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POLYNOMIAL APPROXIMATIONS ON DISJOINT SEGMENTS 

K. G. Mezhevich and N. A. Shirokov UDC 517.956 

The problem on polynomial approximation of functions from some class defined on a compact set E of 

the complex plane is studied. The case where E is the union of a finite number of segments is considered. 

Bibliography: 12 titles. 

Let E be a compact set of the complex plane, and let X be a class of functions on E. If E possesses 

interior points, then the functions from X are analytic in the interior of E. The problem on description 

of the class X in terms of the rate of polynomial approximation of functions from X is a classical theme 

of complex analysis. Assertions from this field of approximation theory can be divided into the so-called 

direct and inverse theorems. Direct theorems assert that any function from X can be approximated by a 

polynomial of degree at most n with rate b(n, z), where Z E E or Z E DE. Inverse theorems assert that if 

f can be approximated with rate c(n, z), then f E X. Assertions on the consistency of  direct and inverse 

theorems, i.e., b(n, z) ~ c(n, z), are essential. 

The inverse theorems deal with general compact sets (cf. [1-3]). There are a few papers on direct 

theorems for a disconnected set E. We mention the paper [4] of  Walsh, which was published in the 30s, 

and only three recent papers [5-7]. This is incommensurable with the hundreds of papers where E is a 

continuum. 

In this paper, we consider the case where E consists of a finite number of segments. Thus, E has no 

interior points, which is a new (relative to [5]) property. The proof includes operations with continua of 

types that never appeared in approximation theory. 

w Construction of Pn. The Geometric Stage 

Let S~. C Sk be the segment such that the middle points of S~ and Sk coincide and the length of S~ is equal 

to half of the length of Sk. We take arbitrary points Zk E S~ and construct a continuum F ( Z t , . . .  ,Zm) ~ E. 

Let Uk denote the rectangle such that Sk is the median and the length of the sides that are perpendicular to Sk 

is equal to 45. We choose 5 > 0 such that the rectangles Uk are pairwise disjoint. Let U[ C Uk be rectangles 

such that S~ is the median and the length of the sides that are perpendicular to Sk is equal to 25. We choose 

a point A outside the union of all Uk. We connect A with a vertex Tk of Uk, k : 1 ,2, . . .  ,m, by a curve of 

class C 2 such that the obtained curves are pairwise disjoint. We define by Y0 the union of  these curves. Let 

"ck(Zk) denote the segment of length fi such that "Ck(Zk) is perpendicular to Sk, the first endpoint is Zk, and 

the second endpoint and Tk lie on the same side of U~. We connect T~ with the second endpoint of xk(Zk) 

by a curve 7k C Uk \ U~ of class C 2 such that the curvature radius of Yk has a lower bound a0 > 0 that is 

independent of Zk. 
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m 

Let F(Z1,... ,Zm) = U (Sk U'~k(Zk) UT~) U70. 
k= l  

w Formulation of the Theorem and Preparations 

Let E be the join of  segments Sk : [ak, bk], k = 1,2, . . . ,  m, of the complex plane C. 

Let wk, k = 1 , 2 , . . . ,  m, be moduli of continuity, let rk, k : 1 ,2 , . . . ,  m, be nonnegative numbers, let 

r(rl, r2 , . . . ,  rm) be an m-dimensional vector, and let w(wl, w2, . . . ,  win) be an m-dimensional modulus of 

continuity. Let the moduli of  continuity wl , . . . ,  Wm satisfy the condition 

x A j  

/ W(t)dt +x fwi(t)dt t j - - y  <<.cwAx) 
, 1  

0 x 

m 

for every x E (0,A j), where Aj is the length of Sk. Let E = U Sk, and let A~(E) be the set of  functions f 
k= l  

on E such t h a t f  (r~) E Aw~(Sk), where 

Awk(S~) = {~p is defined onSk, Iw(z)-,p(g)l Cmw~(Iz-gl)  Vz, g ~ sk}. 

We introduce the function ph(z) (cf. [8]), which defines the approximation rate. We consider Green's 

function G(z,~)  for C \ E  with a pole at infinity. Let Lh = {z E C \ E ,  G(z, oo) = h}. For a sufficiently 

small h ~< h0, let L~, k = 1,2 , . . . ,  m, be the closed part of the level line Lh containing the segments Sk, 

k = 1,2, . . . ,  m. Let Ph (z) = dist (z, Lh). 

Theorem. Let f E Ar(E) .  Then for every n = 1,2, . . .  there exists a polynomial Pn(z) of  degree at 
most n such that 

rk If(z)-P~(z)l <~ ep~/~(z)w~(p~/~(z)), 
where z E Sk, k = 1, . . .  , m, and c is independent of n and z. 

We continue the function f E Ar (E)  to F(Z1,.. .  ,Zm). On the common part of 70, we have f _= 0. 

The derivatives f ' ( z ) , . . .  ,f(rk)(z) are defined for z E Sk. On [Zk, Tk], we define f in the form of the Hermite 

interpolation polynomial (cf. [9]) fk with the properties 

f ( Z k ) =  fk(Zk), 

f '  (Zk) = f[(Zk), 

The number of these conditions is equal to rk + 1. Let 

=o, 
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i.e., the number of these conditions is also equal to r~- + 1. Thus, we have 2rk + 2 conditions. 

w Construction of an Approximate Polynomial 

Let C \ ]7(Z1,... ,  Zrn) = ~ (Z1 , . . .  ~ Zm). Let )~ = q)z~,... ,z,~, (z) be a function with the normalization 

~zt,... ,Zm (~") = ~,  lira r ..... Z,~ (),z, > 0 
z~O Z 

establishing the conformal mapping of ~ (Z1 , . . .  ,Zm) onto the exterior of the circle JXi > 1. The inverse 

mapping is z = {Pz,,... ,z,~ @). We choose R = 1 + 1 In, where n is commensurable with the degree of the 

polynomial. Let 

r162 ----- ~R,O(r ,L,,}) = tP(Re-i~ 

where ~ E s ,Zm). Let 7(Zt , . . .  ,Zm) be a contour surrounding F(Z1, . . .  ,Z,,,). We consider the 

circuit of this contour in the positive direction. We take some sufficiently large p that is independent of z. 

Let ~ E y(Z1,...  ,Zm), le tz  E E ,  and let 

1 - ;  + 
4 + .  -+ 

1 F(z,O) = ~ j f(~)K(z,~,O)d~, 
,y(z~ ,... ,z,,,) 

( - ;  + 

- 

where f is continued to F ( Z t , . . .  ,Zm). The function K(z, 4, 0) maps f2(Zt , . . .  ,Z,n) onto the exterior of the 

circle IRI > I. However, for El and ~2 lying on different sides of a cut the values K(z~ ~1, O) and K(z, ~2~ O) 
need not coincide. 

Remark .  The constructed continuum has no interior points. Assume that f is an analytic function in 

a small neighborhood of Sk. For example, let f*  approximate f in a neighborhood of E. Then we can use 

the Cauchy formula. We modify  the contour y (q ,  . . . ,  Zm). Let ~k be a contour that surrounds Sk and is close 

to S~. Let z E S~, and let Yxk be the contour such that the part of the initial contour surrounding Sk and the 

part ofzk(Zk) surrounded by '~k are replaced with "ok. Then 

x~ 7z k 7~ k 

F ( z , O ) =  2~i f f(C)K(z,~,O)d;, zr 
YT~ 
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We have 

F ( z , O ) - f ( z ) - 2 r t i  f(4) K ( z , 4 , 0 ) - 4 _  z 
v~{z~ ..... z,.) 

1 1 --4 +~R,O (--4 -}- ~R,O) p-1 
K(z, 4,0 ) 4ZZ--~R,O(-~)_z-+ (~R,O-__--ff) 2 P-...-b (~R,O--z)P 

(~R,o - 4 )  ~ 
(~R,o - D P ( ; -  D'  

1 f(g]  (_~R,O--~) p d4" 
F ( z , O ) - f ( z ) -  2~i S , w  ( ~ R , O _ _ Z ) p ( ; _ _ Z )  

]t~ {Z1,... ~gm} 

(l) 

For z e &, we represent the function f(~)  from (1) in the form 

1 
f ( 4 )  = f ( z )  + f '  (z)( 4 - z) + . . .  + L?7;f(r~)(z)(4 - z) (rk) +{p(~,z). 

# ]~ '. 
(2) 

By (1) and (2), we find 

F ( z , O ) -  f ( z )  -- 2xi .. 
Yz 

(~R,O -- 4)1' el4 

_ ~(z/S /~.,o- ~t,' <,~_ ~<'/z~ S/~.,o-~/, ~ <,~_ 
2xi (~n,o - z ) P ( 4 -  z) 2~i (~e,o z)P "'" 

Y~ Y~ 

27cirk ! a \ ~R,O -- z / 2xi d . - 4 \ ~e,o -- z J 
Yz Y* 

(3) 

Let ~ = T,l(Zk) +gl  +SI, and l e t ~  = "C~(zk) +Yk +'Ok, where Z~(Zk) is the part ofzk(zk) that lies outside 

Zk. Then 

w w ~t ~ 

By (4), we can write the last term of (3) in the form 

1 ( ~ . , 0 -  ~ 1 . . . + Z  . . . + ~  . . . .  
2xi - \ ~R,0 d4 = ~ lr 

Y~ 7'k Yl 70 

(5) 

We estimate the integral over ~ from (5). By the Jacobi formula 

1 S(4_c~)r,_I(f(,~)(C~) __f(rar)(z))dc. ~(4,z) - (,. 1)! 
7, 
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We have 

2~i J ~-r \ r 

r 

2inif 1)! (7-~r (r162 
If rk = 0, then ~o(~, z) = f(~)  - f(z). Hence the right-hand side of (6) has the form 

2rti J { - z \ ~e,o - 

If rk = 0, then this integral converges since the following estimate holds: 

diam~k , 

Idr <. c dr. 
J t 
o 

For r~ > O, the following integral converges: 

r 

f z-~f({-6)"~-l(f('~)(cO-f(r~)(z))d~ d~. 
z 

Since the integrals (7) and (8) are convergent, we can pass to the limit in (3) and (5) as "cg --+ O. We have 

(~R,0 - z ) ~ ( r  z) 
d e - . . .  

( ~ , 0 -  r 1 6 2  z),'~-i de 

F(z,O)-f(z)-- f(z)2xi f 
v(z~,... ,z,,) 

f("e) (z) f 
2Xirk ! (r -- z)P 

~'( Z l ,... ,Zm ) 
r 

4 2xi(rk 1 1)' .. ( z ~ f  (~- f("~)(z))do) (~R'O-~p f cy)rk-1 ( f ( r~) (~) -  d~ 
- - \ ~R,o - z J 

7k z 
1 ~ 1 

;Ok y; vo 

For a fixed large p, we f ix  v such that v > p a n d  v is independent o f  n .  Let 

n ( s i n n 0 ,  2v 
f Cn,v\ s~nO ) d O = l .  

/ sin nO \ 2v 

We introduce the polynomial 

gn (z) = f.In (O)F (z, O) dO. 

(6) 

(7) 

(8) 
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w Estimate of gn (z) - f(z) 

Let z E Sk. We have 

K 

gn(z)- f(z) =/Jn(O)(F(z,O)-f(z))dO 

2xiN! / f 
-~ ~,(zl,... ,Zm) 

(~R,O--~)P(~--2)  N-1 

(~R,o - z ) p  
d~ 

1 (f(r~) dcy) (~R,O--~ +2~i(rk_ l ) , f ( z l~_~f (~- -~)  "k-1 (t~)-f(rk)(z)) \~R,O:~jPd~ 
~'k z 

,-, 1 [ .L z, (&O -- ~)P d~ 

2xi (~R; - - ~  (-~--- z) 
N 

(9) 

We write the first term of (9): 

/ 
--~ Z ... l, ,Zm) 

(~R,0 -- ~)P(~ - Z) N-1 q 
dO, 

where N > 0 and ~R,0 = W(Re-iOcp(~)) �9 We recall that y (z~ , . . . ,  2m) is a contour surrounding F (Z1 , . . . ,  Zm). 
We choose a sufficiently large 1"o such that the circle of radius ro /2  surrounds the continuum, i.e., I~1 < ro/2.  

Let c,. o = {141 -- to}.  By the Cauchy theorem, we have 

i.e., 

f . . .d~=f. . .d~,  
~,( z ~ ,... ,Zm ) % 

--~ Z v(~, zm) 

(~R,o - ~)~'(~ - z)  N - I  '~ -~-~,0 =z-~p- d~] d O : / J n ( O ) ( f  (~R'O--~)P(~--z)N-1 

Cr 0 

= f ( ~ - - z ) N - 1 Q f J n ( O ) ( ~ R ' O - ~ P d o ) d ~ .  
\ ~=,o-./ 

Cr 0 

We choose a large ro that depends on r ( Z l , . . .  ,Zm). For every 0, we have I~R,O - zl ~> bl and bo ~< I~ - zl ~< 

2to. Hence 

/(~--z)N-~/Jn(O) (~:'~ max(bo N-1 , (2to) N-1 ) �9 2~ro~lp max/Jn(O) ,~R,O-~]PdO.  

Cr 0 - - ~  - - ~  
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As is known (cf. [10, 11]), for the last factor we have 

f Jn(o)l~,o - ;I s do ~ b~(~, p ) ~ - ~  

For z C S~ and sufficiently large v, the following inequality holds: 

~R.O- ; z dO I~R- tl ~ J,,(o) l,v <~ (lO) p. <~ C 

~R,o--~ I~R,0- zl ~ I~R- zl/+v' 

If p is sufficiently large (depending on the geometric situation and the numbers rl,..., rm), then for 

any j we find (cf. [1, 11, 12]) 

I t - z l V l t - ~ ]  p 
f ~"v+I(z1 Zm;z), 0 ~< V ~< rj', (11) 

/~1-,.. =1 
y(z~,... ,z,,) 

where c is independent of Z] , . . . ,  Zm and Pi~ (Zt,. �9 Zm) is the maximal of the three distances to Lb. 

We similarly estimate the third term and the fourth term of (9). It is more difficult to estimate the 

second term: 

s 2 =  0 1 - P . / J n (  )dO27~i(rk_ ) , f  (z- 1-1~f (t-o)rk-l(f(rk)(CY)-f(rk)(z))d(Y)dt (~R'O ! ) d ~ .  
- ~ y~ z 

By the definition of the class of functions under consideration, we have ]f(r~) (~) _ f(rk)(Z)] ~< Wk(](Y -- Z]), 
CY C Sk. Consequently, 

1 
z - ~ f  (~-c~)''{-l(f('~)(~)-f(r~)(z))d~ <~ Iz tw f It-~l'~-'w~(l'~-~l)ldr 

z 7. 

f l iz_tlr~w~(iz_;i)= It--zlr~-~w~(Iz--tl) �9 ~< It-~lr ' - tw~(Iz-t l)  l ld~ l -  Iz - t l  
z 

Thus, 
7~ 

/  n(ot o / lwll -zl  
-- ~ y/r 

In view of the inequalities (10) and (11), we have 

d~ Jn O ~R'o -- ~ P [s21<. c f lt-zlr~-lw~(lr If  ( ) ~--7:~_~ dO [~R=~R,0] 
7~ -Iz 

~R,o - t p <" c f I t -  zlr~-lwg(It- zl) ~R,o- z [dtl 

<~ c / I t  -zl r~-I It - pZl + Pwk(p) ~e,O~n,o-- tz p Idt[ 
Y~ 
1 

~< c -w(p)p  (rk+t) + cw(p)p r" = cp"~w(p), p 
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where p - p~/n(Zt , . . .  ,Z,n,Z). In (9), gn(z) depends not only on z, but also on Zl , . . .  ,Zm. Thus, we obtain 

the estimate 

Ign(Z1,... ,Zm;z ) -  f(z)l  <~ cprkw(p), z e Sk. 

w The Final Stage 

! ! 
On [a~,b~] x . . . x  [am,bin] , we consider a function of the form 

A(Z1,. . .  ,Zm; z) = At (Z1)--- Am(Zm) x (z - Z1 ) r l + l . . .  (Z  - -  Z m )  r m + l  

such that 

~  / 

! I I ! [al ,bt] Jam,bin] 

m/ 
A(Zt , . . .  ,Zm;z)ldZll...IdZm t = 1--I  Ak(Zk)(z--Zk)~k+l[dzkl ~ 1. 

k=l[a~,b~] 

We can assume that the functions Ak(Zk) are bounded. 

Lemma  1. In the definition of  A, we can assume that each Ak(Zk) is a polynomial. 
1 

Proof. There exists a polynomial tr(X) such that f tr  ( x ) ( z -  x) r dx = 1 for every r. The last condition 
0 

holds if and only if 

1 1 

0 0 

v = O ,  1 , . . . , r -  1. 

We make a linear change of the variable. We obtain a polynomial Ak(Zk) such that 

f Ak(Z~)(Z--Zk)"~+lldZkl ~ 1. 

a I b' k, k 

The lemma is proved. 

Since Ak(Zk) is bounded, we have 

m 

IA(Zl,... ,Zm; z)l ,< cl- I rz- Zkl rk+l. 
k- l  

(12) 

The inequality (12) implies that 

f ... f f(z)A(Z1,...,Zm;z)flZll...ldZml =_ f(z). 
t t a t b r [al,bl] m ,, 

(13) 

Let 

/ /  
I ! [a] ,b~l ] [a,n,bm] 

gn ( J l , . . . ,  Zm; z )A(Zl , . . . ,  Zm; z)]dZll.. .  [dZm [. 
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The polynomial gn has degree at most n + r , ,  where r, = rj + . . .  + l" m -Jr- m. From (12) and (13) we derive 

the relations 

I "  
I f ( z )  - ~ ( z ) l  = f(z)- / 

/ /  
a t i t [ t,bt] Jam,bin] 

! t / ? [al,b 1 ] [am,bin] 

t I [al ,bl] 

�9 " f g n ( Z l ' " " Z ~ ; z ) A ( Z a ' " " Z m ; z ) l d Z l l ' " l d Z m l  

! l 

f ( z ) A ( Z 1 ,  . . . , Z m ;  z ) t d Z l l  . . . I d Z m l  - 

gn ( Z 1 , . . . ,  Zm; z)A(Z1,..., Zm, Z ) ] d Z ~ l . . .  ldZm] 

If(z)  - g ,  ( z 1 ,  . . . , Zm; z ) I A ( Z , , . . . ,  Zm;  z )  I d Z t l  . . . I dZm I. 
I ! [%,b,,l 

To complete the proof, we need some properties of the distances ph(z) and o~(Z1,...  ,Zm;z). These 

properties can be easily obtained in the geometric situation under consideration (cf. [ 1, 10]). 

L e m m a  2. For z E Sk, we have 

!~/ 1 ( 1 4 )  m/n(z) ~ tz--akllz--bkl+n~. 

~f 

then 

if z C Sk and 

then 

z ak+bk 1 2  4311bk--akl' 

pi/,,(z~,... ,z~; z) • 
I 1 

n v/lZ - Zk[ 2 + 1/n' 

ak + bk I 1 
z 2 I > ~[bk--ak[, 

pi/,,(Zl,...,Zm;Z) ~ ~ I~-a~l lz-bkl+n-~" (15) 

We present some important corollaries. On [ak, bk],t t we have pun(z) ~ ~1 in view of (14). Thus, by 

(14) and (15), we have 
1 

pi/n(Z1,... ,Zm;z) ~ cPl/n(Z) tz_Zkl,  z ~ &. (16) 

From (11) and (16) and the inequality wk(as) <<. Awk(S), A ~ 1, z E Sk, we find 

, ( , )  Ig,(Z,,... , Z m ; z ) - f ( z ) ]  <,e(p~(z))r~lz_Zkl,. W~ p~(-~)~ (17) 
1 1 1 

~< c,(p,~ (z)y ~ Iz-  z~l"* Iz-  Zkl w~(p~ (z)) = ca (p,~ (z))r'w~(pk (z))Iz-- Zkl"* +~" 
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I f j  r k and z E Sk, then c2 <~ Iz-Zjl  c3. 
We complete the proof of the theorem. We introduce the function 

m l 
I '](ZI,.  .. ,Zm;z) = I I  [z_ Zklr~+l" 

k=l 

m 
By (17), for z ~ U Sk we obtain the inequality 

k=l 

I g , ( Z x , . . .  ,Zm;z)-  f(z)l <<, CO~k/n(Z)Wk(f)l/n(Z))1-I(z1, . - .  ,Zm;2). 

Taking into account (12) and (18), for z E Sk we find 

! ! [a i ,b~] [am,bm] 
. . . . .  CPtlk/ (2)Wk(Pl / (Z)) 

g l  g l  " 

(18) 

m 

H ( z l ' "  "" 'Zrn;Z) H Iz-Z (k+lldZtl"'tdZml 
k= l  

The theorem is proved. 
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