energy at the beginning of the continuous spectrum 

1 h(2) q2 (43) 
h O ) = H l + l _ q 2  = / - / 2 +  1 - q 2  

with the closure condition H1 = H2. 

Now we present the generalization of the above q-oscillator model based on the q-deformation of the 
polynomial HSUSY algebra (34), (36) developed in the previous section. In order to reproduce q-oscillator 
relation (37), we can use only the following relations in (36): 

1 _ _  q2n&+& ., 
a a +  = z41  + 1 - q2 , = H;  + - -  

If H1 = H2, then 
&&+ _ q2n&+d = 1. 

q2n 

1 - q 2 n  " 
(44) 

(45) 

For n _> 2, the polynomial on the right-hand side of (44) always has pairs of complex conjugate roots. Ac- 
cording to the ladder construction (36), the relevant Darboux intertwining operators in &, &+ are comprised 
of a number of primitive Darboux transformations of second order in derivatives. There are two nonequiv- 
alent sets of q-oscillator models corresponding to even or odd n. For odd n, the above ladder contains one 
Darboux transformation of first order in derivatives, while for even n it consists only of second-derivative 
primitive elements. 

Let us consider, in particular, the case n = 2, where the creation and annihilation operators are given 
by relations (34). The q-self-similarity equation follows from (15) and (34) and has the form 

V(x)  = f2(x) - 2f ' (x)  + 2f(x~) \ 2 / ( x ) J  - 

f"(qx)  (f'(qx) ,~ 2 
= q2f2(qx) + 2qf'(qx) + 2f(qx~ k , ~ . , I  - 

1 
4f2(x)(1 _ q4) 

q2 

4 f f  (qx)(1 - q4)" 
(46) 

This equation is much more complicated than (38), and the existence of its regular solution is not obvious 
(see also the discussion in Sec. 8), though, for the semiaxis problem, the linearization method seems to be 
convergent and applicable to the proof of existence. 
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6. q-OSCILLATOR ALGEBRA AND ITS REPRESENTATIONS 

The deformation of a bosonic oscillator can be defined in terms of the q-commutator,  g8 + -q28+8 ,  where 
8 and 8 + = (8) + are the annihilation and creation operators and q is a real number  which, without loss of 
generality, will be assumed positive. The commuta tor  can be defined in different ways. We define it [13] as 
follows: 

85 + - q28+5 = 1. (47) 

It is supplemented with the number  operator  N such that 

[N, 8 +] = 8 +, [X, 8] = - 8 ,  (4S) 

where the usual conmmtators  are implied. For the harmonic oscillator, when q = 1, the ground state is 
a zero mode of the annihilation operator,  8~0 = 0, and the number operator  N can be normalized to be 
N = 8+8 so that  the zero occupation number is assigned for the ground state. 

If q r 1, the number operator  is no longer bilinear in 5, 5 +. However, there is a central element 1 given 
by [13], 

8+8), (49) 
where the q-symbol [N]q is defined as 

1 -- q2N 
- 

1 - q2 �9 

The operator ~ conmmtes with all generators of the q-oscillator algebra, which is seen from the relations 

8 + F ( N )  = F ( N - 1 ) 5  +, 8 F ( N ) = F ( N + I ) 8 .  (50) 

Therefore, its eigenvalues (~ enumerate the representations, and, for a given representation with chosen ~, 
one can find the connection between the bilinear operators 8+6 and g6 + and the number operator  N,  

8 + 8  = [N]q - ~q2N 

g8 + = [N + 1]q - ~q2N+2 (51) 

where the q-commutator (47) is used. These operators conmmte with N, and their spectra are generated 
by the spectrum of N. From Eqs. (51), the comnmtator  can be evaluated, 

8fi+ -- 5+8 = q2N ( 1 - -  ~ ) ,  (52) 

where ~c is the critical value of ( for which the commuta tor  vanishes. Vve have 

1 
~c -- 1 -- q2" 

Any representation can be described [13, 14] in the basis of eigenfunctions of the number  operator  with 
eigenvalues un, N r  = u n ~ .  As in the case of the conventional harmonic oscillator, due to relations 
(48), all eigenstates can be built from one selected state r by means of the ladder operators,  r -- 
5 + ~ ,  ~n-1 -~ a ~  and hence un+l = Un 4- 1. For a chosen ~'0, the nonequivalent representations are 
parameterized by the values of u0 lying in the unit interval, 0 _< u0 < 1, since the shift on an integer 
number maps one state to another of the same representation. We can redefine the number  operator,  
N = ~r + u0, so that  the eigenvalues of leg become integer numbers. This redefinition is compatible with 

1In fact, this element is not unique, since any periodic function q~(N) = 4~(N 4- 1) also belongs to the central-element 
subspace, which thereby consists of any algebraic combinations of ~ and ~b(N). However, for further purposes, it is sufficient 
to select only one central element in the form (49). 
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the basic commutat ion relations (47) and (48), and, due to Eq. (49), corresponds to the ibllowing change 
of the central element: 

_ (q2 0 _ 1 ) .  ( 5 3 /  

For ~ r Co, any representation characterized by two parameters u0 and ( is equivalent to the representation 
u~0 = 0, (q  In this case, it is sufficient to shift eigenvalues of the number operator to integer numbers and 
to s tudy the eigenvalues of the central element. For r = ~ ,  the representations are labeled by values of u0. 

As to the classification of q-oscillator representations in terms of 4, we have the following three types of 
nonequivalent representations [13, 14]: the Fock representation ( > (c, non-Fock representations for ( < r 
and the special representation for ~ = C~. 

The Fock representation is characterized by the existence of a ground state of the number opera tor- -zero  
mode of the annihilation operator, ar = 0. Since, from Eqs. (47) and (52) and u'0 = 0, we have r = 0, 
the Fock representation is unique and can be constructed for any 0 < q < oo. 

The non-Fock representations can appear only if 0 < q _< 1 and thereby (~ < 0. The spectrum of N 
is unbounded from below. The consistency with Eqs. (51) requires r < r Due to relation (53), there 
is a one-parameter family of irreducible non-Fock representations. Their parameterization can be realized 
either with the help of the central element by fixing u0 = 0 or by means of the parameter 0 _< u0 < i for a 
fixed value of r In the sequel, we make use of the second part of the alternative, and, for definiteness, we 
set r = 2(c. 

In the special representation (again for 0 < q < 1), the creation and annihilation operators commute 
(see Eq. (52)), and it follows from Eq. (47) that  the bilinear operators (51) become c-numbers: 

g & + = g + & _ _ _ l  o 
I - q2 ~ p-" (54) 

This representation is generated by a unitary operator U so that gt = pU and ~+ = pU +. The powers of 
creation and annihilation operators form a discrete subgroup of the group U(1). In this representation, the 
number operator cannot be expressed as a function of & and 8 +. 

Thus, any Hamiltonian realization of the q-oscillator algebra can be decomposed into the above irre- 
ducible representations. In what follows, we restrict ourselves to the q-oscillator model with a local (in x) 
Hmniltonian 2 of the Schr6dinger type [II]. 

Let us decompose the q-oscillator representation given by the model (26)-(38) into irreducible represen- 
tations. Obviously, the bound state spectrum having the true ground state forms the Fock representation, 
and the continuous spectrum consists of the set of non-Fock representations. From the (/-oscillator relations 
(51), we find the number operator as a function of the Hmniltonian for both cases, 

In [(i - qi)2H2] 
N = (55) 

41nq 

where the nonlinear operator relation can be interpreted in terms of the spectral decomposition for the 
Hamiltonian H. For the Fock representation, this connection was found in [11], and here we extend it to 
the entire set of non-Fock representations for positive energies. Accordingly, the central element can be 
defined as follows: 

= 6 ( 1 +  signH), H ~  = E ~ ,  (56) 

and, in the Fock representation, we have ~ = 0, E < 0, and E~+I = q 2 E n ,  while, in the non-Fock represen- 
tation, we obtain ~ = 2(~ and E > 0. Both discrete and continuous sequences of energy levels have E = 0 
as the accumulation point. 

The special representation could be realized on zero-energy states (at the threshold between discrete 
and continuous spectra) where ~ = r However, for this particular model, it can be proved ([20]) that 
the physical states a for zero energy do not exist because the two zero-energy solutions have increasing 

2There  are also m a n y  possibi l i t ies  to  cons t ruc t  nonlocal  Hami l t on i ans  (see, for e.g., [12, 191), which we do no t  discuss here. 
3By physical  s ta tes ,  we mean  the  wave funct ions  t h a t  r emain  b o u n d e d  at  infinity. 
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asymptot ic  behavior ~ v/-~. Therefore, the special representation does not appear in the decomposition of 
the space of physical wave functions. 

Thus, we have shown that  the q-oscillator system with the local Hamiltonian (43) is composed of two 
types of irreducible representations, in particular, the continuous part of the spectrum is covered by non- 
Fock representations parameterized by the second invariant in the interval 0 < L'0 < 1 corresponding to the 
energy interval ](~c[ > E > q2[~cl, 

f = ~-@ G d#(PO)~LNF' (57)  

0<~o<1 

where 7-/ denotes the appropriate Hilbert space of wave functions (of both bound states and scattering 
states). The q-oscillator generators act on scattering wave functions as pseudodifferential operators in 
accordance with (26). 

For the polynomial q-SUSY realization, the equations for N and ~ are the same as for n = 1 provided 
that  one makes the subst i tut ion q , q~, H , H n. There are two nonequivalent sets of q-oscillator 
models corresponding to even or odd n. The Hamiltonians belonging to an odd algebra, in general, have 
the representation content of the n = 1 model. In the even case, it is clear that  the Fock representation is 
not involved in the decomposition of the related q-oscillator wave function space since 115+5H > 1/(1 - q2,~). 
Front a regular nodeless solution f ( x )  of Eq. (46), We obtain the q-oscillator model with nonnegative 
Hamiltonian. Negative energy levels are allowed only for the Hamiltonians unbounded from below because 
of the properties of non-Fock representations. Then such Hamiltonians must be associated with singular 
potentials. 

7. SSQ1VI AND TIIE SCATTERING PROBLEM 

Consider the one-dimensional scattering problem on the line, i.e., x E ( - o c ,  +oc) ,  for the Hamiltonian 

h (1) = - 0 2  + V(t)(x) = a+a - (58) 

with a potential that  tends (fairly rapidly) to its constant asymptotic value, 

V(1) (x )  ) C, (59) 
X --+ -4-OC, 

where the discrete energy spectrum of h (1) is bounded by C (0 < Er, <_ C), 

h(1)ffg(nl)(x) = Enq~(1)(x), n = O, 1,.., (60) 

while the continuous spectrum E(k) > C is given by 

h(1)~I/(1)(x) : E(k)~I/(kl)(x); E(/~) : k 2 -[-- C. (61) 

The scattering wave functions satisfy the asymptotic  conditions (see, e.g., [17]) 

~(1)k,_~ = e+ikx + R(1)(k) e-ik:~, (62) 

q2(1) = T(1)(k)e +ikx, k, +oc 

where R (1) (k) and T(1)(k) are the reflection and transmission coefficients, respectively. 
The ladder operators a + (4) are asymptotically expressed in the form 

(63) 

(64) 
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with 
~ '~ = lim W(x),  I~V~ = C. (65) 

Then the asymptotic scattering wave function of the partner  Hamiltonian h (2) is proportional to 

k - i W _  - ik~] ,  (66) - re(z) = ( - i k + W _ )  [ e i k ~ - R O ) ( k ) k + i  W e a - ~  ~ k ,_~ 

while 
~ + il/V+ eikZ ] 

(~_l_oo'~'k,+oc--- 'T'(1) = ( - - i k  -4- W _ )  [ T ( 1 ) ( k )  -~ ilvV_ 

Hence the transmission and reflection coefficients associated to h (2) have the form [8, 18] 

k +  iW+ 
r ( 2 ) ( k )  = T ( 1 ) ( k )  ~ + i~V_' 

R (2) (k)  ---- - - R  (1) (k)  ~ - iW_  
k + i W _ "  

(67) 

(68) 

(69) 

It is well known [17] that the transmission coefficient contains physical poles in the upper half of the complex 
k-plane, and their positions correspond to the energies of bound states Ej = - ~  + C, kj = i~j. Thus, the 

difference in physical pole structure of T (1) and T (2) depends on the signs of II.~. The uni tary property 
always holds for T (2) and R (2) whenever it holds for T (1) and R (1). 

The scattering problem for HSSQM, as defined in Eqs. (14), (15), can be obtained from Eqs. (68), (69) 
by iteration: 

(k + iW2+)(k + i~r~+) 

T(~)(k) = T(1)(k)(k + i ~ ? _ ) ( k  + i~V~_) ' (70) 
(k - iW2_)(k - m q _ )  

R(2) (k,) R(I) (k) ~ T i ~ _ ) ( k  + i ~ _  i" 

Assmning that  .fi  = lira f ( x )  are constant (so that  the potentials V (1),(2) are finite as x --+ 4-oc) and 

using Eq. (22), we obtain the following asymptotic values of the superpotentials: 

c c 
tiS-- -- f+,  ~V2+-  f+. (71) 

4]2 4f+ 

To obtain the same asymptotic values of the potentials Vi at +cx~ and at - ~ ,  we must have f~_ = f2 or 
16/  = 

For d > 0 and nonsingular potentials, the function f (x )  is nodeless and, in order to have equal asymptotics 
(59), it is necessary that f+ = f_  = f ~ .  The transmission and reflection coefficients are connected as 
follows: 

T(2) = T(1) R(2) = R(1) (k + i f ~ )  2 - d (72) 
d 

(k - i f ~ )  2 4I~ 

As in (59), the coincidence of the transmission coefficients is caused by equal asymptotic values for each 
potential at +oz. 

8. q -OSCILLATOR SCATTERING AND DUAL SELF-SIMILARITY 

As to the scattering problem for the above models, the asymptotic relations (66)-(69) should be modified 
with regard for Eq. (26). As a result, one finds the connection between the transmission and reflection 
coefficients h (1) = a+aq and h (2) 2 - + = q aq aq given by (27), which now involves the dilatation parameter  q: 

T(2)(k ) = T(Z)(k)(k  + iI47+q) 
q (k +il/V q)' (73) 

R (2) (k) = - R  (1) (k)  (k - iW_q) 
(k -+ iW_q)" 
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Thus, both  in the discrete and continuous parts of the spectrum, we remove the spectrum degeneracy 
typical for the ordinary SSQM and come to the scaling relations. 

The q-deformation of scattering da ta  allows us to formulate a dual self-similarity condition, which, in 
general, does not imply (standard) self-similarity of potentials. As in Sec. 5, we again formulate this 
condition as a closure condition, but  for the scattering amplitudes in the momentum space: 

T(Z)(k) = T(1)(k), R(2)(k) = R(1)(k), (74) 

which is combined with Eq. (73). Their solutions for q < 1 and W+ = - W _  > 0 have the form 

f i  (k + iW+q . . . .  , Z (1) (~:) ----- (]~ _ iW+qn) ~[ln ~)  
n ~ l  

f i  (k + iW+q n) R(1)(k) = (k --iW+qn) r(lnk) =- 
n = l  

(k - iW+)1 50(_1; iW+/k)t(lnk),  
(k + iW+) 

(k - iW+) (I)0(-1; iW+/k)r(ln k), 
(k + iW+) 

(75) 

where It[ 2 + [rl 2 = 1 and t(z)(r(z)) are periodic (antiperiodic) functions, 

t ( z + l n q ) = t ( z ) ,  r ( z + l n q ) = - r ( z ) ,  

and the self-similar transnlission and reflection coefficients are parameterized by the hypergeometric function 
l (I)0(a;  z)  [241. 

If one imposes the condition of vanishing of the reflection coefficient for large k, which amounts  to the 
validity of the Born expansion [17], one is led to assume that  r(ln k) = 0 and to put  t(ln k) = 1, respectively. 
It is clear that  the underlying reflectionless potential has infinitely many bound states with an accumulation 
point around zero. Since the Born expansion is valid, this means that  such a potential is slowly decreasing 
and oscillating. 

By arguments that  led to (70) and (72), one can derive q-defbrmed HSUSY relations between the trans- 
mission and reflection coefficients. For the even series, it follows from (44) and (72) that  the transmission 
coefficient is trivial. 

For the case of the q-oscillator, one can repeat  the preceding arguments concerning the validity of the 
Born expansion for a well-decreasing potential  and conclude that the reflection coefficient should vanish. 
Therefore, for n = 2j,  such a q-oscillator should not cause any scattering, and, in this case, it is unlikely 
to have regular, decreasing q-oscillator potential  on the entire axis. Still there is an open possibility to 
constructing the q-oscillator for even n with regular potential on the semi-axis. As to the odd series, 
n = 2j + 1, the construction of a nontrivial q-oscillator potential does not seem to encounter any obstacles 
on the entire axis. 

Now we proceed to the general description of deformed dynamical algebras which are realized on wave 
functions of the Schr6dinger operator  and, in general, induce a nonlinear mapping of energy levels. 

9. G E N E R A L I Z E D  REALIZATIONS OF q -OSCILLATOR MODELS 

To describe the q-oscillator algebra in a generalized form, we introduce new creation and annihilation 
operators A + and A by means of a transformation preserving the conmmtat ion relations with the number 
operator (48): 

~t = F(N)A ,  5 + = A+F*(N). 

VVe may assume that the function F(x) is real since its phase factor does not play any role in the relations to 
be derived below. From (50) and (47), the q-commutator  with a new deformation parameter  is reproduced 
if 

F2(N - 1) = CqF2(N), (76) 

where Cq is a positive c-number; this choice preserves the bosonic character of the algebra. The solution of 
the previous equation has the form 

F2(N) = c ~ N o - I ( N ) ,  O(N - 1) = ~b(N). 
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The function 0 is periodic, positive, and, in fact, takes a definite value for a particular representation, and, 
therefore, is invariant. From Sec. 6, it follows that 0 = 0(u0). The basic q-commutator  takes the form 

AA + - q2CqA+ A = c N r  (77) 

The central element is modified as follows: 

q-2N ([N]q 1-N -1 = - C q  r (N)A+A).  (78) 

The bilinear operators are also modified, 

A + A = C N - I r  AA+=CqVr  +, (79) 

as compared with Eqs. (51). The additional q-commutator is constructed with a new deformation parameter: 

(80) 

The classification of representations is similar to that  in Sec. 6, since we have not introduced any new algebra 
but  have chosen different elements of the same universal enveloping algebra as basic generators. The special 
choice Cq = 1/q leads to the algebra from [12], whereas Cq = 1/q 2 leads to the algebra introduced in [21]. 

Now we proceed to nonlinear reaIizations of the spectrum (generating deformed algebras) in quantum 
mechanics. Such realizations are of interest for the algebraic description of physical systems whose spectra 
are only approximately related to the harmonic or q-harmonic oscillators. We start  with the generalized 
intertwining relations 

H1A + = A+g(H2), g(H.2)A = AH1, (81) 

where H1,2 are Hamiltonians of two quantum systems with related energy spectra and wave functions, 
Hi~'i  = E i ~ i ,  E1 = g(E2),  and ~r = A+~'~. In the case of a polynomial SSQM, we have g(x) = q2x. By 
virtue of (81), [A+A, Hz] = [AA +, 9(//2)] = 0. If we assume, in addition, that  the fnnction g is invertible, 
we obtain [AA +,/-/2] = 0. Hence the bilinear operators commute with the Hmniltonians and represent, in 
general, symmetry operators [22]. In one-dimensional QM, they are functions of Hamiltonians: 

A+A = al (H1) ,  AA + = cr2(H2), (82) 

where ~ri are arbitrary invertible functions. Then, for analytic functions .f(z), we have 

o o  o o  

f (~ = E cmcr'~(H1)A+ = A+ E cmo-~(H'2) = A+f(cr2(H2)). 
m=0 m=0 

(83) 

Now let us define the inverse functions 

= z ,  (84) 

and choose f (z)  = 7ri(z). Then the mapping g and its inverse g -  are determined by these functions: 

g ( Z )  = 71-1 (O-2(Z)), g - - ( Z )  : 7r2(O'l(Z)). (85) 

With the help of the inverse mapping, we obtain tile second set of intertwining relations: 

A+H9 = g-(H1)A +. (86) 
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To find links between energy levels of the same dynamical system, we impose the self-similarity condition 
H1 = / / 2 .  In this way, we discover a deformed dynamical algebra of a Hamiltonian. The ladder procedure 
connects different levels and eigenstates belonging to the following sequence: 

A + : . . .  , g - ( g - ( E ) )  , g - ( E )  , E , g ( E )  , g ( g ( E ) )  ~ . . .  
(ST) 

A :  . . . ,  g - ( g - ( E ) )  ~ g - ( E )  ~ E ,  g ( E )  , g ( g ( E ) )  ~ . . .  

For physical systems of oscillator type with Hamiltonians bound from below, these operators can generate 
the entire spectrum of a model, whereas, on the continuous part  of the spectrum, they connect only subsets 
of levels. 

Imposing relations (77) and (80) on the functions al,2 given by (82), we realize the q-oscillator algebra 
provided that  the following constraints for a representation [~, u0] are fulfilled: 

( 21nqh 21nq ( ~ )  
ln (a2(z ) -Cqo- , (z ) )  = 1+ l n C q ]  ln[~r2(z) -q2Cqo'l(z)] - ln--~q lnr + l n  1 -  (88) 

for Ca # 1, and 

for Cq = 1 and 6 = 1. In the latter case, 

~(~) - q ~ ( z )  = 1  

the energy mapping has the form 

(s9) 

E ~ ~ ( q ~ ( E ) +  1).  (90) 

In particular, for q = 1, this mapping represents the generalization of the harmonic oscillator spectrum. 
The content of irreducible representations of the q-oscillator algebra in a particular model depends on 

the position of fixed points of the mapping (87). If a fixed-point energy value is higher than the ground 
state energy, then the Fock representation exists and is realized in between them. If there are no fixed 
points for finite energies, then the Fock representation spans the entire Hilbert space of wave fnnctions. On 
the contrary, if the fixed point coincides with the ground state energy, the non-Fock representations appear 
only in the decomposition into irreducible representations. 

Thus, tile general s trategy suggested by our approach is to find an algebra generating the spectrum 
by means of the properties of the bound-state  spectrum and scattering coefficients, i.e., to determine the 
i\mctions oh,2 satisfying conditions (88). In practice, this can be done only approximately, and the required 
perturbation theory will be studied elsewhere. In order to find the related potential, it is necessary to 
extend the inverse scattering method to potentials with i/x 2 asymptotics at infinity [16]. 

W'e believe that the analysis of fixed points of functional mappings (87) can lead to a better understanding 
of the physical meaning (see [23] and the references therein) of a q-deformed algebra. The number of fixed 
points might represent a sort of topological invariant under "snmoth" perturbations of a potential. The 
problem of realization of the special representation on wave functions of a local Hamiltonian (a fixed point 
of the energy mapping) remains open. 

We also note that there exist other generalizations [23] of the q-oscillator algebra of the form 

(91) 

where ~i are sufficiently regular real functions. In fact, one can redefine the basic elements of the universal 
enveloping algebra, 

& = M ( N ) A ,  ~t + = A + M ( N ) ,  M* = M, (92) 

so as t o  replace the function ~1 (N) by a constant c. We restrict ourselves to transformations which do not 
change the commutat ion relations with the number operator. The required function M ( N )  satisfies the 
following equation: 

�9 I ( N ) M ( N  + 1) = cM(N) .  (93) 
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In the special representation {(, u0}, its solution has the form 

n--1 

M(n + ~o) = hl(~o)c -~ 1-I ~l(l + ~0), (94) 
/=0  

where M(t,o) is an arbitrary function for 0 _< L,0 < 1. In qualitative agreement with [23], we obtain the 
q-deformed algebra (77) but with an arbitrary function ~2(N) on the right-hand side. We note, however, 
that we have the additional freedom (92) to modify ~52(N), which does not change the enveloping algebra 
and was not considered in [23]. Thus, nonequivalent q-deformed algebras are only those which cannot be 
related by these "gauge" transformations. 
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