N-TRIFLUOROMETHYL-N-NITROSOBENZENESULFONAMIDE A NEW TRIFLUOROMETHYLATING AGENT.

Teruo UMEMOTO* and Osamu MIYANO Sagamı Chemical Research Center Nishi-Ohnuma 4-4-1, Sagamıhara, Kanagawa 229, Japan

N-Trifluoromethyl-N-nitrosobenzenesulfonamide was synthesized. It was demonstrated that it acted as a new trifluoromethylating agent.

Recently much attention has been denoted to trifluoromethyl group because of its physicochemical effects.¹⁾ Although there have been many investigations on the trifluoromethylation,²⁾ little is known concerning the reagents for the displacement of hydrogens with trifluoromethyl groups. In most cases, trifluoromethyl iodide has been used as the reagent.^{2a,b,3)} We now wish to report the synthesis of N-trifluoromethyl-N-nitrosobenzenesulfonamide (TNS-B) as a new trifluoromethylating agent

Based on our assumption that the compounds consisting of an eliminable heteroatom between a perfluoroalkyl group and a strong leaving group should act as perfluoroalkylating agents, we have previously synthesized (perfluoroalkyl)aryliodonium trifluoromethanesulfonates and demonstrated that they served as highly reactive electrophilic perfluoroalkylating agents ⁴⁾ We intended to synthesize a new trifluoromethylating agent starting from trifluoronitrosomethane on the basis of the assumption.

It was reported that trifluoronitrosomethane reacted with hydroxylamine in methanol at low temperature $(-75^{\circ}C)$ to evolve nitrogen and trifluoromethyl methyl ether at elevated temperature $(-55^{\circ}C)$.⁵⁾ We found that the nitrosomethane was allowed to react with hydroxylamine in DMF/THF/ether (4/5/1) at -75°C, followed by the treatment with a base in the coexistence of benzensulfonyl chloride at $-75^{\circ}C$ to produce TNS-B⁶⁾ as a stable crystalline solid in a 57% yield.

$$CF_{3}NO \xrightarrow{NH_{2}OH} [CF_{3}-N=N-OH] \xrightarrow{PhSO_{2}Cl} CF_{3}N(NO)SO_{2}Ph$$

-75°C TNS-B

It was found that TNS-B became to be photochemically a good trifluoromethylating agent for aromatic compounds in the presence of biacetyl as a sensitizer. Irradiation of a solution of TNS-B, a substrate (l eq), and biacetyl (l eq) in a solvent using a Pyrex-tube under water bath-cooling with 400W high-pressure Hg lump gave the corresponding trifluoromethylated aromatic compounds in reasonable yields (Table 1). The reaction showed the behavior similar to the photochemical

3929

3930			

Run	Substrate ^{a)}	Solv.	Tıme(h)	Product ^{b)}	Yield(%)
1	Benzene(4 eq)	CH₃CN	5	Benzotrıfluorıde	24 ^{C)}
2	Naphthalene	"	5	CF_3 -Naphthalene($\alpha:\beta$)	39 ^{c)} (6.3:1) ^{e)}
3	Phenol	"	5	CF ₃ -Phenol(o:m·p)	51^{c} (6:1:3.5) ^{e)}
4	p-t-Butylphenol	"	5	2-CF ₃ -4-t-Butylphenol	59^{c} , 50^{d}
5	p-Dimethoxybenzene	(CH ₃) ₂ CO	5	2-CF ₃ -1,4-Dimethoxybenzene	
6	Pyrrole(2 eq)	СН ₃ОН	5	α -CF ₃ -Pyrrole	51 ^{C)}
7	$(S-n-C_{10}H_{21})_2$	(CH ₃) $_2$ CO	6	CF ₃ S-n-C ₁₀ H ₂₁	55 ^d)
8	(SCH ₂ COOH) ₂	"	14	CF 3 SCH 2 COOH	63^{d}
9	+SCH2CH2COOH)2		3.5	CF 3 SCH 2 CH 2 COOH	50 ^d)
10	(SCH 2 CH 2 CHCOOCH 3) 2 NHCOCF 3	"	7	CF 3 SCH 2 CH 2 CHCOOCH 3 NHCOCF 3	59 ^{d)}
11	$\{SCH_2CH(OAc)CH_2OAc\}_2$	CH 3 CN	14	$CF_{3}SCH_{2}CH(OAc)CH_{2}OAc$	64^{d}

Table 1. Trifluoromethylation with N-trifluoromethyl-N-nitrosobenzenesulfonamide

a) One equivalent amount of a substrate to TNS-B was used except for Run 1 and 6 b) All products exhibited spectral data (1 H- and 19 F-NMR, IR, and Mass) in accord with the assigned structures or with the authentic samples c) 19 F-NMR yields d) Isolated yields e) Isomer ratios

reaction of trifluoromethyl iodide with aromatic compounds. $^{3b,c)}$ However the method using TNS-B is favorable because of better yields and shorter reaction time, as well as easiness in handling crystalline TNS-B compared to gaseous trifluoromethyl iodide (bp -22.5°C).

TNS-B was also found to be a good reagent for the conversion of disulfides to trifluoromethylthic compounds under the same reaction conditions (Table 1). This new reaction presented a convenient synthetic approach to biologically active trifluoromethionine⁷⁾ from homocystine (Run 10). Thus, the hydrolysis of N-trifluoroacetyltrifluoromethionine methyl ester gave trifluoromethionine in a 75% yield.

References and Notes

1) F A Smith, CHEMTECH, Jul 422 (1973), R Filler, ibid, Dec 752 (1974)

- 2) a) Y Kobayashi, K Yamamoto, and I Kumadaki, Tetrahedron Lett, 1979, 1365 b) T Kitazume and N Ishikawa, Chem Lett, 1982, 137 c) K Matsui, E Tobita, M Ando, and K Kondo, Chem Lett, 1981, 1719 and references cited therein
- 3) a) E S Huysen and E Bedard, J Org Chem, 29, 1588 (1964) b) Y Kobayashi, I Kumadaki, A Osawa, S Murakami, and T Nakano, Chem Pharm Bull, 26, 1247 (1978) c) K L Kirk, H Kimoto, and S Fujii, Abstracts, 7th Symposium on Fluorine Chemistry of Japan, Okayama, Oct. 1981, p8
 4) a) T Umemoto, Y Kuriu, H Shuyama, O Miyano, and S Nakayama, J Fluorine Chem, 20, 695 (1982)
- 4) a) T Umemoto, Y Kuriu, H Shuyama, O Miyano, and S Nakayama, J Fluorine Chem, 20, 695 (1982)
 b) T Umemoto and Y Kuriu, Tetrahedron Lett, 1981, 5197 c) T Umemoto, Y Kuriu, and H Shuyama, Chem Lett, 1981, 1663 d) T Umemoto and Y Kuriu, Chem Lett, 1982, 65 e) T Umemoto, Y Kuriu, and S Nakayama, Tetrahedron Lett, 1982, 1169 f) T Umemoto, Y Kuriu, S Nakayama, and O Miyano, Tetrahedron Lett, 1982, 1471
- 5) S P Makarov, A Ya Yakubovich, A S Filatov, M A Englin, T Ya Nikiforova, Zh Obshch Khim, <u>38</u>, 709 (1968)
- 6) Mp 57-58°C, ¹⁹F-NMR (1nt CCl₃F 1n CDCl₃) 70 5 ppm (bs, CF₃), IR (nujol, cm⁻¹) 1510 (NO),
- 1360 (SO_2) , Molecular weight measurement 262 (Calcd 254)
- 7) W A Zygmunt and P A Tavormina, Can J Microbiol , <u>12</u>, 143 (1966)