

0957-4166(94)E0093-P

A Short Synthesis of the Unusual Amino Acid of Cyclosporine (4R)-4-[(E)-2butenyl]-4,N-Dimethyl-L-Threonine (MeBmt)

Monique Savignac, Jean-Olivier Durand and Jean-Pierre Genêt

Ecole Nationale Supérieure de Chimie de Paris, Laboratoire de Synthèse Organique, associé au CNRS, 11, rue Pierre et Marie Curic, 75231 Paris, France

Abstract : MeBmt 1 was prepared in four steps from the optically pure (2Z, 4R) 4-methyloct-6-yn-2-en-1-ol 8, Z allylic alcohol containing an alkynyl group at the γ position. The two stereogenic centers C-2 and C-3 in the product were controlled using Sharpless' epoxidation and subsequent ring opening at C-2 of the epoxy acid 10 with methylamine.

Introduction

 β -Hydroxy- α -amino acids are an important class of compounds, appearing in nature both as natural products (threonine, serine, 4-hydroxyproline) and as components of more complex natural compounds such as cyclic polypeptides (e.g. vancomycine, edeine).¹ A representative of this class, MeBmt 1, is an unusual C-9 amino acid found in the immuno-suppressive undecapeptide cyclosporine A, which appears to be critically involved in the biological activity of this chemotherapeutic agent. Several syntheses of MeBmt have recently been reported.²

In connection with our continued work on the asymmetric synthesis of syn or anti β -hydroxy- α -amino acids and analogues by asymmetric hydrogenation³ and electrophilic⁴ or nucleophilic amination⁵, we recently reported in an earlier paper the synthesis of MeBma 2⁶ via the Sharpless epoxidation of the enantiomerically pure (4R,2E,6E)-4-methylocta-4-dien-1-ol followed by nucleophilic opening with methylamine of corresponding epoxy acid.

We now present a short synthesis of (2S,3S,4R) 2-methylamino-3-hydroxy-4-methyloct-6-enoic acid (MeBmt) 1, using a similar approach.

Results⁷ and Discussion

We considered chiral cis α , β -epoxy acids 4 as key intermediates because the regioselective ring opening⁸ with methylamine sets up the desired *syn* relationship present in the MeBmt 1. The absolute configuration is controlled by Sharpless epoxidation⁹ of the corresponding allylic alcohol 3.

However the Sharpless technology suffers from one limitation in that low asymmetric induction is obtained upon epoxidation of hindered Z allylic alcohols.¹⁰ Indeed, in a first attempt, the asymmetric epoxidation of the racemic dienol **6** was carried out under catalytic conditions with 2.5 eq of TBHP and (+) diethyltartrate at -20°C. A kinetic resolution is observed (entry 1). Epoxidation is more difficult on the (R) alcohol than on the (S) enantiomer.

The (R) 2-methylhex-4-en-1-ol 7 did not epoxide selectively either under catalytic or stoichiometric conditions due to steric hinderance (entry 2). It has been demonstrated by Ganem¹¹ that when $R = R' = CH_3$, asymmetric Sharpless epoxidation proceeded with moderate enantiometric excess (66%). So we anticipated that a less bulky alkynyl side chain at γ position could overcome this problem. We were pleased to find that the epoxidation under catalytic conditions gives a significant increase of the diastereoselection up to 40%. Interestingly under stoichiometric epoxidation conditions, an acceptable diastereoselectivity (70%) is observed. The diastereoisometric were separated by medium pressure liquid chromatography to give enantiometrically pure (2S,3R,4R) 2,3-epoxy-4-methyloct-6-yn-1-ol 9 (50%). So our strategy could be applied to the MeBmt synthesis and the overall sequence is showed in the following scheme :

a)CH₃CH₂CO₂H, Et₃N 1.2 eq, THF b)NaHMDS, CH₃C \equiv CCH₂Br, THF c)LiAlH₄, Et₂O, 0°C d) (COCl)₂, DMSO, -78°C; Et₃N, -30°C e) i) (CF₃CH₂O)₂P(O)CH₂CO₂Me; KHMDS 18-Crown-6, THF, -78°C; ° ii) Dibal; Et₂O -78°C f) tBuOOH; Ti(OiPr)₄; L(+)DET; CH₂ Cl₂; -20°C g) PDC; DMF; 20°C h)MeNH₂ H₂O, 90°C; HCl 6N; \checkmark EtOH; 90°C i) Li, NH₃, -78°C \rightarrow -20°C O

To fix the C-4 configuration, the Evans' procedure² is used. The chiral oxazolidinone is coupled with propionic acid (80%) and asymmetric alkylation of the oxazolidinone with butynyl bromide gives after reduction, the 2-methylhex-4-yn-1-ol. Swern oxidation leads to the aldehyde which is allowed to react immediately under Still modified Horner-Emmons conditions to afford the Z/E esters in a 9 to 1 ratio. The Z isomer could be separated by flash chromatography (60% overall). Reduction followed by catalytic asymmetric epoxidation and PDC oxidation product the epoxy acid 10. Subsequent stereocontrolled opening with methylamine at C-2 furnished the (2S,3S,4R) 2-methylamino-3-hydroxy-4-methyloct-6-ynoic acid 11 (60%)

which gave after reduction (Li, NH₃) the cristalline MeBmt (m.p. 250°C, $[\alpha]_D = +11.8 \text{ c} = 0.5$, phosphate buffer pH=7, Literature $[\alpha]_D = 11.5$) with 9% overall yield from the (2R)-2-methyl-4-hexyn-1-al.

Conclusion

This synthetic route provides a short, useful and general method for obtaining γ -dialkylbranched, syn β -hydroxy- α -amino acids such as MeBmt. We have found that the low asymmetric induction in Sharpless epoxidation of γ -dialkyl substituted Z allylic alcohols can be partially overcome by using a γ alkynyl group. The overall procedure allows synthesis of all the analogues of MeBmt just by changing the starting α -alkylated chiral aldehyde and the tartrate.

Acknowledgements : JO. Durand thanks the Ministry of Research (MRE) for a grant (1990-1992)

References and notes

Infrared spectra (IR) were taken using a Bruker 45 FTIR instrument; ¹H and ¹³C NMR spectra were recorded using a Brucker AC200 spectrometer. Column chromatography was carried out over Merck silica gel 60 (40-63 μ m). MPLC was carried out over Merck silica gel 60 (25-50 μ m). (2R)-2-Methyl-4-hexyn-1-al was prepared from (4S)-4-(phenylmethyl) oxazolidin 2-one by Evans protocol² in four steps as describe in synthetic scheme with 35 % overall yield.

Methyl (2Z, 4R) 4-methyl oct-6-yn-2-enoate : A solution of 3.34 g (10.5 mmol) of methyl bis-(trifluoroethyl)phosphonoacetate, 11.1 g (42 mmol) of 18-Crown-6 in 150 mL of THF was cooled to -78°C and treated with 10.5 mmol of KHMDS (20.9 mL, 0.5 M) in toluene. Then, 1.15 g (10.5 mmol) of (2R)-2-methyl-4-hexynal was added and the reaction mixture was stirred for 1 h at -78°C, then quenched by the addition of saturated ammonium chloride. The aqueous phase was extracted into three 100 mL portions of Et₂O, the combinated organic phases were washed and dried over MgSO₄, then concentrated in vacuo. Isomer ratio was measured by NMR integration : E/Z = 13/87. Separation by flash chromatography (C₆H₁₂/Et₂O : 92/8) gave 1.1 g of Z isomer (63%), [α]_D= 93 (c = 1, CH₂Cl₂) and 0.15 g of E isomer (12%). IR (KBr, cm-1) 1724, 1653 (v CO, v C=C). ¹H NMR (200 MHz, CDCl₃) δ 6.2-6.1 (1H, dd, ³J = 11.5 Hz, ³J = 9.8 Hz), 5.8-5.7 (1H, dd, ³J = 11.5 Hz, ⁴J = 1.5 Hz), 3.7 (3H, s), 3.75-3.5 (1H, m), 2.2-2.1 (2H, qd, ³J = 8.5 Hz, ⁵J = 2.5 Hz), 1.7 (3H, t, ⁵J = 1Hz), 1.1 (3H, d, ³J = 6.7 Hz). ¹³C NMR(50 MHz, CDCl₃) δ 166.5 (OCH₃), 154 (C=C), 118 (C=C), 77.1 (C alkyne), 76.3 (C alkyne), 51 (COOCH₃), 31.9 (CH), 25.8 (CH₂), 19.3 (CH₃), 3.4 (CH₃).

(22, 4R) 4-Methyl oct-6-yn-2-en-1-ol 8 : To a solution of 1.25 g (7.53 mmol) of methyl (2Z, 4R) 4-methyl-6octyn-2-enoate in 25 mL of anhydrous Et₂O at -78°C under argon was added dropwise 22.3 mL (22.3 mmol) of DIBAL-H 1M in hexane. The reaction mixture was stirred for 4 h, then quenched by slow addition of 10 mL of methanol. The mixture was stirred at room temperature until a white precipitate was formed, the precipitate was filtered through a pad of Celite, washed with Et₂O and the solvent was removed in vacuo. The residue was distilled under reduced pressure to give 0.860 g of colorless liquid (82%). b.p._{1.5} 90°C $[\alpha]_D = 37$ (c = 1.08, CH₂Cl₂). IR (cm⁻¹) 3500-3100 (v OH). 1H NMR (200MHz,CDCl₃) δ 5.8-5.6 (1H, td, ³J= 7Hz, ³J = 10.9 Hz), 5.5-5.35 (1H, t, ³J = 10.9 Hz), 4.4-4.1 (2H, m), 2.9-2.6 (1H, m), 2.3-2.2 (2H, m), 1.9-1.8 (3H, t, ⁵J = 2.4 Hz), 1.5-1.4 (1H, s large), 1.1 (3H, d, ³J = 6.6 Hz). ¹³C NMR DEPT (50 MHz, CDCl₃) δ 137.6(C=), 127.9 (=C), 58.5 (CH₂OH), 31.9 (CH), 26.6 (CH₂), 20.6 (CH₃), 3.32 (CH₃). (2S, 3R, 4R) 2,3-Epoxy-4-methyl oct-6-yn-1-ol 9: A mixture of powdered, commercially activated 4Å molecular sieves (0.576 g) and 80 mL of dichloromethane was cooled to -20°C. 1.36 mL of L-(+)-diethyltartrate (1.64 g, 7.96 mmol, 1.05 eq), 1.05 g (7.6 mol) of alcohol 8, then 2.37 mL (2.26 g, 7.96,mmol, 1.05 eq) of titanium (IV) isopropoxide were added sequentially. After 3 min of stirring at -20°C, 5.76 mL (2.2 eq) of a 3.5 M solution of ter-butyl hydroperoxide were added. The mixture was stirring 60 h and neutralized with 21.7 mL of a 10% solution of tartric acid. After 30 min stirring at -20°C, the reaction mixture was allowed to warm to room temperature, stirred 1 h and decanted. The aqueous phase was extracted with CH₂Cl₂ and the organic solvent was concentrated. The residue was dissolved in 60 mL of Et2O and hydrolysis of the tartrate was effected by adding 20 mL of a 1M aqueous solution of sodium hydroxyde at 0°C. After 30 min of vigorous stirring, the organic layer was separated and the aqueous layer was extracted with Et₂O. The organic phase was concentrated and the residue was purified by flash chromatography. The two diastereoisomers were separated by MPLC on silica gel (Et₂O/C₆H₁₂ 1/1) to give 0.55 g of colorless oil (50%). [α]_D = 9.3 (c = 1.33, CHCl₃) IR (cm⁻¹) 3500-3100, 1200 (v OH, v C-O). ¹H NMR (200 MHz, CDCl₃) δ 4-3.8 (1H, dd, ³J = 4.2 Hz, ²J = 12Hz), 3.7-3.6 (1H, dd, ${}^{3}J$ = 5.2 Hz, ${}^{2}J$ = 12 Hz), 3.3-3.15 (1H, td, ${}^{3}J$ = 4.2 Hz, ${}^{3}J$ = 7 Hz), 3-2.8 (1H, dd, ${}^{3}J = 9.5Hz$, ${}^{3}J = 4.2$ Hz), 2.5-2.2 (2H, m), 2.1 (1H, s), 1.85 (3H, t, ${}^{5}J = 2.5$ Hz), 1.7-1.5 (1H, m), 1.1 $(3H, d, {}^{3}J = 6.9 \text{ Hz})$. ${}^{13}C$ (50 MHz, CDCl₃) d 77.3 (C alkyne), 75.9 (C alkyne), 60.9 (CH₂OH), 60.8 (CHO), 57 (CHO), 32.1 (CH), 23.9 (CH₂), 15.6 (CH₃), 3.4 (CH₃).

(2R, 3R, 4R) 2,3-Epoxy-4-methyl oct-6-ynoic acid 10 : 11.2 g of pyridium dichromate were dissolved in 15 mL of DMF. 0.65 g of 9 were added and the mixture was stirred at room temperature for 48 h. 100 mL of water were added and the aqueous layer was extracted with Et₂O. The organic phase was dried (Na₂SO₄), concentrated in vacuo and the residue was purified by chromatography (florisil, Et₂O/C₆H₁₂/HCOOH 35:64:1) to give 0.54 g of yellow oil (75%). $[\alpha]_D = 14.9$ (c = 1.14, CH₂Cl₂).IR (cm⁻¹) 3500-2400, 1730, 1200 (v OH, v CO, v C-O). ¹H NMR (200 MHz, CDCl₃) δ 3.6 (1H, d, ³J = 4.7 Hz), 3.2-3.1 (1H, dd, ³J = 4.7 Hz, ³J = 9.4 Hz), 2.5-2.4 (2H, m), 1.8 (3H, t, ⁵J = 2.5 Hz), 1.75-1.6 (1H, m), 1.1 (3H, d, ³J = 6.9 Hz) ¹³C NMR (50 MHz, CDCl₃) δ 173.1 (COOH), 77.8 (C alkyne), 75.2 (C alkyne), 61.3 (CO), 52.5 (CO), 31.3 (CH), 23.6 (CH₂), 15.2 (CH₃), 3.4 (CH₃).

(2S,3S,4R) 2-Methylamino-3-hydroxy-4-methyl oct-6-ynoic acid 11 : 0.16 g of epoxy acid 10 was stirred with 5 mL of an aqueous solution of methylamine at 90°C for 5 h in a scelled tube. The water and excess of methylamine were evaporated, the residue was washed with Et₂O, then acidified with 2 mL of a 6N solution of HCl. After concentration in vacuo the solid was dissolved in 3 mL of ethanol, 2 mL of propylene oxide were added and the mixture was refluxed 10 min. 0.108 g of a white solid was obtained (54%)

mp 250°C [α]_D = 30.6 (c = 0.75, phosphate buffer Tritisol pH = 7). IR (cm⁻¹) 3650-2400, 3296, 3241, 1653, 1598 (v NH, v OH, δ NH₂⁺, v CO). ¹H NMR (200 MHz, D₂O) δ 3.75-3.65 (1H, dd, ³J = 4.7 Hz, ³J = 7.5 Hz), 3.5-3.45 (1H, d, ³J = 4.7 Hz), 2.55 (3H, s), 2.3-1.9 (2H, m), 1.8-1.6 (1H, m), 1.6 (3H, t), 0.9-0.85 (3H, d, ³J = 6.8 Hz). ¹³C NMR (50 MHz, D₂O/NaOD) δ 183 (COOH), 80.7 (C alkyne), 80.5 (C alkyne), 78 (CH-N), 69.2 CH-O), 37.2 (CH), 36.3 (NH-CH₃), 23.8 (CH₂), 17.9 (CH₃), 4.6 (CH₃).

(2S.3S,4R) 2-Methylamino 3-hydroxy-4 methyl oct 6-enoic acid (MeBmt) : To a stirred solution of 0.033 g of Li in 21 mL of liquid ammoniac was added 0.046 g of 11 at -78°C under argon. The reaction mixture was heated to reflux at -20°C for 5 min. then quenched at -78°C by dropwise addition of 1 mL of water. The solvent was evaporated and the solid was neutralized with 1.5 mL of a 3.5N solution of HCl. After concentration, the residue was purified by chromatography through Mitsubishi HP20SS polymer resin with H2O then H₂O/MeOH 70:30 to give 0.032 g of white solid recrystallized in H₂O/EtOH (70%). mp 250°C $|\alpha|_D = 11.8$ (c = 0.5, phosphate buffer Tritisol pH = 7) Lit.: $[\alpha]_D = 11.5$ IR (cm⁻¹) 3214, 3000-2200, 1620, 1588 (v OH, δ NH⁺, C=C, δ NH, v CO). ¹H NMR (200 MHz, D₂O) δ 5.5-5.2 (2H, m) 3.62-3.5 (1H, t, ³J = 6.1 Hz), 3.46-3.43 (1H, d, ³J = 5.8 Hz). 2.55 (3H, s), 2.2-2 (1H, m), 1.8-1.6 (1H, m), 1.6-1.5 (1H, m), 1.45 (3H, d, ³J = 5 Hz), 0.75 (3H, d, ³J = 6.7 Hz). ¹³C NMR (50 MHz, D₂O/phosphate Tritisol ph 7) δ 173 (COOH), 130 (C=), 129.8 (C=), 75.2 (C-OH), 67.8 (C-NH), 36.6 (CH), 37.7 (CH₂), 33.7 (NH-CH₃), 18.3 (CH₃), 16.5 (CH₃) HRMS (EI) calcd 202.1440, found 202.1444

References

- Williams D.H, Acc. Chem Res. 1984, 17, 364. Amino Acids. Peptides and Proteins. A Specialist of Periodical Reports, The Royal Society of Chemistry. Vol 15.
- Blaser, D.; Ko, S.Y.; Seebach, D. J. Org. Chem. 1991, 56, 6230. Lubell, W.D; Jamison, T.F.; Rapoport H. J. Org. Chem. 1990, 55, 3511. Togni, A.; Pastor, S.D.; Rihs, G. Helv. Chim. Acta. 1989, 72, 1471. Rama Rao, A.V.: Murali Dhar. T.G.: Chakraborty, T.K., Gurjar, M.K. Tetrahedron Lett., 1988, 29, 2069. Rama Rao, A.V., Yadav, J.S., Chandrasekhar S, Srinivas Rao C Tetrahedron Lett. 1989, 30, 6769. Sun, C.Q.; Rich, D.H. Tetrahedron Lett. 1988, 29, 5205. Schmidt, U.; Siegel, W. Tetrahedron Lett. 1987, 28, 2849. Aebi, J.D.; Dhaon, M.K.; Rich D.H. J. Org. Chem. 1987, 52, 2881.Evans, D.; Weber, A.E. J. Am. Chem. Soc. 1986, 108, 6757. Wenger, R.M. Helv. Chim. Acta, 1983, 66, 2308.
- Genêt, JP.; Pinel, S.; Mallart, S.; Jugé, S.; Thorimbert S.; Laffite J.A. Tetrahedron Asymmetry 1991, 2, 555.
- 4. Genêt, JP.; Jugé, S.; Mallart, S. Tetrahedron Lett. 1989, 29, 4559.
- 5. Pons, D.; Savignac, M.; Genêt, JP. Tetrahedron Lett. 1990, 31, 5023
- 6. Genêt, JP.; Durand, JO.; Savignac, M.; Pons D. Tetrahedron Lett. 1992, 33, 2497.
- 7 Taken from These de l'Université P & M Curie Jean-Olivier Durand (2 janvier 1993).
- a) Intermolecular opening of cis epoxy acids with amines usually gives mixtures of regioisomers : Sharpless, K.B.; Berhens, C.H.; Katsuki, T.; Lee, A.W.H.and Woodward, S.S. *Pure Appl. Chem.* 1983, 55, 589. However we⁶ and others (Satio S., Tabhashi, N; Ishikawa, T. Moriwake, T. *Tetrahedron Lett.* 1991, 32, 667) found that γ disubstituted dialkyl epoxides give clean ring opening at C-2. For a recent theoritical study of this issue see Grosjean, F; Huche, M.; Legendre, JJ.; Larchevêque, M. and Petit, Y. *Tetrahedron* in press
- 9 Sharpless, K.B.; Katsuki, T. J. Am. Chem. Soc. 1980, 102, 5976. Gao, Y.; Hanson, R.M.; Klunder, J.M., Ko, K.Y.; Masamune, H.; Sharpless, K.B. J. Am. Chem. Soc. 1987, 109, 5765.
- For a synthesis of syn β-hydroxy α-amino acids analogues of MeBmt using Sharpless methodology see : Sun, C.Q, Rich, D.H Tetrahedron Lett. 1988, 29, 5205.
- 11. Wood, R.D.; Ganem, B. Tetrahedron Lett. 1982, 23, 707.

(Received in UK 10 February 1994)