## THE GEOLOGICAL HISTORY OF PLIOCENE-PLEISTOCENE EVAPORITES IN MOUNT SEDOM (ISRAEL) AND HOW STRONTIUM AND SULFUR ISOTOPES RELATE TO THEIR ORIGIN

<sup>1</sup>M. Raab, <sup>2</sup>G.M. Friedman, <sup>3</sup>B. Spiro, <sup>4</sup>A. Starinsky, and <sup>4</sup>I. Zak

Geological Survey of Israel, 30, Malkhe Yisrael Street, Jerusalem, 95501, Israel

<sup>2</sup>Brooklyn College and Graduate School of the City University of New York, Brooklyn, NY and Northeastern Science Founda-

tion affiliated with Brooklyn College of the City University of New York, Rensselaer Center of Applied Geology, 15 Third Street, P.O. Box 746, Troy, NY 12181, U.S.A; gmfriedman@juno.com

eei, 1.0. box 740, 1109, 111 12101, 0.5.A, grijneumunwjuno.co

<sup>3</sup>British Natural Environment Research Council, Isotope Geosciences Laboratory, Keyworth, Nottingham K5GG, United Kingdom <sup>4</sup>The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel

**ABSTRACT:** Evaporites, comprising of gypsum, anhydrite and halite are described from the Pliocene Sedom Formation, the Caprocks units and the Pleistocene 'Amora Formation in Mount Sedom, Southern Jordan Valley, Israel. Strontium and sulfur isotopic compositions of the evaporite minerals, and their Sr/Ca and Br/Cl ratios were used to interpret their environments of deposition and processes of formation and diagenesis. Some of the evaporites of the Sedom Formation were deposited from evaporated seawater. Others were deposited from a mixture of seawater and brines. The brines were composed of seawater which penetrated the carbonate rocks of the Rift margins, participated in dolomitization processes and, when hydrologic conditions allowed, seeped out into the Sedom basin and were mixed with evaporated seawater. These processes yielded non-homogeneous fluid masses of mixtures, as indicated by their wide range of <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.70824 - 0.70905) as compared to the narrow Sr/Ca ratios of the derived evaporites. Their marine origin is indicated by their  $\delta^{34}$ S values which are around 20 ‰. The evaporites of the 'Amora Formation times", returning to the Sedom basin after its disconnection from the sea. The high Sr content and Sr/Ca ratios indicate that the anhydrites existing today in the Sedom and 'Amora formations were originally deposited from the evaporated seawater as gypsum which was later recrystallized at depth, at high pressures and temperatures. The caprocks are residual rocks of marine origin, formed by the dissolution of the exposed rock-salt units in the Sedom Formation. They represent mainly the gypsum (or anhydrite) beds intercalated in the rock-salt units of the Sedom Formation in Mount Sedom rather than Ca-sulfates disseminated in the halites.

## **INTRODUCTION**

#### **Geological Background**

The greatest part of the evaporites in the Southern Jordan Valley occurs in Mount Sedom. The mountain emerges from the floor of the Jordan Rift Valley along the southwestern margins of the Dead Sea level, trending SSE-NNW (Figs. 1 and 2). The length of the mountain from north to south is about 11 km, its maximum width attains about 2 km; its maximum absolute height is about 160 m below sea level, and it rises up to about 240 m above the Dead Sea in the east and about 100 m above the 'Ami'az Plain in the west; to the north it is bordered by the delta of Nahal Zohar and to the south by Bitronot Hamarmar (Fig. 2).

Mount Sedom is a diapiric body, and is built of halite layers intercalated with sand, anhydrite and gypsum, and dolomite and marl beds, all belonging to the Har Sedom Group. Its main body is made of massive vertical rock salt layers, intercalated with thin beds of anhydrite, dolomite, marl and silt, which are also scattered in them. These layers extend to a depth of more than 3 km and were included by Zak (1967) in the Sedom Formation (Figs. 3 and 4). The salt body of the Sedom Formation. The latter is made of marl, chalk, anhydrite, gypsum and halite, which were penetrated and dragged by the diapiric mountain on its way upwards (Fig. 3). The halite layers in the members of the Sedom Formation were dissolved either by ground water or when they were exposed to the atmosphere in late "Amora times", and their insoluble

Carbonates and Evaporites, v. 15, no. 2, 2000, p. 93-114.

components, which included anhydrite, gypsum, carbonates, clastics as well as remnants of undissolved halite, collapsed and spread over their yet undissolved continuation, as well as on the formerly dissolved adjacent layers to form caprocks (Fig. 3). The top of the mountain, as well as its slopes are unconformably overlain by marly-chalky layers of the Lisan Marl (Figs. 3 and 4), which covered the mountain while being submerged under Lake Lisan. Those layers were torn from the layers surrounding the mountain in the course of its ascent (Fig. 3). A more detailed description of the Sedom and 'Amora formations is given below. Further information is given in the stratigraphic study by Zak (1967) and in Weinberger (1992).

In the absence of direct dating, various ages were assigned to the Sedom and 'Amora formations by different authors (e.g. Zak 1967; Horowitz 1974; Agnon 1983; Kashai 1988), based mostly on geologic considerations. Most of these authors assign a Pliocene age to the Sedom Formation and a Pleistocene age to the 'Amora Formation, excluding Agnon (op. cit.) who assigns a Miocene age to the Sedom Formation and a Pliocene age to the 'Amora Formation, and Horowitz (op. cit.) who assigns a Pliocene age to the 'Amora Formation.

## Methods and Techniques

Samples and procedures.-- Samples of evaporites representing the various members of the Sedom and 'Amora formations were chosen for the present study from sections sampled by Zak (1967). Their geographic locations and stratigraphic positions are given in Appendix 1. All samples were examined by X-ray diffractometry and the results and their main



Figure 1. Location Map showing the study area and location of boreholes in the region.

mineralogy is given in Tables 1a and 1b. The chemical compositions of the samples, including the major elements, the traces of Br and Sr with their main mineralogy are also given in Tables 1a and 1b.  $\delta^{34}$ S values,  ${}^{87}$ Sr/ ${}^{86}$ Sr, Sr/Ca and Br/Cl ratios, accompanied by the main mineralogy are given in Table

2. Additional Br/Cl ratios in samples from the rock-salt units were calculated from the measurements of Zak (1967) and those in brines from oil wells in the region from the measurements by Starinsky (1974). These are given in Appendices 2a and 2b (respectively).

#### Analytical Methods .--

<u>Chemical determinations</u>: All samples were ground to  $\leq 200$  mesh, and dried in an oven at 50°C. The concentrations of the ions K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, CO<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup>, Sr<sup>2+</sup>, and in halites also Cl<sup>-</sup> and Br were determined. All samples were dissolved in 1N HCl except those for Cl determinations which were dissolved in water. The determinations were executed in the methods and with the equipment as follows:

Na<sup>+</sup>,  $K^+$ ,  $Sr^{2+}$  - were determined by an Atomic Absorption Spectrometer (AAS), Perkin-Elmer, model 460 or 603.

 $Sr^{2+}$  - in low concentrations - was determined by an Inductively Coupled Plasm Spectrometer (ICP), Jobin-Yvon, model JY 48, with Sc as an internal standard.

 $Ca^{2+}$ ,  $Mg^{2+}$  - were determined by titration with EDTA. The Ca was determined by AAS, and the result subtracted from the titration results to obtain the  $Mg^{2+}$  concentrations.  $Mg^{2+}$  - in low concentrations was determined by AAS.

Cl<sup>-</sup> - was determined in aqueous solutions by potentiometric titration with the aid of a titratometer, Metrohm, model 636. Br concentrations (see below) were subtracted from these values.

Br - was determined by an X-ray fluorescence spectroscope (XRF), Philips, model 1410.

 $SO_4^{2}$  - was determined by the gravimetric method, HCl dissolved sulfates reprecipitated as  $BaSO_4$ .

 $CO_3^{2-}$  - was determined by the gasometric method. The volume of  $CO_2$  emanated by dissolution in HCl was measured in a manometer containing NaCl and absorbed in KOH solution, and the volume differences were calculated.

 $+H_2O$  - crystal water was determined by the difference of the weights before and after heating in an oven at 220°C.

X-ray diffractometry: was carried out by an X-Ray Diffractometer, Philips, generator model PW-1730/10, goniometer model PW-1820/00, and a monochromator model PW-1752/00 with Cu tube and Ni filter. The wavelengths of Cu<sub>kal</sub> = 1.54051 were used for the calculations of the d-values. The operating voltage was 40 KV and the current 30 mA. The samples mounted on a carrying glass or in a cell were scanned between 3° to 60°, scanning speed 1°/minute. The mineralogical identifications were based on the tables of Berry (1974) and McClune (1986).



Figure 2. Geological Map, Mt. Sedom (after Zak & Freund 1980). Note that the members Marl Sand and Conglomerate (Amc), Marl and Anhydrite (Ama) and 'Amora Salt (As) of the 'Amora Formation are combined herein into one mapping unit designated Aas. See figure 4.

#### Isotopic determinations.--

<u>Strontium isotopes</u>: <sup>87</sup>Sr/<sup>86</sup>Sr ratios were determined in 33 samples of gypsum, anhydrite, and anhydrite disseminated in halite.

The strontium was extracted by the ion-exchange technique by a resin, Dowex 50w-8x, 200-400 mesh. The chemical blanks were smaller than 2 ng per sample.

The ratios were determined by a Mass Spectrometer, Varian,

model CH-5. Magnetic sector: radius 21.4 cm, 90°, equipped with a Cary 401 Vibrating Reed Spectrometer. The ratios were normalized to <sup>88</sup>Sr/<sup>86</sup>Sr = 8.3752. A value of  $0.7081\pm0.0003$  (2 $\sigma$ ) was received for the standard of SrCO<sub>3</sub> of Eimer and Amend. The measurements were carried out in the Geological Department of the Institute of Earth Sciences of the Hebrew University, Jerusalem.

<u>Sulfur isotopes</u>: δ<sup>34</sup>S values were determined in 13 gypsum, anhydrite and halite samples. In most of them <sup>87</sup>Sr/<sup>86</sup>Sr ratios were also determined. The pure Ca-sulfate samples (according



Figure 3. Geological cross section east-west Mt. Sedom (Zak & Freund 1980). For symbols see Figure 4.

to chemical analyses) were measured without any treatment (except for dehydration and grinding).

Others, as well as halites, were measured as BaSO, in order to avoid contamination of carbonates and excess halite. Some pure Ca-sulfates were also measured as BaSO<sub>4</sub> for control. The samples were dissolved in boiling HCl to which BaCl, was added (for details of the procedure see Raab 1998). SO, was prepared from either the Ca- or the Ba-sulfate following the method described by Coleman and Moore (1978). The isotopic determinations were carried out by a Gas Source Mass Spectrometer made by VG, model SIRA 10. The reference value was that of reference material measurements of BaSO, prepared by precipitation of seawater sulfate the mean value of which was 20 ‰. The results are given in d values in ‰ in reference to the international CDT standard. NBS 122 gave +0.15% and the overall analytical reproducibility was  $\pm 0.15\%$ . The preparations of SO<sub>2</sub> and the measurements were carried out in the Isotopes Laboratories of the British Natural and Environmental Research Council in London (now in Keyworth, U.K.).

#### STRATIGRAPHY AND FIELD RELATIONS

The stratigraphy used herein is based on Zak (1967).

## **Sedom Formation**

The Sedom Formation (Figs. 4 and 5) builds the greater part of Mount Sedom and attains a total thickness of up to about 2000 m, including the subsurface. The base of the formation is unexposed, and the formation is overlain by the exposed residual caprocks or, in an angular unconformity, by the 'Amora Formation which overlies also the caprocks. The Sedom Formation comprises five members, described below together with their strontium and sulfur isotopic compositions and their Sr/Ca and Br/Cl ratios (Fig. 5, Table 2) as follows (from the base upward):

Karbolet Salt and Shale Member - Sk.-- The member is made mainly of thick halite units with intercalations rich in mudstone, clay, dolomite, sandstones, anhydrite and gypsum. Its exposed thickness exceeds 550 m.

<sup>87</sup>Sr/<sup>86</sup>Sr ratios were determined in three samples. Two samples (IZ-987, IZ-978), mainly made of halite, originate from Sedom-1 borehole, from the depths 1270 m and 1680 m respectively and have <sup>87</sup>Sr/<sup>86</sup>Sr of 0.70905 and 0.70872 respectively. The third sample (IZ-79), made of anhydrite mixed with gypsum comes from one of the anhydrite-gypsum intercalations in the halite and has a ratio of  ${}^{87}$ Sr/ ${}^{86}$ Sr = 0.70847.  $\delta^{34}$ S values determined in two of the samples are 19.3 ‰ in sample IZ-987 and 12.6 ‰ in sample IZ-29. Sr/Ca ratios calculated in three halite samples fall within the range of 0.0029-0.0298 and in the single anhydrite and gypsum sample Sr/Ca=0.0011. Br/Cl ratios were calculated in 12 halite samples (including 10 samples from Sedom-1 borehole between the depths of 188 m and 1694 m) (Table 2 and Appendix 2a) which are in the range of 0.060-0.145X10<sup>-3</sup>, while ten of them do not exceed 0.076X10<sup>-3</sup> showing no regularity. It should be noted that the highest values were detected in the lowest samples in Sedom-1 borehole (ca 1500 m).

Lot Salt Member - Sl.-- The Lot Salt Member is made of massive halite layers with some dolomite, clay and anhydrite between and within them. Its thickness is 700-1000 m.

Strontium and sulfur isotopic compositions were analyzed only in one sample (IZ-377) from this member, yielding a ratio of  $^{87}$ Sr/ $^{86}$ Sr=0.70893 and a value of  $\delta^{34}$ S=19.9 ‰. Sr/Ca ratios were calculated in two samples (IZ-375 and IZ-377) and their



Figure 4. A generalized lithostratigraphic columnar section in the Sedom and 'Amora formations and in the Caprocks Members at Mt. Sedom.

values were 0.124 and 0.182 (respectively) (Table 2). Br/Cl ratios were calculated in 12 samples (Tables 1 and 2), out of them 11 are in the range of 0.025-0.027X10<sup>-3</sup>. One sample (IZ-377) is exceptional, having a value of 0.081X10<sup>-3</sup> and probably contains traces of a mineral precipitated later in the succession of seawater evaporation (?carnallite, ?sylvite) having a distribution coefficient of bromine higher in about an order of magnitude than that in halite (Braitsch 1971; Holser 1979).

Benot Lot Shale Member -  $Sb_{1,3}$ --This member is made of sandstones, anhydrites, shales and dolomites. It includes three subunits differentiated by the different ratios of their lithologic components and the cycles of their appearance. It is worth mentioning the occurrence of dolomitic "paper" laminae containing fossil fish and plant remains. The thickness of the member is 140-175 m. Halite occurs randomly along the section, especially in the upper part of the sequence in the upper subunit Sb<sub>3</sub>, where massive halite beds may occur (Mumila borehole).

| Га | ble | la | . M | inera | logi | cal | and | ch | emi | cal | com | po         | siti | on | of | the | eva | pori | tes | in ' | the | Se | dom | i Fo | orma | ation | . For | leg | end | see | Table | : 1b |
|----|-----|----|-----|-------|------|-----|-----|----|-----|-----|-----|------------|------|----|----|-----|-----|------|-----|------|-----|----|-----|------|------|-------|-------|-----|-----|-----|-------|------|
|    |     |    |     |       |      |     |     |    |     |     |     | <b>F F</b> |      |    |    |     |     |      |     |      |     |    |     |      |      |       |       |     |     |     |       |      |

|          |              | 10.57          | No    | r            | Ca    | Ve   | <b>SO</b> 4  | CO3    | CI    | +H <sup>2</sup> 0 | AIP.  | TOTAL | Sr   | Br  |
|----------|--------------|----------------|-------|--------------|-------|------|--------------|--------|-------|-------------------|-------|-------|------|-----|
| NRK      | NU.          | MARN HOCK      | w1%   | wt%          | wt%   | wt%  | wt%          | wt%    | wt%   | wt%               | wt%   | wt%   | ppm  | ppm |
|          | <u> </u>     | MUNERALION     | 35.74 | 0.05         | 1.30  | 0.43 | 2.0          | 1.44   | 37.00 | 0.32              | 1.77  | 100.1 | 51   | 108 |
| ~        | 030<br>030   | 100<br>100     | 3817  | 0.02         | 0.60  | 0.07 | 1.4          | 0.11   | 58.90 | 0.09              | 0.30  | 99.7  | 110  | 80  |
| 20       | 020          | ija<br>j       | 37 59 | 0.01         | 1.20  | 0.02 | 3.1          | 0.09   | 58.00 | 0.05              | BDL   | 100.1 | 61   | 108 |
|          | 04JA<br>0250 |                | 1.20  | 012          | 24.00 | 5.71 | 31.0         | 31.12  | 1.90  | BDL               | 2.83  | 97.88 | 923  |     |
|          | 603          |                | 0.38  | 0.09         | 27.70 | 0.62 | 65.6         | 0.97   | 0.80  | 1.30              | 1.37  | 98.8  | 1612 |     |
|          | 094<br>407   |                | 0.50  | 0.09         | 28.60 | 0.47 | 65.9         | 0.69   | 1.50  | 1.32              | 0.81  | 100.1 | 1272 |     |
| <b>5</b> | 006          | an he cir      | 4.28  | 0.16         | 20.30 | 1.95 | 48.7         | 2.84   | 7,30  | 2.98              | 9.19  | 97.7  | 506  |     |
| SIDC     | 030          | an: na; yuz    | 1.01  | 0.06         | 22.50 | 0.53 | 53.6         | 1.44   | 7.50  | 10.07             | 1.00  | 100.7 | 743  |     |
|          | 130          | ant ye, na     | 197   | 0.13         | 23.70 | 1.48 | 56.5         | 3.72   | 2.10  | 7.47              | 1.79  | 98.3  | 815  |     |
|          | 133          | an he of       | 5.78  | 0.09         | 23.40 | 0.42 | 55.9         | 0.53   | 11.50 | 2.79              | 0.53  | 100.9 | 759  |     |
|          | <br>         | ba ha          | 81.8° | 0.04         | 1.00  | 0.30 | 2.1          | 0.80   | 58.00 | 0.19              | 0.55  | 99.4  | 117  | 90  |
|          | 78           | ha             | 36.56 | 0.04         | 1.60  | 0.06 | 4.1          | 0.01   | 56.40 | 0.14              | 0.09  | 99.0  | 471  | 82  |
|          | 61<br>61     | he             | 36 71 | 2.36         | 1.10  | 0.04 | 3.1          | 0.01   | 56.60 | 0.93              | 0.02  | 100.9 | 99   | 171 |
| c        | 40           | ha             | 38.21 | 0.42         | 0.70  | 0.03 | 1.8          | BDL    | 58.90 | 0.16              | BDL   | 100.2 | 148  | 188 |
| 5111     | 18           | ha             | 37.59 | 1.29         | 0.60  | 0.13 | 1.3          | 0.22   | 58.00 | 9.27              | 0.01  | 99.4  | 92   | 222 |
|          | 617          | ha             | 38.10 | 0.88         | 0.70  | 0.27 | 3.5          | 0.05   | 57.40 | 0.08              | BDL   | 99.3  | 240  | 132 |
|          | 611          | ha             | 36.80 | 0.02         | 1.00  | 0.24 | 2.4          | 0.63   | 58.60 | 0.09              | 0.03  | 99.8  | 190  | 100 |
|          | RAQ          | an: some do    | 2.85  | 0.45         | 18.80 | 3.48 | 36.0         | i 3.66 | 4.80  | 8.08              | 10.47 | 96.6  | 640  |     |
|          | 998          | an some ha     | 3.80  | 0.14         | 22.80 | 124  | 53.4         | 3.75   | 6.10  | 2.75              | 4.22  | 98.2  | 305  |     |
| 3.1      | 701          | 90             | 4.21  | 0.33         | 16.50 | 3.98 | 38.7         | 6.90   | 7.20  | 2.55              | 15.35 | 95.7  | 297  |     |
| 340      | 7021         | 632 BOTTIE \$1 | 0.03  | 0.11         | 20.10 | 2.97 | 43.7         | 9.73   | 0.20  | 13.97             | 6.62  | 97.4  | 514  |     |
|          | 7028         | an: some ev    | 0.03  | 0.06         | 24.30 | 0.39 | 58.1         | 0.95   | 0.30  | 9.15              | 3.95  | 97.2  | 509  |     |
|          | 179F         | aD             | 1.16  | 0.30         | 25.00 | 1.98 | 4.2          |        |       |                   | 16.50 | 76.5  | 1100 |     |
|          | 1795         | do do          | 0.40  | 0.31         | 11.30 | 7.53 | 0.7          | 37.54  | 0.75  |                   | 40.73 | 99.6  | 130  |     |
| 52       | 715          | dor an: gv     | 0.02  | 3.08         | 21.70 | 2.64 | 40.4         | 14.57  |       | 11.13             | 7.73  | 98.3  | 396  |     |
|          | 716A         | an             | 0.28  | 0.03         | 28.10 | 0.22 | 67.4         | 1.05   | 0.40  | 0.37              | 1.19  | 99.3  | 833  |     |
|          | 716B         | an             | 0.10  | <b>\$0.0</b> | 28.40 | 0.05 | 68.5         | 0.27   | 0.20  | 0.20              | 2.50  | 100.2 | 973  |     |
|          | 727          |                | 0.18  | 0.01         | 23.10 | 0.07 | 55.3         | 0.34   | 0.30  | 19.91             | 1.36  | 100.6 | 313  |     |
|          | 742          | an: some gy    | 0.13  | 0.08         | 25.90 | 1.02 | 57.1         | 5.30   | 0.40  | 4.33              | 3.78  | 98.0  | 833  |     |
| Shi      | 781          | an: some gy    | 0.50  | 0.04         | 27.30 | 0.25 | 63.7         | 1.78   | 1.10  | 4.20              | 0.54  | 99.6  | 331  |     |
|          | 791          | 80             | 1.09  | 0.21         | 27.50 | 0.26 | 65.8         | 0.30   | 3.70  | 1.66              | 0.32  | 100.8 | 416  |     |
| Śłc      | 364          | an: some gy    | 1.44  | 0.11         | 25.10 | 0.54 | 59.9         | 0.90   | -2.90 | 5.34              | 1.82  | 98.1  | 971  |     |
| 3        | 377          | ha             | 38.05 | 0.37         | 0.40  | 0.12 | 1.9          | 0.02   | 58.70 | 0.03              | 0.02  | 99.6  | 159  | 107 |
|          | 375          | ha             | 37.71 | 0.02         | 0.80  | 0.12 | 2.1          | 0.23   | 58.10 | 0.27              | 0.13  | 99.5  | 217  | 33  |
|          | 838          | an             | 0.12  | 0.07         | 28.00 | 1.47 | 59.5         | 7.18   | 0.20  | 0.84              | 1.13  | 98.5  | 504  |     |
| Ske      | 640          | an             | 0.17  | 0.04         | 27.80 | 0.58 | 65. <b>8</b> | 1.16   | 0.30  | 0.76              | 1.93  | 98.5  | 542  |     |
|          | 998          | an             | 0.50  | 0.10         | 27.80 | 0.58 | 65.7         | 0.74   | 1.30  | 1.45              | 0.65  | 98.8  | 1100 |     |
|          | 999          | 80.            | 0.22  | 0.04         | 28.10 | 0.23 | 66.7         | 0.42   | 0.30  | 1.98              | 0.84  | 98.7  | 1064 |     |
|          | 29           | an: gy         | 0.52  | 0.02         | 22.80 | 2.50 | 44.6         | 12.95  | 0.80  | 14.41             | 1.12  | 99.7  | 551  |     |
| Sk       | 1005         | ha: qtz        | 7.10  | 0.20         | 17.50 | 3.64 | 0.2          | 32.31  | 13.00 | 2.50              | 19.73 | 95.2  | 1589 |     |
| •••      | 978          | ha             | 37.52 | 0.02         | 1.20  | 0.03 | 2.9          | 0.18   | 57.90 | 0.05              | 1.05  | 100.9 | 76   | 100 |
|          | 987          | ha             | 38.39 | 0.01         | 0.50  | BDL  | 1.2          | BDL    | 59.20 | 21.0              | 0.02  | 88.1  | 325  | 100 |

Two samples of powdery anhydrite (IZ-742, IZ-791) containing about 20% gypsum and 10% dolomite from the lower subunit of the member (Sb,) have <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.70851 and 0.70824 (respectively) (Table 2). <sup>87</sup>Sr/<sup>86</sup>Sr ratios were determined in four samples from the middle subunit (Sb<sub>2</sub>). Sample IZ-727, composed of idiotopic crystallized gypsum has a <sup>87</sup>Sr/<sup>86</sup>Sr ratio of 0.70843; sample IZ-716, composed of powdery anhydrite yielded a ratio of <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70842. Sample IZ-179M, made of laminar dolomite ("paper shales"), included fish bones (IZ-179F) between the laminae; the fish bones are composed of apatite with about 20% dolomite. They yielded 87 Sr/86 Sr ratios of 0.70860 and 0.70820 (respectively). An additional sample of fish bones (IZ-198), has the same mineralogical composition and yielded the same ratio - 0.70820. The considerably different values of the ratio <sup>87</sup>Sr/<sup>86</sup>Sr in the dolomite and in the bones may probably indicate an active biological fractionation of strontium. A

sample made of gypsum with about 30% anhydrite from the upper subunit (Sb<sub>3</sub>) yielded a ratio of <sup>87</sup>Sr/<sup>86</sup>Sr=0.70859 and a value of  $\delta^{34}$ S=20.9 ‰.

Sr/Ca ratios calculated in 14 samples of different mineralogies (anhydrite, gypsum, dolomite and apatite) fall within the range of 0.0006-0.0016. Br/Cl ratios, calculated only for the halite samples of the upper unit (Sb<sub>3</sub>), fall in the range of 0.07- $0.11X10^{-3}$ .

*Me'arat Sedom Salt Member - Sm.*--is made mainly of halite with some anhydrite and in places some dolomite. Its thickness is 200-250 m. Determinations of  ${}^{87}Sr/{}^{86}Sr$  ratios were performed in two adjacent samples (IZ-48, IZ-49) composed of massive crystalline halite and in one of them (IZ-49) the value of  $\delta^{34}S$  was also determined. These were 0.70889, 0.70897 and 20.2 ‰, respectively (Table 2).

#### RAAB, FRIEDMAN, SPIRO, STARINSKY, AND ZAK

| MBR | NO.  | MAIN        | Na          | K    | Ca    | Mg   | <b>SO</b> <sub>4</sub> | <b>CO</b> ₃ | Cl           | +H <sup>2</sup> 0 | AIR  | TOTAL       | Sr    | Br  |
|-----|------|-------------|-------------|------|-------|------|------------------------|-------------|--------------|-------------------|------|-------------|-------|-----|
|     | 12-  | MINERALOGY  | wt%         | wt%  | wt%   | wt%  | wt%                    | wt%         | wt%          | wt%               | wt%  | wt%         | ppm   | ppm |
|     | 620  | gу          | 0.33        | 0.14 | 25.70 | 1.84 | 7.0                    | 36.00       | 7.20         | 10.30             | 7.31 | 95.8        | 3435  |     |
|     | 601  | an          | 0.20        | 0.05 | 28.90 | 0.81 | 54.9                   | 6.08        | 3.20         | 4.68              | 0.34 | 99.2        | 1500  |     |
| Am  | 600  | an          | 0.84        | 0.17 | 26.60 | 0.72 | 59.7                   | 0.98        | 3.80         | 4.55              | 2.84 | 100.2       | 1080  |     |
|     | 597  | an; some ha | 3.50        | 0.13 | 23.80 | 0.68 | 53.3                   | 2.83        | 7.50         | 3.35              | 3.08 | 98.2        | 496   |     |
|     | 592  | an; gy; ha  | 5.34        | 0.09 | 19.10 | 0.50 | 41.1                   | 3.02        | 10.30        | 14.61             | 5.25 | 99.3        | 1023  |     |
|     | 567  | an; some ha | <u>3.31</u> | 0.05 | 25.70 | 0.33 | 58.2                   | 2.52        | 6.40         | 2.33              | 2.84 | 101.7       | 1434  |     |
|     | 547A | ha          | 38.74       | BDL  | 0.20  | 0.02 | 0.1                    | 0.23        | 59.70        | 0.08              | 0.11 | 99.2        | 13    | 101 |
| As  | 547B | ha          | 31.61       | 0.06 | 3.90  | 0.33 | 2.6                    | 5.15        | 48.70        | 1.25              | 4.22 | 97.8        | 180   | 71  |
|     | 544  | ha          | 38.97       | 0.03 | BDL   | 0.01 | 0.1                    | 0.03        | 60.10        | 0.06              | 0.03 | 99.3        | 5     | 89  |
|     | 538  | ha          | 38.28       | 0.01 | 0.50  | 0.06 | 0.2                    | 0.65        | <u>59.00</u> | 0.10              | 0.46 | 99.2        | 26    | 102 |
| ٨ma | 532  | an          | 0.22        | 0.09 | 27.20 | 0.36 | 61.9                   | 3.64        | 0.30         | 4.16              | 0.32 | 98.2        | 1444  |     |
|     | 504  | an          | 0.08        | 0.05 | 27.90 | 0.43 | 63.3                   | 2.07        | 1.80         | 1.67              | 1.40 | 98:7        | 1288  |     |
|     | 489  | an; some ha | 4.34        | 0.08 | 25.30 | 0.12 | 59.1                   | 0.69        | 8.30         | 1.36              | 0.32 | 99.6        | 495   |     |
|     | 486  | an; ha      | 4.90        | 0.20 | 23.10 | 0.65 | 48.9                   | 4.94        | 9.40         | 2.59              | 4.38 | 99.1        | 830   |     |
|     | 485  | an; some gy | 1.09        | 0.09 | 27.10 | 0.38 | 59.9                   | 3.10        | 1.70         | 2.89              | 3.59 | <b>99.8</b> | 667   |     |
| Amc | 478  | an; some gy | 0.13        | 0.14 | 25.10 | 0.54 | 53.6                   | 5.65        | 1.00         | 3.80              | 5.55 | 95.5        | 23481 |     |
|     | 465  | gy          | 0.03        | 0.01 | 23.30 | 0.04 | 55.1                   | 0.70        | BDL          | 20.16             | 0.48 | 99.8        | 300   |     |
|     | 451  | an; ha      | 4.90        | 0.11 | 23.60 | 0.36 | 53.5                   | 2.44        | 8.30         | 3.16              | 2.52 | 98.9        | 675   |     |
|     | 442  | an          | 0.67        | 0.07 | 28.00 | 0.11 | 65.8                   | 0.26        | 1.50         | 1.31              | 0.36 | 98.1        | 485   |     |

Table 1b. Mineralogical and chemical composition of the evaporites in the 'Amora Formation.

Sr/Ca ratios were calculated in 7 halite samples and they are in the range of 0.0041-0.0157. Br/Cl ratios, calculated in 17 samples (Table 2 and Appendix 2a) are in the range of  $0.045-0.17X10^{-3}$ .

*Hof Shale and Salt Member - Sh.--* is made of sandstones, clay, halite and anhydrite and is up to about 90 m thick.

A ratio of  ${}^{87}$ Sr/ ${}^{86}$ Sr=0.70864 and a value of  ${}^{54}$ S=18.7 ‰ were determined in one massive, coarse crystalline, almost pure halite sample with ca 2% anhydrite (IZ-826) from the lower part of the member.

Sr/Ca ratios were calculated in four halite samples and in one anhydrite with some dolomite (Table 2). These fall in the range of 0.0018-0.0084. Br/Cl ratios, calculated in 6 samples (Table 2, Appendix 2a) fall within the range of 0.060- $0.096 \times 10^{-3}$ .

#### **Caprocks Members**

The Sedom Formation includes also three caprocks members (Figs. 4 and 6) which, based on field relations (Zak 1967), were formed due to the dissolution of the halite in the members Karbolet Salt and Shale (Sk), Lot Salt (Sl) and Me'arat Sedom Salt (Sm) members. The composition of the caprock units, which are mainly made of residual rocks - clastics, gypsum, anhydrite and in places halite remnants - is a consequence of the composition of their mother rocks. The caprocks units attain a thickness of 40 m, and they are either exposed or covered by young terraces, formed at the coasts of Lake Lisan. Their lithologies, strontium and sulfur isotopic compositions

and Sr/Ca and Br/Cl ratios are as follows (Fig. 6 and Table 2).

Karbolet Salt and Marl Caprock Member - Skc.--Two samples were examined from this member. One sample (IZ-998) is mainly made of massive anhydrite and the other of massive anhydrite with ca 10% dolomite. <sup>87</sup>Sr/<sup>86</sup>Sr ratios were 0.70858 and 0.70838 respectively. Sample IZ-998 yielded a value of  $\delta^{34}$ S = 19.0 ‰. The layers of the member are overturned and thus sample IZ-638, taken very near to the top of the member (ca 1 m), is at lower altitude than sample IZ-998. Sr/Ca ratios calculated in 4 anhydrite samples fall within the range of 0.0008-0.0019.

Lot Salt Caprock Member - Slc.-- One sample (IZ-364) made of powdery anhydrite with ca 20% gypsum, and collected near the top of the member was analyzed. The sample yielded a ratio of <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70836, and a value of  $\delta^{34}$ S = 19.1 ‰. The Sr/Ca ratio in this sample was 0.0018.

Sedom Salt Caprock Member - Smc.-- Three samples were analyzed, two of them (IZ-896, IZ-135) collected from the base of the sequence (in two different sections: the southern and the northern parts of the Mt. Sedom), and the third one 2(IZ-692) near its top. Sample IZ-896 is mainly composed of anhydrite with ca 30% halite, yielding a ratio of  $^{87}$ Sr/ $^{86}$ Sr = 0.70896 and a value of  $\delta^{34}$ S = 20.5 ‰. Sample IZ-135 is mainly composed of anhydrite with ca 10% of gypsum and about 5% of halite and yielded a ratio of  $^{87}$ Sr/ $^{86}$ Sr = 0.70859. Sample IZ-69 is composed almost entirely of anhydrite with a ratio of  $^{87}$ Sr/ $^{86}$ Sr = 0.70864. Sr/Ca ratios were calculated in 6 samples (including the one mentioned above) and they fall within the range of 0.011-0.027. Table 2. Main mineralogy,  $\delta^{34}$ S values and  $^{87}$ Sr/ $^{86}$ Sr, Sr/Ca and Br/Cl ratios in the samples of the Sedom (including caprocks) and 'Amora formations. For symbols see legend in Table 1b.

| MBR           | NO. 1Z  | MAIN MINERALOGY     | <sup>87</sup> Sr/ <sup>86</sup> Sr | δ <sup>34</sup> 5%0 | <u>Sr/Ca</u> molar | Br/Cl motarX1000 |
|---------------|---------|---------------------|------------------------------------|---------------------|--------------------|------------------|
|               | 620     | gy                  |                                    |                     | 0.0061             |                  |
|               | 601     | an                  | 0.70817                            |                     | 0.0024             |                  |
| Am            | 600     | an                  | 0.70831                            | 23.0                | 0.0019             |                  |
|               | 597     | an; some ha         |                                    |                     | 0.0010             |                  |
|               | 592     | an; gy; ha          |                                    |                     | 0.0024             |                  |
|               | 567     | an; some ha         | 0.70838                            |                     | 0.0025             |                  |
|               | 547A    | ha                  | 0.70809                            | 3.8                 | 0.0030             | 0.0750           |
| As            | 547B    | ha; some gy         | 0.70808                            |                     | 0.0021             | 0.0549           |
|               | 544     | ha                  | 0.70830                            |                     |                    | 0.0658           |
|               | 538     | ha                  | 0.70806                            | 18.4                | 0.0024             | 0 0771           |
| Ama           | 532     | 80                  | 0.70805                            |                     | 0.0024             |                  |
|               | 504     | an                  | 0.70835                            |                     | 0.0021             |                  |
|               | 489     | an: some ha         | 0.70818                            |                     | 0.0009             | ·······          |
|               | 486     | an: ha              | 0.70826                            |                     | 0.0016             |                  |
|               | 485     | an: some gv         |                                    |                     | 0.0011             |                  |
| Ame           | 478     | an: some gy: cel-tr |                                    |                     | 0.0428             |                  |
|               | 465     | av                  | 0 20802                            | 22 R                | 0.0400             |                  |
|               | 451     | an ha               | 0.10001                            | 0                   | 0.0000             |                  |
|               | 442     | an                  | 0 70822                            |                     | 0.0013             |                  |
|               | 690     |                     | 0.10000                            |                     | 0.0000             | 0.0920           |
| -Th           | 826     | ha                  | 0 70864                            | 187                 | 0.0010             | 0.0000           |
|               | 8251    | ha                  | 0.10004                            | 10.1                | 0.0004             | 0.0003           |
|               | 825B    | na<br>anu da        |                                    |                     | 0.0023             | 0.0000           |
|               | 607     |                     | 0 709 / 6                          |                     | 0.0010             |                  |
|               | 807     |                     | 0.10040                            | 20.5                | 0.0027             |                  |
| 3             | 0.01    | au<br>an ha ata     | 0.10090                            | 20.5                | 0.0020             |                  |
| SILIC         | 126     | an; na; quz         |                                    |                     | 0.0011             |                  |
|               | 100     | an; gy, na          | 0 50050                            |                     | 0.0015             |                  |
|               | 130     | an thu the          | 0.70859                            |                     | 0.0016             |                  |
|               | 137     | an; na; gy          |                                    |                     | 0.0015             |                  |
|               | 527     | ha<br>t             |                                    |                     | 0.0053             | 0.0687           |
|               | 76      | ha                  |                                    |                     | 0.0135             | 0.0647           |
|               | 53      | na<br>N             |                                    |                     | 0.0041             | 0.1341           |
| SID.          | 49      | <u>ha</u>           | 0.70889                            | 20.2                | 0.0097             | 0.1416           |
|               | 48      | ha                  | 0.70897                            |                     | 0.0070             | 0.1702           |
|               | 632     | ha; cel-tr          |                                    |                     | 0.0157             | 0.1021           |
|               | 631     | ha                  |                                    |                     | 0.0087             | 0.0754           |
|               | 889     | an; some do         |                                    |                     | 0.0016             |                  |
|               | 888     | an; some ha         |                                    |                     | 0.0006             |                  |
| 363           | 701     | 9U)                 |                                    |                     | 0.0008             |                  |
|               | 702A    | gy; some an         | 0.70859                            | 20.9                | 0.0012             |                  |
|               | 702B    | an; some gy         |                                    |                     | 0.0010             |                  |
|               | 179F    | ар                  | 0.70820                            |                     | 0.0020             |                  |
|               | 179M    | do                  | 0.70860                            |                     | 0.0005             |                  |
| 362           | 715     | do, an; gy          |                                    |                     | 0.0008             |                  |
|               | 716A    | an                  | 0.70842                            |                     | 0.0014             |                  |
|               | 716B    | an                  |                                    |                     | 0.0016             |                  |
|               | 727     | gy                  | 0.70843                            |                     | 0.0006             |                  |
|               | 742     | an; some gy         | 0.70851                            |                     | 0.0015             |                  |
| ж1            | 781     | an; some gy         |                                    |                     | 0.0006             |                  |
|               | 791     | 80.                 | 0.70824                            |                     | 0.0007             |                  |
| lc.           | 364     | an; some gy         | 0.70836                            | 19.2                | 0.0018             |                  |
| 1             | 377     | ha; ?syl-tr         | 0.70893                            | 19.9                | 0.0182             | 0.0809           |
|               | 375     | ha                  |                                    |                     | 0.0124             | 0.0254           |
|               | 638     | 80.                 | 0.70838                            |                     | 0.0008             |                  |
| kc            | 640     | an                  |                                    |                     | 0.0009             |                  |
|               | 998     | 9 <b>0</b>          | 0.70858                            | 19.0                | 0.0010             |                  |
|               | 900     | 90                  | 0.10000                            | 10.0                | 0.0013             |                  |
|               | 20      | on' av              | 0 708 47                           | 126                 | 0.0011             |                  |
| ъ             | 1805    | he at a             | V.I VO11                           | 14.0                | 0.0011             |                  |
| / <b>**</b> . | 079     | ner der             | 0 70005                            | 10.2                | 0.0041             | 01010            |
|               | 0.877   | ha                  | 0.10803                            | 19.0                | 0.0069             | 0.1010           |
|               | 901<br> | 201                 | 0.10014                            |                     | 0.0298             | 0.0730           |

an-anhydrite; ap-apatite; cel-celestite; do-dolomite; gy-gypsum; ha-halite; syl-sylvite; tr-traces;

## RAAB, FRIEDMAN, SPIRO, STARINSKY, AND ZAK



Figure 5. Stratigraphic section,  $\delta^{34}$ S values and  $^{87}$ Sr/ $^{86}$ Sr, Sr/Ca and Br/Cl ratios in the Sedom Formation.



Figure 6. Stratigraphic section,  $\delta^{34}$ S values and  ${}^{87}$ Sr/ ${}^{86}$ Sr ratios in the caprocks members

## **'Amora Formation**

The 'Amora Formation (Figs. 4 and 7) is overlying unconformably the Sedom Formation, and in places the caprocks as well. It is overlain with an angular unconformity by the Lisan Marl. The formation partly surrounds the mountain with strong dips, and occurs in places on its top (Fig. 3). The exposed thickness of the formation is more than 400 m, and in Melech Sedom-1 borehole it attains a thickness of more than 2,000 m. The formation comprises 5 members. Their lithologies, strontium and sulfur isotopic compositions and Sr/ Ca and Br/Cl ratios are as follows (Fig. 7 and Table 2).

Marl, Sand and Conglomerates Member - Amc.-- is composed of marls and chalks alternating with sandstones, anhydrite, conglomerates and salt. Its thickness is more than 130 m.



Figure 7. Stratigraphic section,  $\delta^{34}$ S values and  ${}^{87}$ Sr/ ${}^{86}$ Sr, Sr/Ca and Br/Cl ratios in the 'Amora Formation.

CHALK

JJJE

CAPROCK

Sr isotopic ratios were determined in 4 samples, and  $\delta^{34}$ S in one of them. Sample IZ-442, from the base of the section, is composed almost entirely of fibrous anhydrite and yielded a ratio of <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70822. Sample IZ-465 from the middle of the section is composed of almost pure selenite and yielded a ratio of <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70807 and a value of  $\delta^{34}$ S = 22.8 ‰. Two additional samples (IZ-486; IZ-489) from near the top of the section, are composed of anhydrite with more than 10% halite and have <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.70826 and 0.70818 respectively.

Sr/Ca ratios were calculated in 7 samples and fall within the range of 0.0006-0.0016, except for one (IZ-478) which yielded the exceptional ratio of 0.0428.

Marl and Anhydrite Member - Ama.-- The member is made of marl and chalk alternating with anhydrites, sandstones, conglomerates and rock salt, and attains a thickness of 70 m. Two samples were examined, one (IZ-504) collected near the base of the member and the other (IZ-532) very near to its top. The lower sample is mainly composed of anhydrite, whereas the upper one includes also about 10% gypsum. The <sup>87</sup>Sr/<sup>86</sup>Sr Three samples, collected near the base (IZ-538), in the middle (IZ-544) and at the top (IZ-547) of the member were examined. All of the samples are composed of coarsecrystalline halite. However, the upper sample includes in addition to the salt (IZ-547A) some calcite and gypsum (IZ-547B). The <sup>87</sup>Sr/<sup>86</sup>Sr ratios obtained were 0.70806 for sample IZ-538, 0.70830 for IZ-544, and 0.70835 and 0.70805 for sample IZ-547 A and B, respectively. Obviously, there is no influence of the calcite and gypsum content on the Sr isotopic composition.  $\delta^{34}$ S values determined in samples IZ-538 and IZ-538 and IZ-547A were 18.4 ‰ and 3.8 ‰ respectively.

a relatively large brine reservoir was evaporated.

Sr/Ca ratios in three samples fall within the range of 0.0021-0.0030. The Ca in a fourth sample was below the limit of detection. Br/Cl ratios were calculated in 14 halite samples (including 10 calculations from the data of Zak 1967) (Appendix 2a). Twelve of the Br/Cl ratios fall within the range of 0.065-0.080X10<sup>-3</sup>. The other two samples, showing a ratio around 0.134X10<sup>-3</sup>, are halites from a marly unit.

Marl Member - Am.-- This member is composed of marl, chalk, anhydrite, sand and some halite and it contains sulfur concretions. Its lithology is changing laterally and its thickness is 130-150 m. <sup>87</sup>Sr/<sup>86</sup>Sr ratios were determined in three samples. One (IZ-567) from the base of the member is composed of anhydrite with about 10% halite and some gypsum. Two samples (IZ-600 and IZ-601), adjacent to each other, from the upper part of the section are composed of anhydrite with some gypsum, the latter containing also about 10% aragonite. The <sup>87</sup>Sr/<sup>86</sup>Sr ratios obtained were 0.70838, 0.70831 and 0.70817 respectively. Another sample (IZ-597) originating also from the upper part of the member and composed of anhydrite, some halite and apparently some gypsum, yielded a value of  $\delta^{34}S = 23.0$  ‰.

Sr/Ca ratios calculated in 5 anhydrite samples, some of them with a little halite, fall within the range of 0.0010-0.0025. One

gypsum sample shows a somewhat higher ratio of Sr/Ca = 0.0061.

*Marl, Chalk and Sand Member - Ams.--* The member is composed of marl, chalk, sand and sandstones, anhydrite and conglomerates and shows lateral changes. Its thickness attains 45 m. Chemical and isotopic determinations were not performed in this member due to the lack of appropriate evaporites.



Figure 8. Correlation between K and <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the evaporitic rocks of the Sedom Formation.



Figure 9. <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the evaporites of the Sedom and 'Amora formations, in groundwater and in Messinian to modern Seawater.

## THE ENVIRONMENTS OF DEPOSITION OF THE EVAPORITIC SEQUENCE IN MOUNT SEDOM

#### Introduction

As described above the evaporitic sequence in Mt. Sedom is divided into three formations: Sedom, 'Amora and Lisan Marl (Fig. 4). The latter is composed mainly of carbonates, and was not included within the present study.

The Sedom Formation is composed of 85% evaporites and the remainder is detrital material; its thickness (including subsurface) reaches about 2 km. The evaporites comprise halites and Ca-sulfates (gypsum and anhydrite) in the ratio 1:11 (halites 77%, Ca-sulfates 7%; Zak 1967).

The 'Amora Formation consists of a 450 m sequence of which 2/3 are evaporites (comprising 40% carbonates, 19% Ca-

sulfates and 18% halite) and 1/3 are clastic rocks (Zak 1967).

According to Zak (1967) the evaporites originated from seawater which penetrated inland from the north, and were evaporated to precipitate Ca-sulfates and halite.

The geochemical indicators used to analyze and interpret the environments of deposition were strontium and sulfur isotopes, and Sr/Ca and Br/Cl ratios (Table 2).

## **Sedom Formation**

The Sedom Formation (Fig. 5) is composed mainly (ca 3/4) of halite units with some anhydrite, dolomite and some clastics alternating with thinner shale units composed of dolomite, clays, anhydrite and gypsum (Zak 1967). The Sedom Formation includes also the caprock units which will be dealt with below.



Figure 10. <sup>87</sup>Sr<sup>86</sup>Sr ratios in the members of the Sedom Formation and comparison of parent members and caprocks. ANH&GYP-anhydrite and gypsum.



Figure 11. Sr/Ca ratios in the evaporites, in the Dead Sea Rift brines, in evaporated seawater and in gypsum precipitated from them. CEL. TR. - celestite traces.

*Sr Isotopes.*-- As Rb is present in K-minerals in the rocks, the relation K -  ${}^{87}$ Sr/ ${}^{86}$ Sr was examined in order to verify that radiogenic  ${}^{87}$ Sr, formed by the decay of  ${}^{87}$ Rb was not added to the system since the evaporites were formed. Figure 8 shows that no correlation exists between the two, and therefore all of the  ${}^{87}$ Sr originates from the solution depositing the evaporites and not from a radioactive decay of Rb.

If the evaporites would have been a direct product of Plio-Pleistocene evaporated seawater, the <sup>87</sup>Sr/<sup>86</sup>Sr ratio in them should have to be around 0.709 (Burke et al. 1982; DePaolo and Ingram 1985; Farrell et al. 1995). In the present study <sup>87</sup>Sr/ <sup>86</sup>Sr values were found to range from 0.7082 to 0.7091 throughout the Sedom Formation (Figs. 5, 9, and 10). There is no regularity in the change of these ratios with the geological section (Figs. 5 and 10) and therefore such a wide range by itself, instead of one uniform value, indicates that the rocks were not formed from a homogeneous mass of evaporating seawater and that they were influenced to different degrees by 'foreign' contributions.

*Sr/Ca ratio in the evaporites.*-- The Sr/Ca ratios in the halite, gypsum and anhydrite samples fall in the wide range of 0.0005-0.03 (Figs. 11 and 12). A meaningful difference within this range exists between the halite samples, which show a considerable scatter and the anhydrite and gypsum samples, in which the ratios are much less scattered and show low values (<0.003). The wide range in the halites is explained by the



Figure 12. Comparison of the <sup>87</sup>Sr/<sup>86</sup>Sr and Sr/Ca ratios in the different lithologies of the Sedom and 'Amora formations. The insert shows the different fields of the Sedom and 'Amora formations.

existence of various concentrations of celestite, in accordance with the conditions of the formation of this mineral during seawater evaporation. Celestite starts to precipitate early in the halite field, at about 13x degree of evaporation in the process of evaporation of seawater (Herrmann 1961; Braitsch 1971; Raab 1998). Therefore, the Sr/Ca ratio can not serve as an indicator for the concentrations of Sr in its precipitating brines.

There is also some uncertainty in the interpretation of Sr/Ca ratios in anhydrites. It is likely that the anhydrites of the Sedom Formation were originally precipitated as gypsum from the evaporating water body, since anhydrite is rarely precipitated as a primary mineral even in its own stability field (see e.g. Holser and Kaplan 1966; Kinsman 1974; Raab 1998; Usdowsky 1973). Today the majority of the sulfates in the section of the Sedom Formation are anhydrites. These rocks were probably transformed at depth, under relatively high pressure and temperature conditions (Berner 1971). The change from gypsum to anhydrite depends on the geothermal gradient as well as on the composition of subsurface brines. Anhydrite will generally replace gypsum at depths of 300-700 m. Depending on the availability of water, gypsum from anhydrite will appear at varying depths, normally between 100 and 300 m (Friedman et al. 1992, p. 138). In the Persian Gulf (Abu Dahbi) (Shearman 1963; Friedman 1995) and in the Sinai Peninsula (Ras Muhammad) anhydrite has formed in modern Sabkha settings (Friedman et al. 1985). Only later, due to the rise of Mt. Sedom, the anhydrites were exposed to atmospheric conditions. The transformation anhydrite ---> gypsum is sluggish, and therefore the anhydrite is still existing in spite of the fact that the pressure and temperature conditions in the area are suitable for gypsum formation. Using the homogeneous partition coefficient of Sr in gypsum which is 0.11 (Raab 1998), the concentrations of Sr in the Ca-sulfates agree with those which should have existed in gypsum precipitating from evaporated seawater (Fig. 11). However,

the conditions which dictated the Sr/Ca ratios in anhydrite rocks in the transformation gypsum ---> anhydrite at depth (composition of solutions, pressure and temperature), are unknown.

*The ratios* <sup>87</sup>*Sr*/<sup>86</sup>*Sr vs. Sr/Ca.--* This relation (Fig. 12) shows that the Sedom and 'Amora formations fall within different fields. The samples of the Sedom Formation have both, <sup>87</sup>*Sr*/ <sup>86</sup>*Sr* and *Sr*/*Ca* ratios higher than those of the 'Amora Formation.

Figure 12 shows also the wide range of the <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the evaporites of the Sedom Formation (see also Figs. 9 and 10). The higher ratios of the Sedom halite, which are scattered around 0.7090, evidently indicate that they were precipitated from seawater. There remains therefore to explain the wide range of the 87Sr/86Sr ratios in the sulfates, and to find a mechanism which will explain how the precipitating brines acquired such a wide range. Without dealing at this stage of the discussion with the question of the origin of the salts - marine or nonmarine - the question of how the water acquired such a wide range of <sup>87</sup>Sr/<sup>86</sup>Sr ratios should be explained. These ranges of ratios in the brines are interpreted as a result of dolomitization processes which took place through the reactions between the country rocks, viz. the carbonate rocks of the Rift walls west of the Dead Sea, and the magnesium and sulfate-rich evaporating brines as follows:

(1) 
$$2Ca(Sr)CO_3 + Mg^{2+} \leftarrow CaMg(CO_3)_2 + Ca(Sr)^{2+}$$
  
(2)  $Ca(Sr)^{2+} + SO_4^{2-} - - > Ca(Sr)SO_4 - 2H_2O$  (gypsum)

Facies changes in the Judea Group in the rift walls were described by Bentor and Vroman (1960), and epigenetic dolomitization phenomena were discussed by Raz (1983). Lowengart (1962), Starinsky (1974), Zak (1974, 1980) and



Figure 13.  $\delta^{34}$ S values in the Sedom Formation and in the caprocks members. The caprocks have  $\delta^{34}$ S lower or equal to the halite members indicating different or similar sulfur sources (see text for explanation).

Starinsky and Bielsky (1981) explain the chemical composition of the brines in the subsurface in the rift area (like those found in the boreholes 'Arava-1, Heimar-1, Lot-2, Sedom-1 and Sedom-2) by the reaction of ancient evaporated seawater with the carbonate country rocks of the Judea Group. These rocks, which are Upper Cretaceous marine limestones, have a <sup>87</sup>Sr/<sup>86</sup>Sr ratio around 0.7075, following the secular changes curve in the ocean (Burke et al. 1982; DePaolo and Ingram 1985). A rock having such a ratio, reacting with brines which have a higher ratio (around 0.709), will result in the water in an intermediate value between these two end values.

Based on this process it is suggested that the wide range of <sup>87</sup>Sr/ <sup>86</sup>Sr ratios in the Sedom Formation is an intermediate value, which depends on the degree of the reaction progress in which the brines took part in the process of dolomitization. This scenario describes evaporated water, which arrived to the sedimentation basin of the Sedom Formation and precipitated gypsum and halite. Some of the waters penetrated into the marine Cretaceous country rocks (0.7075, Burke et al. 1982; DePaolo and Ingram 1985) and reacted with them in dolomitization processes, resulting in the decrease of the <sup>87</sup>Sr/ <sup>86</sup>Sr ratio and in the change in the Sr/Ca ratio. A quantitative description of such a process for saline waters in the Coastal Plain of Israel was given by Starinsky et al. (1983). At various times during the deposition of the Sedom Formation, these waters seeped out from the walls of the basin margins, where they were mixed with water existing in the basin, evaporating later and precipitating the evaporites.

Sulfur isotopes ( $\delta^{34}$ S).-- Sulfur isotopes in anhydrite rocks can answer the question whether the origin of Sedom Formation is marine or nonmarine.  $\delta^{34}$ S can change or remain unchanged in waters precipitating gypsum following the processes: (1) in an aquatic environment, where sulfur reduction occurs, the  $\delta^{34}S$  of the residual solution increases, as the H<sub>2</sub>S formed in this process is enriched in light sulfur isotope. (2) In dolomitization processes  $\delta^{34}S$  values are not changing since dolomitization processes are not accompanied by sulfur isotopic fractionation (eq. 2).

 $\delta^{34}$ S values were determined in 6 anhydrite samples from the Sedom Formation (Table 2 and Fig. 13). The mean of 5 of them is 19.8  $\pm$ 0.8 ‰. This value represents young seawater (Upper Tertiary; Nielsen 1979; Claypool et al. 1980) and points to the marine origin of the SO<sub>4</sub><sup>2-</sup> in the water which precipitated the original gypsum. One anhydrite sample from the Karbolet Salt and Shale Member shows an extremely low  $\delta^{34}$ S value (Fig. 13) although no product of a reducing environment (like pyrite) has been detected.

Br/Cl ratio in the halite rocks.-- This ratio falls within the range of 0.03-0.18X10<sup>-3</sup> (Fig. 14). It is possible to assume that Br and Cl values represent those of the original evaporated seawater, even though it was stated above that part of the water which deposited the evaporites of the Sedom Formation interacted with the country rocks and therefore their original composition had been changed (as the ratios Ca/Mg, Sr/Ca and <sup>87</sup>Sr/<sup>86</sup>Sr). On the basis of this assumption it is possible to reconstruct the Br/Cl ratios in the depositing brines, using the Br/Cl ratios in the halite rocks. Figure 15, which shows the Br/Cl ratios in the salts vs. those in evaporated seawater in the range of halite precipitation (degrees of evaporation of seawater 10x-50x). shows that the halites of the Karbolet Salt and Shale, Lot Salt, Benot Lot Shales and Hof Shales and Salt Members agree with degrees of evaporation in the early part of the halite field, from 10x to 20x only. Only the Me'arat Sedom Salt Member shows a wider range, up to ~28x.



Figure 14. Br/Cl ratios in the halite members of the Sedom and 'Amora formations.

![](_page_15_Figure_1.jpeg)

Figure 15. Mean Br/Cl ratios  $(\pm 1\sigma)$  in the halite units of the Sedom and 'Amora formations and in brines that could have deposited them. Br/Cl ratios in seawater at different degrees of evaporation, in subsurface brines in boreholes in the region and in halites that could precipitate from them are given for comparison.

Figure 15 displays also the Br/Cl ratios in brines from the deep boreholes in the area ('Arava-1 Heimar-1, Lot-2, Sedom-1 and Sedom-2). The Br/Cl ratio in halites precipitated from such brines should have been much higher. It is possible that these brines represent much later evaporation stages, in which carnallite and sylvite were precipitated. Carnallite and sylvite were found in some of the halite members of the Sedom Formation in Mt. Sedom and in the Lisan Peninsula (Zak 1974).

#### **Caprocks Units**

The caprocks members (Fig. 6) are composed of residual rocks which remained after the dissolution of the halite layers of the Sedom Formation. Consequently they are composed of the undissolved gypsum, anhydrite and detrital material, either in their original form or after diagenetic alterations. Halite remains are rarely found.

Sr/Ca ratio.--This ratio is not exceeding 0.0027 and its range agrees with that in the gypsum and anhydrite of the Sedom Formation, especially to that of Benot Lot Shale Member (Figs. 10 and 11), which due to the lack of halite rocks, remain rather intact, and thus do not have an equivalent caprock. This ratio is low relative to that in the halite samples, due to the lack

of celestite which occurs in the halite rocks. Though hardly soluble, it seems that the lack of celestite in the caprocks, is due to dissolution in the course of their formation.

The ratio <sup>87</sup>Sr/<sup>86</sup>Sr.-- This ratio was determined in 6 samples from the three caprock members (Fig. 6). The values fall within the range of 0.70836-0.70896 (Fig. 9). The range of the values of <sup>87</sup>Sr/<sup>86</sup>Sr ratios in the caprocks agrees with that in the gypsum and anhydrites in the halite members of the Sedom Formation, and especially with those of the Benot Lot Shale Member. Although the number of samples used for comparison between the samples of the Sedom Formation members and their equivalent caprock units is small, it can be seen that the <sup>87</sup>Sr/<sup>86</sup>Sr values in all caprock members are lower than those in their mother member (Fig. 10). A single sample from the Me'arat Sedom Salt Caprock Member, which contains about 30% of undissolved halite, has a value of 0.7090, which agrees with its mother halite, and preserves its marine value.

By analyzing the Sr/Ca ratios it can be deduced that the Sr isotopic composition in the mother units is representing in fact the mineral celestite, which was probably deposited with the halite, rather than the gypsum or the anhydrite within the halite. The explanation for the higher <sup>87</sup>Sr/<sup>86</sup>Sr ratio in celestite will be

RAAB, FRIEDMAN, SPIRO, STARINSKY, AND ZAK

![](_page_16_Figure_1.jpeg)

Figure 16.  $\delta^{34}$ S values in the different lithologies of the Sedom and 'Amora formations.

discussed below in the chapter on the conditions of deposition of gypsum and halite in the Sedom basin.

*The ratios* <sup>87</sup>*Sr*/<sup>86</sup>*Sr vs Sr/Ca.--* This system of coordinates shows that all of the values of the caprocks fall within the field of the Sedom Formation (Fig. 12).

Sulfur isotopes ( $\delta^{34}$ S).-- Sulfur isotopes were measured in 3 samples of the Sedom caprocks and they and fall within the range of 19.0-20.5 ‰ (mean value 19.6 ±0.7 ‰) (Fig. 16). This range overlaps that of their mother members (Fig. 13). As already noted by Holser and Kaplan (1966, p. 15), diagenesis and transformation of one sulfur-bearing mineral to another, does not change the sulfur isotopic composition, and the substituting mineral preserves the fingerprints of the original  $\delta^{34}$ S. Therefore, these  $\delta^{34}$ S values attest to the marine origin of the caprock layers and supply additional evidence that they are derivatives of the respective Sedom Formation members, as interpreted by Zak (1967).

The conditions of deposition of gypsum and halite in the Sedom basin.-- The range of <sup>87</sup>Sr/<sup>86</sup>Sr values in gypsum and anhydrite occurring as layers, in the Benot Lot Shales as well as in the insoluble residue of the halites of the caprocks is 0.7083-0.7086, whereas in the halite layers the range is 0.7086-0.7091 (Figs. 9 and 10). The fact that celestite, as a trace mineral in the halite, had been completely dissolved in the caprock layers, suggests that gypsum or anhydrite, which are more soluble than celestite and which are only minor constituents in the halite, would also be dissolved in the process of the formation of the caprocks. Therefore, the anhydrite and the gypsum which compose the caprocks represent individual layers of gypsum or anhydrite, which were intercalated between the halite layers in the members. Hence, the caprocks are remnants of a sequence and not just remnants of the sulfates disseminated in the halite layers. This conclusion is supported by the similarity of the values of <sup>87</sup>Sr/<sup>86</sup>Sr in the Benot Lot Shale Member with those in the caprocks.

When building layers, the gypsum rocks are connected to the phase of the dolomitization. They were formed as a result of the reaction of the carbonate rocks of the rift margins with brines rich in Mg<sup>2+</sup> and in SO<sub>4</sub><sup>2-</sup> (eqs. 1 and 2).

As the origin of part of the Ca and Sr is the Judea Group rocks of the rift margins, which have a relatively low 87Sr/86Sr value (around 0.7075), those values in the gypsum should also be relatively low. This is not true for the Sr in the halite sections, which partly appears as celestite. The occurrence of this mineral points to a deposition from normal seawater, evaporated to degrees of evaporation between 13x to 23x (Raab 1998). This fact agrees with the Br/Cl ratios in the Sedom Formation halites, and therefore, the celestite represents values of <sup>87</sup>Sr/<sup>86</sup>Sr closer to those of the original seawater (which most probably was near to 0.709). The obvious marine origin is demonstrated also by the  $\delta^{34}$ S values, which were not affected by the dolomitization process. Therefore, a marine environment of deposition with varying contributions from the land is suggested for the Sedom Formation.

### **'Amora Formation**

The 'Amora Formation (Fig. 7) includes a 450 m sequence of which about 2/3 are evaporites (composed of 40% carbonates, 19% Ca-sulfates and 18% halite) and 1/3 clastic rocks (Zak 1967).

Sr isotopes.-- The  ${}^{87}$ Sr/ ${}^{86}$ Sr ratios in the anhydrites and in the halite of the 'Amora Formation fall both within the same range of 0.7080 - 0.7084 (Figs. 7 and 9). As in the Sedom Formation, no regularity in the variations of the  ${}^{87}$ Sr/ ${}^{86}$ Sr ratios along the section was found.

*Sr/Ca ratios*.-- These ratios fall in the range of 0.0008-0.0061 with one exception - a sample which contains celestite (Figs. 7 and 11). Unlike the Sedom halites, however, celestite was not

detected in the 'Amora halites (only in one example), and the Sr/Ca ratios both in the halites and in the anhydrites are of the same range. Again, the presence of anhydrite points either that the sequence was at some stage deeply buried and under high pressure and temperature conditions, or deposited in favorable Sabkha conditions (see p. XX=106 herein).

The ratios <sup>87</sup>Sr/<sup>86</sup>Sr vs. Sr/Ca.-- Figure 12 illustrates the difference between the Sedom and the 'Amora formations, where the 'Amora Formation shows a lower range of <sup>87</sup>Sr/<sup>86</sup>Sr ratios relative to that of the Sedom Formation. This phenomenon points to the fact that the 'Amora Formation was mainly deposited from waters with a dominant and variable terrestrial contribution, most probably Ca-chloride waters, which returned from the walls of the Rift margins after the disconnection of the Sedom basin from the sea. These lower values in the 'Amora Formation suggest to the continuation of the dolomitization, but this time without the marine constituent (viz. a <sup>87</sup>Sr/<sup>86</sup>Sr ratio around 0.709) as a partner in the mixing. Contrary to the process which occurred in the Sedom Formation, where <sup>87</sup>Sr/<sup>86</sup>Sr ratios were explained by mixing of seawater with brines returning from the Rift walls, the evaporites of the 'Amora Formation were deposited only from returning brines, which were originally seawater. This is true also for the halite ('Amora Salt Member-As) which shows the same <sup>87</sup>Sr/<sup>86</sup>Sr ratios as the anhydrites of the other 'Amora Formation members.

Sulfur isotopes ( $\delta^{34}$ S).--Sulfur isotopes were determined in 4 samples from the 'Amora Formation. Three of them have  $\delta^{34}$ S values around 21 ‰ (18-23 ‰) and one, very low -3.8 ‰ (Figs. 7 and 16). The higher values, which are similar to those in the Sedom Formation, express the same mother solutions which precipitated the rocks of the Sedom Formation. No reasonable explanation (like a record of the existence of sulfides) for the exceptionally low  $\delta^{34}$ S value was found.

*Br/Cl ratio*.-- The Br/Cl ratio in the halite of the 'Amora Formation is in the range of  $0.065 - 0.13 \times 10^{-3}$ ; most of the samples have a narrower ratio around  $0.075 \times 10^{-3}$  (Fig. 15). The mean value of the ratio is about  $0.08 \times 10^{-3}$  (Fig. 15, As), and is similar to those in most of the members of the Sedom Formation. As mentioned above, Br is not participating quantitatively in the processes which occurred in the rocks of the rift margins formations. Therefore, these data support the conclusion that the 'Amora salt was deposited from the same type of brines which deposited the Sedom Formation evaporites (without the seawater end member though).

## CONCLUSIONS

1. The evaporites of the Sedom Formation were formed from evaporated seawater which penetrated the region most probably from the north, forming a narrow bay, intermittently disconnected from the sea.

2. Direct precipitation of Ca-sulfates and halite took place

within the lake and water also penetrated the carbonate formations of the Rift margins and participated in dolomitization processes.

3. At different times, within the course of the deposition of the Sedom Formation, hydrological conditions enabled the Cachloride brines to return from the margins into the Rift basin. These returning brines were mixed with evaporated seawater existing in the basin, and precipitated gypsum and halite.

4. The Sr and S isotopic behavior confirms the conclusion based on field relations that the caprocks are residual rocks remaining after the dissolution of the halite members of the Sedom Formation.

5. The evaporites of the 'Amora Formation were deposited only from Ca-chloride brines, which were trapped in the Rift walls in the 'Sedom times' and flowed back into the Dead Sea basin later in the 'Amora times', after its final disconnection from the open sea.

6. The episodes of the formation of evaporites of different  $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$  with the same  $\delta^{34}\mathrm{S}$  indicate an original seawater origin and subsequent modification through mixing. The delivery of the brines to the basin was a consequence of the tectonic activity along the Dead Sea graben

## ACKNOWLEDGMENTS

Thanks are extended to A. Bein (The Geological Survey of Israel, Jerusalem) who provided valuable remarks and encouraged the research. The Geochemistry Division of the Geological Survey of Israel helped in performing the chemical analyses and X-rays determinations. Thanks are due to T. Braun (The Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel) for her help in measuring strontium isotopic compositions.

#### REFERENCES

- AGNON, A., 1983, An attempted revision of the Neogene stratigraphy in the Dead Sea Valley. Israel Geological Society, Annual Meeting Nazerat, Abstract, p.1.
- BENTOR, Y.K. and VROMAN, A., 1960, The geological map of Israel, on a 1:100,000 scale. Series A-The Negev. Sheet 16: Mt. Sdom., Geological Survey of Israel, 117 p.
- BERNER, R.A., 1971, Principles of chemical sedimentology. McGraw-Hill, 240 p.
- BERRY, L.G., ed., 1974, Selected powder diffraction data for minerals. Data Book. Joint Committee on Powder Diffraction Standards. Swarthmore, PA, USA, 833 p.
- BRAITSCH, O., 1971, Salt deposits, their origin and composition. Springer-Verlag, Berlin, 297 p.
- BURKE, R.É, DENISON, R.E., HETHERINGTON, R.B., KOEPNICK, H.F., NELSON, H.F., and OTTO, J.B., 1982, Variation of seawater <sup>87</sup>Str<sup>86</sup>Sr throughout Phanerozoic time: *Geology*, v. 10, p. 516-519.
- CLAYPOOL, G.E., HOLSER, W.T., KAPLAN, I.R., SAKAI, H., and ZAK, I., 1980, The age curves of sulfur and oxygen isotopes in: Marine sulfate and their mutual interpretation: *Chemical Geology*, v. 28, p. 199-260.
- COLEMAN, M.L. and MOORE, M.P., 1978, Direct reduction of sulfates to

sulfur dioxide for isotopic analysis: Analytical Chemistry, v. 50, p. 1594-1595.

- DEPAOLO, D.J. and INGRAM, B.L., 1985, High-resolution stratigraphy with strontium isotopes: *Science*, v. 227, p. 938-941.
- FARRELL, J.W., CLEMENS, S.C., and GROMET, L.P., 1995, Improved chronostratigraphic reference curve of late Neogene seawater <sup>87</sup>Sr/ <sup>86</sup>Sr: *Geology*, v. 23, p. 403-406.
- FRIEDMAN, G.M., 1995, The arid peritidal complex of Abu Dahbi: a historical perspective: Carbonates and Evaporites, v. 10, p. 2-7.
- FRIEDMAN, G.M., SNEH, AMIHAI, and OWEN, R.W., 1985, The Ras Muhammed Pool: Implications for the Gavish Sabkha, p. 218-237, *in* Friedman G.M. and Krumbein, W.F., Hypersaline Ecosystems: The Gavish Sabkha. Berlin, Heidelberg, New York, Tokyo, Springer Verlag, 484 p.
- FRIEDMAN, G.M., SANDERS, J.E., and KOPASKA-MERKEL, 1992, Principles of Sedimentary Deposits - Stratigraphy and Sedimentology. New York, Macmillan Publishing Company, 717 p.
- FUGE, R., 1974, Bromine abundance in common igneous rock types. In Wedepohl, K.J., ed., Handbook of Geochemistry. Springer-Verlag, Berlin, II-4, 35E, p. 1-5.
- HERRMANN, A.G., 1961, Zur Geochimie des Sr in den salinaren Zechsteinablagerungen der Stassfurt-Serie des Suedharzbezirks: *Chemie der Erde*, v. 21, p. 137.
- HOLSER, W.T., 1979, Trace elements and isotopes in evaporites. *In Burns*, R.G., ed., Marine Minerals: *Mineralogical Society of America*, v. 6, p. 295-346.
- HOLSER, W.T. and KAPLAN, I.R., 1966, Isotope geochemistry of sedimentary sulfates: *Chemical Geology*, v. 1, p. 93-135.
- KASHAI, A., 1988, An attempt to correlate larger stratigraphic units between the northern and southern parts of the Dead Sea -Jordan Rift system. Israel Geological Society Annual Meeting, 'En Boqeq, Abstract, p. 59-60.
- KATZ, A. and BODENHEIMER W., 1962, The chemical analysis of rocks and minerals. The Hebrew University, Jerusalem. 150 p. (in Hebrew).
- KINSMAN, D.J., 1974, Calcium sulfate minerals of evaporite deposits: Their primary mineralogy. *in* Coogan, A.H., ed., Fourth symposium on salt. Houston, Texas. Northern Ohio Geological Society. v. 1, p. 481-496.
- LOEWENGART, S., 1962, The geochemical evolution of the Dead Sea basin: Bulletin of the Research Council, Israel, v. 11G, p. 85-96.
- MCCLUNE, W.F., ed., 1986, Mineral powder diffraction file. Data Book. International Center for Diffraction Data. Swarthmore, PA, USA, 1396 p.
- NIELSEN, H., 1979, Sulfur isotopes. In Jaeger, E. and Hunziker, J.C., 1979, Lectures in isotope geology. Springer Verlag, Berlin, p. 283-312.
- RAAB, M., 1998, The origin of the evaporites in the Jordan Dead Sea valley in view of the evolution of the brines and evaporites during seawater evaporation. Geological Survey of Israel Report GSI/1/98, 138 p. (in Hebrew, English summary).

- RAZ, E., 1983, The geology of the Judea Desert, En Geddi Region. Geological Survey of Israel. Unpublished Report 83/3/S, 110 p.
- SHEARMAN, D.J., 1963, Recent anhydrite, gypsum, dolomite, and halite from the coastal flats of the Arabian shore of the Persian Gulf. Proceedings of the Geological Society of London 1607, p. 63.
- STARINSKY, A., 1974, Relationship between Ca-chloride brines and sedimentary rocks in Israel. Unpublished Ph. D. thesis, The Hebrew University, Jerusalem. 176 p. (in Hebrew, English summary).
- STARINSKY, A. and BIELSKY, M., 1981, The strontium isotopic composition of saline waters along the Dead Sea Rift. 7th Europian Colloqium on Geochronology and Cosmochronology Jerusalem, Israel.
- STARINSKY, A., BIELSKY, M., LAZAR, B., STEINITZ, G., and RAAB, M., 1983, Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel: *Geochimica et Cosmochimica Acta*, v. 47, p. 687-695.
- STEIN, M., AGNON, A., STARINSKY, A., RAAB, M., KATZ, A., and ZAK, I., 1994, What is the "Age" of the Sedom Formation?. Israel Geological Society, Annual Meeting. Nof Ginossar. Abstract. p. 108.
- USDOWSKY, E., 1973, Das geochemische Verhalten des Strontiums bei der Genese und Diagenese von Ca-karbonat- und Ca-sulfat-Mineralen: Contributions to Mineralogy and Petrology, v. 38, p. 177-195.
- WEINBERGER, R., 1992, Paleomagnetism in Mount Sedom, Israel: A method to determine the structure of the salt body and to reconstruct its emergence from the subsurface. Unpublished M. Sc. Thesis, The Hebrew University, Jerusalem. 101 p. (in Hebrew, English summary).
- ZAK, I. 1967, The geology of Mount Sedom. Geological Survey of Israel, Report. 208 p. (in Hebrew, English summary).
- ZAK, I., 1969, The Cl/Br ratio in rock salt: an indicator of the order of succession: Israel Journal of Earth Science, v. 18, p. 143-146.
- ZAK, I., 1974, Sedimentology and bromine geochemistry of marine and continental evaporites in the Dead Sea area. *in* A.H. Coogan, ed., Fourth Symposium on Salt. Houston, Texas. Northern Ohio Geological Society, v. 1, p. 349-361.
- ZAK, I., 1980, The geochemical evolution of the Dead Sea. in A.H. Coogan and L. Hauber, eds., Fifth Symposium on Salt. Hamburg, Germany. Northern Ohio Geological Society, v. 1, p. 181-184.
- ZAK, I. and FREUND, R., 1980, Strain measurements in eastern marginal shear zone of Mount Sedom salt diapir, Israel: *American Association* of Petroleum Geologists Bulletin, v. 64, p. 568-581.
- ZAK, I. and GRUDNIEWICZ, I., 1966, Geochemistry of evaporites and brines, Dead Sea basin. In: A.H. Coogan, ed., Fourth Symposium on Salt. Houston, Texas. Northern Ohio Geological Society, Abstracts. 2, p. 30.

Received: January 8, 1999 Accepted: February 25, 1999

# GEOLOGICAL HISTORY OF PLIOCENE-PLEISTOCENE EVAPORITES, MT. SEDOM, ISRAEL

| # <u>1Z-</u> | LOCATION                           | COORD.       | FM     | MBR.            | POSITION IN SECTION                        |
|--------------|------------------------------------|--------------|--------|-----------------|--------------------------------------------|
| 29           | Give ot Karbolet, southern section | 1865/0538    | Sedom  | Sk              | 350 m above base of section                |
| 48           | 'Atlit Quarry, southern section    | 1857/0552    | Sedom  | Sm              | 150 m above base of member                 |
| 49           | 'Atlit Quarry, southern section    | **           | Sedom  | Sm              | 150 m above base of member                 |
| 63           | 'Atlit Quarry, southern section    | **           | Sedom  | Sm              | 157 m above base of member                 |
| 76           | 'Atlit Quarry, southern section    | **           | Sedom  | Sm              | 166 m above base of member                 |
| 135          | Eastern slope, northern section    | 1870/0574    | Sedom  | Smc             | 10 m above base of member                  |
| 136          | Eastern slope, northern section    | **           | Sedom  | Smc             | 10 m above base of member                  |
| 137          | Eastern slope, northern section    | **           | Sedom  | Smc             | base of member                             |
| 179          | Eastern slope, northern section    | 64           | Sedom  | $Sb_2$          | 38 m above base of member                  |
| 198          | Eastern slope, northern section    | ••           | Sedom  | Sb <sub>2</sub> | 20 m above base of member                  |
| 364          | Eastern slope, northern section    | 1867/0573    | Sedom  | Sic             | top of section                             |
| 375          | Nahal Perazzim                     | 1875/0602    | Sedom  | SI              | lower third of section                     |
| 377          | Nahal Perazzim                     | **           | Sedom  | Sì              | lower third of section                     |
| 442          | Eastern slope, northern section    | 1870/0572    | 'Amora | Ame             | 35 m above base of member                  |
| 451          | Eastern slope, northern section    | 1            | 'Amora | Ame             | 60 m above base of member                  |
| 465          | Eastern slope, northern section    |              | 'Amora | Amc             | 85 m above base of member                  |
| 478          | Eastern slope, northern section    |              | *Amora | Ame             | 105 m above base of member                 |
| 485          | Eastern slope, northern section    |              | 'Amora | Amc             | 112 m above base of member                 |
| 486          | Eastern slope, northern section    | $\checkmark$ | 'Amora | Amc             | 112 m from base of member                  |
| 489          | Eastern slope, northern section    | 1871/0572    | 'Amora | Amc             | 117 m above base of member, 20 m from top  |
| 504          | Eastern slope, northern section    | 1872/0572    | 'Amora | Ama             | 13 m above base of member                  |
| 532          | Eastern slope, northern section    |              | 'Amora | Ama             | 65 m above base of member,<br>6 m from top |
| 538          | Eastern slope, northern section    | 1872/0572    | 'Amora | As              | near base of member                        |
| 544          | Eastern slope, northern section    | **           | 'Amora | As              | middle of member                           |
| 547          | Eastern slope, northern section    | **           | 'Amora | As              | top of member                              |
| 567          | Eastern slope, northern section    | 1870/0567    | 'Amora | Am              | 15 m above base of member                  |
| 529          | Eastern slope, northern section    | 1871/0568    | 'Amora | Am              | 15 m above base of member                  |
| 597          | Eastern slope, northern section    | 1872/0568    | 'Amora | Am              | 85 m above base of member                  |
| 600          | Eastern slope, northern section    | **           | 'Amora | Am              | 100 m above base of member                 |
| 601          | Eastern slope, northern section    | 1872/0686    | 'Amora | Am              | 100 m above base of member                 |
| 620          | Eastern slope, northern section    | **           | 'Amora | Am              | 130 m above base of member                 |

Appendix 1a.Geographic and stratigraphic provenance of the samples in Har Sedom (For the names of the members designated by a symbole see Figure 4; for a detailed map: see Zak, 1967)

Sedom

Sm

190 m above base of member

= its top

1875/0552

627

'Athit quarry, southen section

# RAAB, FRIEDMAN, SPIRO, STARINSKY, AND ZAK

# Appendix 1b.Geographic and stratigraphic provenance of the samples in Har Sedom (For the names of the members designated by a symbole see Figure 4; for a detailed map: see Zak, 1967)

| 627  | 'Atlit quarry, southen section     | 1875/0552 | Sedom | Sm                | 190 m above base of member<br>= its top |
|------|------------------------------------|-----------|-------|-------------------|-----------------------------------------|
| 621  | En Ashlag (Ein Mumila)             | 1871/0583 | Sedom | Sm                | base of member                          |
| 632  | Northern quarry (Shukri Dib)       | 1871/0586 | Sedom | Sm                | 20 m above base of member               |
| 638  | Giv'eot Karbolet, southern section | 1863/0538 | Sedom | Ske               | 15 m above base of member               |
| 640  | Giv'eot Karbolet, southern section | **        | Sedom | Skc               | 13 m above base of member               |
| 690  | Me'arat Sedom, 1 km south of       | 1878/0543 | Sedom | Sh                | 24 m above base of member               |
| 692  | Eastern slope, southern section    | 1873/0552 | Sedom | Smc               | 85 m above base of member               |
| 701  | 'Aruts Benot Lot, southern section | 1872/0552 | Sedom | Sb <sub>3</sub>   | 2 m above base of member                |
| 702  | 'Aruts Benot Lot, southern section |           | Sedom | Sb <sub>3</sub>   | base of member                          |
| 715  | 'Aruts Benot Lot, southern section | **        | Sedom | Sb <sub>2</sub>   | 25 m above base of member               |
| 716  | 'Aruts Benot Lot, southern section |           | Sedom | Sb <sub>2</sub>   | 23 m above base of member               |
| 727  | 'Aruts Benot Lot, southern section | **        | Sedom | $\mathbf{Sb}_{2}$ | 13 m above base of member               |
| 742  | 'Aruts Benot Lot, southern section | 1872/0551 | Sedom | Sb,               | top of member, 60 m above<br>base       |
| 781  | 'Aruts Benot Lot, southern section | 1871/0551 | Sedom | Sb,               | middle of member,30 m<br>above base     |
| 791  | Aruts Benot Lot, southern section  |           | Sedom | Sb                | 15 m above base of member               |
| 825  | The Neck, southern part            | 1874/0555 | Sedom | Sh                | 5 m above base of member                |
| 826  | The Neck, southern part            | "         | Sedom | Sb                | 27 m above base of member               |
| 888  | 'Aruts Benot Lot, southern section | 1872/0552 | Sedom | Sb3               | 17 m above base of member               |
| 889  | 'Aruts Benot Lot, southern section | ••        | Sedom | Sb3               | 23 m above base of member               |
| 896  | 'Aruts Benot Lot, southern section |           | Sedom | Smc               | base of member                          |
| 897  | 'Aruts Benot Lot, southern section | **        | Sedom | Smc               | 20 m above base of member               |
| 978  | Sedom 1 borehole, core 9           | 1861/0533 | Sedom | Sk                | depth 1270 m                            |
| 987  | Sedom 1 borehole, core 11          | **        | Sedom | Sk                | depth 1680 m                            |
| 998  | Giv'eot Karbolet, southern section | 1865/0538 | Sedom | Skc               | 5 m above base of member                |
| 999  | Giv'eot Karbolet, southern section | ••        | Sedom | Ske               | 8 m above base of member                |
| 1005 | Giv'eot Karbolet, southern section | **        | Sedom | Sk                | 200 m above base of member              |

|                                                                  | No.      | Cl      | Br         | Br/Cl         |      | No.         | Cl   | Br     | Br/Cl      |
|------------------------------------------------------------------|----------|---------|------------|---------------|------|-------------|------|--------|------------|
| Mbr.                                                             | 17       | WL%     | Wt%        | molarX1000    | Mbr. | <b>U</b>    | WL73 | Wt%    | molarX1000 |
| Am                                                               | 547      | 60.6    | 0.0104     | 0.0762        | Sb3  | 348         | 56.0 | 0.0095 | 0.0749     |
|                                                                  | 546      | 60.6    | 0.0111     | 0.0813        |      | 269         | 51.3 | 0.0126 | 0.1086     |
|                                                                  | 545      | 60.2    | 0.0094     | 0.0693        |      | 83          | 58.6 | 0.0110 | 0.0833     |
|                                                                  | 544      | 60.0    | 0.0100     | 0.0740        |      | 80          | 58.8 | 0.0146 | 0.1102     |
|                                                                  | 543      | 59.3    | 0.0106     | 0.0794        |      | 79          | 58.0 | 0.0105 | 0.0804     |
|                                                                  | 542      | 56.0    | 0.0170     | 0.1348        |      | 78          | 53.7 | 0.0089 | 0.0736     |
|                                                                  | 540      | 53.4    | 0.0160     | 0.1330        | នា   | 801         | 60.3 | 0.0048 | 0.0353     |
|                                                                  | 538      | 58.6    | 0.0106     | 0.0803        |      | 699         | 60.9 | 0.0042 | 0.0306     |
|                                                                  | 537      | 59.0    | 0.0090     | 0.0677        |      | 381         | 57.7 | 0.0060 | 0.0460     |
|                                                                  | 536      | 58.6    | 0.0085     | 0.0644        |      | 380         | 59.9 | 0.0065 | 0.0483     |
| Sh                                                               | 826      | 59.2    | 0.0096     | 0.0720        |      | 379         | 55.8 | 0.0056 | 0.0446     |
|                                                                  | 825      | 58.6    | 0.0114     | 0.0864        |      | 376         | 54.2 | 0.0069 | 0.0565     |
|                                                                  | 690      | 55.7    | 0.0120     | 0.0957        |      | <b>37</b> 5 | 56.2 | 0.0038 | 0.0299     |
| Sm                                                               | 83       | 42.9    | 0.0119     | 0.1232        |      | 371         | 52.5 | 0.0042 | 0.0354     |
|                                                                  | 76       | 56.4    | 0.0117     | 0.0921        | ļ    | 370         | 50.3 | 0.0050 | 0.0445     |
|                                                                  | 73       | 59.3    | 0.0060     | 0.0446        |      | 369         | 55.4 | 0.0048 | 0.0381     |
|                                                                  | 72       | 55.8    | 0.0157     | 0.1249        | Sk   | 904         | 55.8 | 0.0086 | 0.0682     |
|                                                                  | 69       | 48.3    | 0.0052     | 0.0475        |      | 907         | 58.0 | 0.00B4 | 0.0643     |
|                                                                  | 60       | 57.8    | 0.0119     | 0.0919        | 1    | 921         | 57.0 | 0.0080 | 0.0623     |
|                                                                  | 56       | 59.4    | 0.0213     | 0.1592        |      | <b>9</b> 23 | 59.3 | 0.0088 | 0.0859     |
|                                                                  | 53       | 59.1    | 0.0180     | 0.1351        |      | 934         | 59.1 | 0.0083 | 0.0624     |
|                                                                  | 49       | 59.0    | 0.0189     | 0.1422        | [    | 948         | 56.3 | 0.0087 | 0.0687     |
|                                                                  | 48       | 58.0    | 0.0217     | 0.1661        |      | 950         | 58.9 | 0.0084 | 0.0631     |
| LEGE?                                                            | ND: Am-  | 'Amora  | Salt; Sh-  | Hof Shale and | 1    | 965         | 57.0 | 0.0098 | 0.0760     |
| Sm- Me'arat Sedom Salt; Sb3- Benot Lot Shale 978 59.2 0.0099 0.0 |          |         |            |               |      |             |      |        |            |
| SI- L                                                            | ot Salt: | Sk- Kar | bolet Salt | and Shale.    |      | 987         | 58.7 | 0.0191 | 0.1445     |

SI- Lot Salt; Sk- Karbolet Salt and Shale.

←Appendix 2a. Br/Cl ratios ions in the Sedom and 'Amora formations (based on Zak, 1964; Appendix C).

 $\downarrow$ Appendix 2b. Br/Cl ratios in brines from boreholes in the Dead Sea Rift Valley and in the Dead Sea waters (based on Starinsky, 1974; appendices 10 and 12).

| WELL/    |      | Cl      | Br    | Br/Cl     |           |
|----------|------|---------|-------|-----------|-----------|
| LOCALITY | No.  | mg/1    | mg/l  | MolarX103 | COORD.    |
| 'Arava l | BT84 | 202,245 | 3,670 | 8.1       | 1786/0325 |
| Heimar 1 | BT87 | 52,752  | 1,035 | 8.1       | 1816/0497 |
|          | BT89 | 137,841 | 2,750 | 8.9       |           |
| Lot i    | D 16 | 28,356  | 510   | 7.9       | 1832/0602 |
|          | FG25 | 130,985 | 3,040 | 10.3      |           |
|          | FG26 | 119,096 | 2,465 | 9.3       |           |
| Sedom 1  | BT90 | 274,800 | 3,100 | 5.0       | 1861/0533 |
|          | BT91 | 255,500 | 2,870 | 5.0       |           |
|          | D 35 | 269,960 | 3,120 | 5.1       |           |
| Sedom 2  | D 59 | 106,600 | 1,790 | 7,4       |           |
| Dead Sea | D 52 | 196,940 | 4,600 | 10.3      | 1844/0506 |
|          | D 53 | 210,670 | 5,150 | 10.8      |           |
|          | D 54 | 219,250 | 5,270 | 10.6      |           |