Reactivity of an Early-Late Heterobimetallic Complex toward Phosphines: Synthesis, Structure, and Reactivity of a Cationic Tantalum-Palladium Compound with a Free Cyclopentadienyl Counteranion

Matthew D. Butts and Robert G. Bergman*

Department of Chemistry, University of California, Berkeley, California 94720

Received July 13, 1993®

Summary: Treatment of Cp₂Ta(CH₂)(CH₃) with CpPd- (C_3H_5) led to $Cp_2Ta(\mu-CH_2)_2PdCp$ (1). Reaction of 1 with 1 equiv of either PMe3 or P(OMe)3 in CH2Cl2 resulted in the formation of $Cp_2Ta(\mu-CH_2)_2Pd(PR_3)(Cl)$ (R = Me, 2; R = OMe, 3) and 0.5 equiv of $Cp_2(CH_2)$. The reaction of 1 with 2 equiv of PMe_3 or $P(OMe)_3$ or 1 equiv of $Me_2P(CH_2)_2PMe_2$ (DMPE) led to the isolation of $\lceil Cp_2 \rceil$ $Ta(\mu-CH_2)_2PdL_2$ | Cl (L₂ = 2 PMe₃, 4; L₂ = 2 P(OMe)₃, 5; $L_2 = DMPE$, 6). Addition of $P(OMe)_3$ to 1 in CH_3CN gave the product $Cp_2Ta(\mu-CH_2)_2Pd(P(OMe)_3)(CH_2CN)$ (7). Each of these reactions of 1 with phosphorus compounds implicates the intermediacy of free cyclopentadienyl anion. In support of this hypothesis, the stable naked Cp complex $[Cp_2Ta(\mu-CH_2)_2Pd(DMPE)]Cp$ (8) was isolated from the reaction of 1 with DMPE in CH3CN and was characterized by X-ray crystallography. The shortest distance between the free anionic Cp group and the bimetallic fragment in 8 is 3.46(3) Å. Addition of FeCl₂ to 8 resulted in the formation of 1/2 equiv of Cp2Fe and 6. Treatment of 8 with 1,2-dibromoethane led to the quantitative formation of 1/2 equiv of spiro[2.4]hepta-4,6-diene together with the bromide salt of 8.

Many transition-metal cyclopentadienyl (η^5 -C₅H₅; Cp) complexes undergo loss of the Cp ligand when treated with certain reagents. 1-5 In a small number of cases, products in which the extruded Cp (and in one related case, indenyl) ligand remains associated with the metal center as an unbound naked cyclopentadienyl anion⁶ have been isolated and characterized by X-ray diffraction. 7-10 In many cases, however, the fate of the lost ring is unknown. $^{11-13}$ Furthermore, there appears to be no system in which the inherent reactivity of the free cyclopentadienyl ligand has been studied. In this paper we report (a) the nucleophile-induced extrusion of a cyclopentadienyl ligand from an early-late heterobimetallic transition-metal complex, (b) the isolation and full characterization of the product of one of these reactions as a heterobimetallic complex with an unbound cyclopentadienide counterion, and (c) the reactivity of this transition-metal cyclopentadienide salt with a number of electrophilic reagents.

Allowing $Cp_2Ta(CH_2)(CH_3)^{14}$ and $CpPd(\eta^3-C_3H_5)^{15}$ to react at -78 °C in THF with slow warming to room temperature resulted in the formation of $Cp_2Ta(\mu-CH_2)_2$ -PdCp (1)¹⁶ with loss of 1 equiv of propylene (eq 1).

Complex 1 was isolated in 70% yield as an orange crystalline solid from CH₂Cl₂ at -35 °C.¹⁷ Reaction of 1 with 1 equiv of either PMe₃ or P(OMe)₃ at 45 °C in CH₂-Cl₂ resulted in displacement of the Cp ring^{3,18,19} and formation of 2 (R = Me) and 3 (R = OMe) (eq 2).

Complexes 2 and 3 were isolated in 85% and 66% yield, respectively, as white crystalline solids; NMR spectroscopic data indicate that the geometry at Pd is square planar in both complexes.²⁰ The coproduct in these reactions was 1/2 equiv of $Cp_2(CH_2)$, identified by gas chromatography

[•] Abstract published in Advance ACS Abstracts, October 1, 1993.

⁽¹⁾ Werner, H. J. Organomet. Chem. 1980, 200, 335.

⁽²⁾ Werner, H. Adv. Organomet. Chem. 1981, 19, 155.
(3) Anderson, G. K.; Cross, R. J.; Fallis, S.; Rocamora, M. Organometallics 1987, 6, 1440.

⁽⁴⁾ Christensen, N. J.; Hunter, A. D.; Legzdins, P.; Sánchez, L. Inorg. Chem. 1987, 26, 3344.
(5) Kubas, G. J.; Kiss, G.; Hoff, C. D. Organometallics 1991, 10, 2870.

⁽⁶⁾ Such free cyclopentadienide groups have been referred to earlier (see, e.g., ref 7) as " η^0 -Cp" ligands. We have avoided this nomenclature in response to the strenuous objections of a reviewer.

(7) Casey, C. P.; O'Conner, J. M.; Haller, K. J. J. Am. Chem. Soc. 1985,

⁽⁸⁾ Lilga, M. A.; Sohn, Y. S.; Ibers, J. A. Organometallics 1986, 5, 766. (9) Marder, T. B.; Williams, I. D. J. Chem. Soc., Chem. Commn. 1987,

⁽¹⁰⁾ Kakkar, A. K.; Taylor, N. J.; Marder, T. B. Organometallics 1989, 8, 1765.

⁽¹¹⁾ Shore, S. G.; Hsu, W.-L.; Churchill, M. R.; Bueno, C. J. Am. Chem.

Soc. 1983, 105, 654. (12) Slocum, D. W.; Englemann, T. R.; Fellows, R. L.; Moronski, M.; Duraj, S. J. Organomet. Chem. 1984, 260, C21.

⁽¹³⁾ Roth, S.; Ramamoorthy, V.; Sharp, P. R. Inorg. Chem. 1990, 29, 3345.

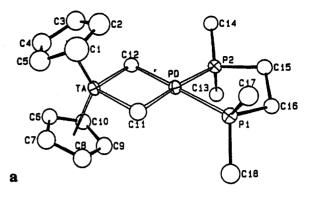
 ⁽¹⁴⁾ Schrock, R. R.; Sharp, P. R. J. Am. Chem. Soc. 1978, 100, 2389.
 (15) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1991, 28, 343.
 (16) H NMR (CD₂Cl₂, 400 MHz): δ 6.24 (s, 4H, CH₂), 5.66 (s, 5H, PdCp), 5.19 (s, 10H, TaCp). ¹³C{¹H} NMR (CD₂Cl₂, 101 MHz): δ 118.1 (s, CH₂), 97.4 (s, Cp), 95.9 (s, Cp).

⁽¹⁷⁾ Satisfactory elemental analyses have been obtained on all organometallic complexes described here except for 7.

⁽¹⁸⁾ Anderson, G. K.; Cross, R. J. J. Chem. Soc., Chem. Commun. 1986, 1502.

⁽¹⁹⁾ Werner, H.; Küln, A.; Tune, D. J. Chem. Ber. 1977, 110, 1763.
(20) NMR spectroscopic data for 2: ¹H NMR (CD₂Cl₂, 400 MHz) δ
7.19 (d, J = 8.7 Hz, 2H, CH₂), 5.36 (s, 10H, Cp), 5.19 (d, J = 5.1 Hz, 2H, CH₂), 1.42 (d, J = 8.3 Hz, 9H, CH₃); ¹³C[¹H] NMR (CD₂Cl₂, 101 MHz) δ
159.6 (d, J = 45.9, CH₂), 118.8 (s, CH₂), 98.6 (s, Cp), 16.0 (d, J = 22.4, CH₂), 118.8 (s, CH₃); ${}^{31}P{}^{1}H{}^{1}NMR$ (CD₂Cl₂, 162 MHz) δ -16.8 (s).

and GCMS as compared to an authentic sample. 21,22 The fact that this material had been prepared earlier by treatment of methylene chloride with sodium cyclopentadienide²² suggested strongly that the ring is extruded from 1 as [C₅H₅].


Monitoring the course of the reaction of 1 and 1 equiv of PMe₃ by ¹H NMR spectroscopy indicated that the first observable step is the formation of the bis(phosphine) adduct [Cp₂Ta(μ -CH₂)₂Pd(PMe₃)₂]Cl (see below), which occurred quickly at room temperature. This complex was slowly consumed as the remaining half of 1 reacted, with the overall result being the formation of 1 equiv of 2. The same type of reactivity was observed for the reaction of 1 and P(OMe)3, forming 3. Treatment of 1 with 2 equiv of phosphine or phosphite or 1 equiv of Me₂P(CH₂)₂PMe₂ (DMPE) led, as expected, to complexes 4-6 (eq 3).

Complex 6 was characterized by X-ray crystallography;²⁸ an ORTEP diagram of the cation portion is shown in Figure 1.24-27 The chloride counterion is noncoordinating in the solid state, a feature which is also true of the solution structure, as determined by NMR spectroscopy.²⁸ In agreement with this observation, complex 6 was found in conductivity studies to be a 1:1 electrolyte in CH₃CN. In each of the reactions illustrated in eq 3, the Pd-bound Cp in 1 reacted with solvent to produce 0.5 equiv of Cp₂-(CH₂); no intermediates were observed.

Further evidence for the elimination of [C₅H₅] from 1 is provided by the reaction of 1 with phosphorus compounds in acetonitrile. For example, complex 7 is formed in the reaction of P(OMe)3 with 1 in CH3CN at 45 °C (eq. 4).29 Although this is a fairly clean reaction (approximately

(27) Butts, M. D.; Bergman, R. G. Manuscript in preparation.

(28) See the supplementary material.

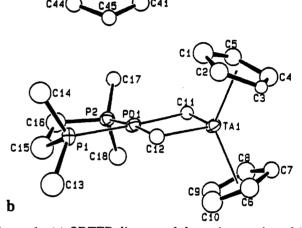


Figure 1. (a) ORTEP diagram of the cation portion of 6. Selected bond distances (Å) and bond angles (deg): Ta-Pd, $2.832(1); Ta-CH_2, 2.136(8), 2.145(9); Pd-CH_2, 2.152(8), 2.130-CH_2, 2.152(8), 2.15$ (9); Ta-CH₂-Pd, 82.7(3), 83.0(3); CH₂-Ta-CH₂, 97.1(3); CH₂-Pd-CH₂, 97.1(3). (b) ORTEP diagram of 8. The bond distances and angles of the cation are identical with those of 6 within experimental error.

90% NMR yield), separation from side products is exceedingly difficult, and 7 could be isolated in only 3% yield as a pure (>97%) compound. It is possible, though, to synthesize 7 independently by treating 3 with NaCH₂-CN in CH₃CN at room temperature. We conclude that in reaction 4 [C₅H₅] is again expelled and abstracts a proton from acetonitrile to generate [CH₂CN]-. Even though the cyanomethide ion is undoubtedly generated reversibly in low concentration (in view of the relative pK_a 's of cyclopentadiene and acetonitrile), apparently it can be trapped rapidly by an unsaturated cationic palladium center. 30 As in the reactions of 1 with monodentate phosphines in CH₂Cl₂, the first step in the reaction of 1 and P(OMe)3 at room temperature is the immediate formation of 1/2 equiv of a bis(phosphine) adduct. The 1Hand ¹³C NMR spectra of this intermediate are consistent with the formulation $[Cp_2Ta(\mu-CH_2)_2Pd(P(OMe)_3)_2]Cp.^{31}$

Because the above results implicate the intermediacy of complexes containing free cyclopentadienyl anions, an isolable analogue was sought by treating 1 with DMPE in CH₃CN at room temperature. Pale orange crystals of the

5.48 (s, 5H, Cp), 5.44 (s, 10H, Cp), 3.60 (m, 18H, CH₃). ³¹P{¹H} NMR (CD₃CN, 121 MHz): δ 28.3 (s).

⁽²¹⁾ Katz, T. J.; Acton, N.; Martin, G. J. Am. Chem. Soc. 1973, 95,

⁽²²⁾ Bryndza, H. Ph.D. Thesis, University of California, Berkeley, CA,

⁽²³⁾ Crystal parameters for 6 at -103 °C: monoclinic, $P2_1/c$, a=11.130(1) Å, b=20.230(2) Å, c=11.726(2) Å, V=2370.8(10) ų, Z=4, d(calc)=1.88 g cm⁻³, R=3.4%, $R_W=4.8\%$.
(24) Jacobsen, E. N.; Goldberg, K. I.; Bergman, R. G. J. Am. Chem.

Soc. 1988, 110, 3706.

⁽²⁵⁾ Goldberg, K. I.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 4853.

⁽²⁶⁾ Hostetler, M. J.; Butts, M. D.; Bergman, R. G. Inorg. Chim. Acta

⁽²⁰⁾ See the supplementary material. (29) ¹H NMR (C_6D_6 , 400 MHz): δ 6.47 (d, J = 11.3 Hz, 2H, CH₂), 5.68 (d, J = 3.6 Hz, 2H, CH₂), 4.69 (s, 10H, Cp), 3.40 (d, J = 12.0 Hz, 9H, CH₃), 2.04 (d, J = 9.5 Hz, 2H, CH₂CN). ¹³C[¹H] NMR (C_6D_6 , 101 MHz): δ 141.8 (d, J = 6.8 Hz, CH₂ bridge), 130.2 (s, CN), 125.6 (s, CH₂ bridge), 98.1 (s, Cp), 50.8 (d, J = 1.3 Hz, CH₃), -9.9 (d, J = 14.0 Hz, CH_2 CN). ³¹P[¹H] NMR (C_6D_6 , 162 MHz): δ 52.0 (s).

⁽³⁰⁾ It appears that a reactive solvent, such as CH2Cl2 or CH8CN, is required to obtain stable products in the reactions of 1 with phosphines. Reactions performed in tetrahydrofuran were not clean and provided no evidence for intermediates containing free cyclopentadienide ions. (31) ¹H NMR (CD₃CN, 300 MHz, 25 °C): δ 6.27 (m, 4H, CH₂ bridge)

anionic Cp complex 8 were isolated directly from the reaction mixture by diethyl ether diffusion at room temperature in 85% yield (eq 5).32 The structure of 8 was

confirmed in an X-ray crystallographic study (Figure 1).33 The unit cell contains two molecules. The shortest distance between the cyclopentadienide counterion and the bimetallic fragment is 3.46(3) Å.34 The average C-C distance in the planar displaced Cp ligand of 1.41(3) Å is in agreement with data previously observed. 7-10 The bonding distances in the bimetallic cation are identical to those in the chloride salt 6. Likewise, the ¹H, ¹³C, and ³¹P NMR spectra of the bimetallic portion of 8 in CD₃CN are identical with those of 6, indicating that the cyclopentadienide remains noncoordinating in solution.

The reactivity of 8 is consistent with the intervention of free Cp complexes in the reactions discussed above. First, the unbound Cp ligand undergoes slow deuterium exchange with CD₃CN solvent over several hours at room temperature, as seen in the disappearance of the cyclopentadienide resonance in the ¹H NMR spectrum and the appearance of a corresponding signal in the ²H NMR spectrum. This supports the existence of an endothermic, but operable, proton-transfer equilibrium between the [C₅H₅] group and CH₃CN. It is also possible to carry out stoichiometric reactions between the transition-metal cyclopentadienide complexes and added electrophiles that are strongly reminiscent of those observed earlier with sodium cyclopentadienide. Thus, addition of FeCl₂ to 8 in acetonitrile resulted in the immediate formation of $^{1}/_{2}$ equiv of Cp₂Fe (eq 6), which was isolated in 80% yield by

$$8 + \operatorname{FeCl}_{2} \xrightarrow{\operatorname{CH}_{3}\operatorname{CN}} 6 + \operatorname{Cp}_{2}\operatorname{Fe} \qquad (6)$$

$$8 + \operatorname{Br} \xrightarrow{\operatorname{CH}_{3}\operatorname{CN}} \operatorname{RT}$$

$$\left[\operatorname{Cp}_{2}\operatorname{Ta} \xrightarrow{\operatorname{Pd}(\operatorname{DMPE})}\right]_{\operatorname{Br}}^{+} + (7)$$

sublimation.35 Treatment of 8 with 1,2-dibromoethane at room temperature led to the quantitative formation of $\frac{1}{2}$ equiv of spiro[2.4]hepta-4.6-diene over the course of several hours (2 equiv of Cp- is required to form the product) by ¹H NMR spectroscopy (eq 7). The organic product was identified by ¹H NMR spectroscopy, GC, and GCMS as compared to an authentic sample.³⁶ In both reactions the halide salt of the bimetallic cation is formed, although the bromide salt was not fully characterized.

In conclusion, an early-late heterobimetallic complex has been prepared which undergoes Cp loss at palladium upon reaction with phosphines, in one case to form a unique example of an early-late cationic heterobimetallic complex containing a free cyclopentadienyl counteranion (8). An interesting aspect of the behavior of 8 is that essentially all of its chemistry is focused at the counterion rather than at either of the metal centers.³⁷ It is presumably the electron richness of the palladium center of 1, formally an 18-electron complex, that makes Cp loss a facile process upon phosphine addition, despite the potential for the Pd to back-donate electron density to the Ta center.

Acknowledgments. We are grateful for support of this work from the National Science Foundation (Grant No. CHE-9113261). We thank Dr. F. J. Hollander, director of the UC Berkeley X-ray diffraction facility (CHEXRAY), for solving the crystal structures of 6 and 8.

Supplementary Material Available: Spectroscopic and analytical data for complexes 1-8 and X-ray diffraction data (ORTEP diagrams and tables of crystal and data collection parameters, positional and anisotropic thermal parameters, and intramolecular distances and angles) for 6 and 8 (13 pages). This material is provided with the archival edition of the journal, available in many libraries. Alternatively, ordering information is given on any current masthead page.

OM930478U

^{(32) &}lt;sup>1</sup>H NMR (CD₃CN, 400 MHz): δ 5.91 (m, 4H, μ -CH₂), 5.48 (s, 5H, Cp anion), 5.31 (s, 10H, Cp), 1.94 (d, J = 16.9 Hz, 4H, DMPE CH₂), 1.53 (m, 12H, CH₃). ¹³C[¹H] NMR (CD₃CN, 101 MHz): δ 130.1 (m, μ -CH₂), 104.2 (s, Cp anion), 99.7 (s, Cp), 14.2 (m, DMPE CH₂), 28.9 (dd, J = 23.8, 22.6 Hz, CH₃). ³¹P[¹H] NMR (CD₃CN, 162 MHz): δ 28.3 (s). (33) Crystal parameters for 8 at –118 °C: triclinic, $P\bar{I}$, a = 10.451(3) Å, b = 14.619(3) Å, c = 16.308(4) Å, V = 2318.9(13) Å³, Z = 4, d(calc) = 1.89 g cm⁻³, R = 5.4%, R_W = 6.9%. An incomplete data set was collected due to interruption of the data set and loss of crystal orientation.

due to interruption of the data set and loss of crystal orientation.

⁽³⁴⁾ This distance refers to that between the Cp ring and a methyl carbon of the DMPE ligand.

⁽³⁵⁾ Wilkinson, G. Org. Synth. 1956, 36, 31.

⁽³⁶⁾ This compound was prepared by treating NaCp with 1,2-dibromoethane: Wilcox, C. F., Jr.; Craig, R. R. J. Am. Chem. Soc. 1961, 83, 3866,

⁽³⁷⁾ This is in contrast to the behavior of [Ir(DPPE)₂]Cp.8