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Abstract: A new procedure for the cyclopropanation of a,b-unsat-
urated carbonyl compounds and related systems is described which
employs triisopropylsulfoxonium tetrafluoroborate and sodium hy-
dride in dimethylformamide. Using this reagent, a range of a,b-un-
saturated ketones (and an ester and a vinyl nitro example) has been
converted into the corresponding gem-dimethylcyclopropyl carbo-
nyl compounds; in addition, a preliminary result is described in
which an activated alcohol is converted directly into a gem-dimeth-
ylcyclopropyl ketone by a one-pot tandem oxidation–cyclopropana-
tion sequence, albeit in low yield.
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In recent years there has been a revival of interest in cy-
clopropanation chemistry with the development of effi-
cient carbenoid sources and the application of
organocatalysis to provide several elegant enantioselec-
tive syntheses.1,2 This is a testament to both the prevalence
of the cyclopropane unit in nature1 and the utility of func-
tionalised cyclopropanes as synthetic building blocks.2

Although the parent methylene cyclopropane is present in
numerous natural products, the gem-dimethylcyclopro-
pane group is a more common structural motif.3 There are
numerous procedures available to prepare gem-dimethyl-
cyclopropanes,4 but it is noteworthy that only a limited
number involve isopropyl transfer to electron-deficient
alkenes (Figure 1).5–8 The first such procedure was report-
ed by Corey and Jautelat and utilised diphenylsulfonium
isopropylide (1).5 This reagent efficiently produces gem-
dimethylcyclopropanes from unsaturated esters and
amides but with a,b-unsaturated ketones, epoxide forma-
tion can compete (for example, 3-methyl-2-cyclohex-
enone gives mainly the unsaturated epoxide5a). In
addition, the use of a strong base and low temperatures is
required. In 1973, Johnson’s group disclosed the use of
(dimethylamino)isopropyl-p-tolyloxosulfonium tetraflu-
oroborate (2) for the gem-dimethylcyclopropanation of
trans-1,2-dibenzoylethene and trans-chalcone.6 However
the synthesis of salt 2 was difficult and low-yielding and
the scope of the procedure has not been demonstrated.
More recently, it has been shown that the cyclopropana-
tion of unsaturated esters can be achieved using the iso-
propyl phosphorane 37 and the nitro compound 4,8 but

again the scope of these reagents has not been determined
(e.g. there are no examples of the use with a,b-unsaturated
ketones).

As part of our continuing programme in telescoped pro-
cesses and tandem oxidation processes (TOP),9 we have
recently become interested in developing improved routes
to functionalised cyclopropanes.10,11 First, a tandem pro-
cedure was designed for the one-pot oxidation–cyclopro-
panation of allylic alcohols using MnO2 in conjunction
with stabilised sulfuranes such as (carbethoxymethyl-
ene)dimethylsulfurane.10 We went on to develop an im-
proved procedure for the dimethylsulfoxonium methylide
cyclopropanation of a,b-unsaturated ketones using tri-
methylsulfoxonium iodide and 1,3,4,6,7,8-hexahydro-1-
methyl-2H-pyrimido[1,2-a]pyrimidine (MTBD).11

As an extension for our natural product programme, we
also required a method for the nucleophilic gem-dimeth-
ylcyclopropanation of a,b-unsaturated ketones that would
eliminate competitive epoxide formation (via reaction of
the ketone), proceed under mild reaction conditions, and
be applicable to a range of Michael acceptors. It is well es-
tablished that the ylide derived from treatment of a sulfox-
ium salt with base can undergo nucleophilic
cyclopropanation of a,b-unsaturated alkenes (the Corey–
Chaykovsky reaction) via alkylidene transfer.12 We there-
fore explored the preparation and reactions of a triisopro-
pylsulfoxonium salt. As the S-alkylation of sulfoxides is
successful only in the case of methylation,13 it was neces-
sary to synthesise such a salt by oxidation of the triisopro-
pylsulfonium salt14 (itself derived from diisopropyl
sulfide). Unfortunately, the literature contains few reports
on the oxidation of sulfonium salts to sulfoxonium salts.
The best method, aqueous sodium m-chloroperbenzoate,15
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was not useful for this substrate because the oxidation
could not be driven to completion. We reasoned that the
use of a more powerful oxidant could overcome the slow
oxidation of the sterically encumbered sulfonium salt. Ru-
thenium tetroxide16 has been applied to the oxidation of
many organic functionalities and, after optimisation of the
classical Sharpless conditions (RuCl3, MeCN–CCl4–
H2O),17 we found that with 40 mol% of RuCl3 and 7.5
equivalents of NaIO4, triisopropylsulfoxonium could be
prepared, after recrystallisation from MeOH–Et2O, in
76% yield18 (Scheme 1).

With the sulfoxonium salt in hand, the cyclopropanation
of a,b-unsaturated ketones was explored; the initial exper-
iments were conducted under literature conditions for
dimethylsulfoxonium methylide cyclopropanation (NaH
in DMF).12d We were delighted to observe that, after five
hours at room temperature, the gem-dimethylcyclopro-
pane adduct of chalcone6 was obtained in 91% yield
(Scheme 2). Most notably, only a single diastereomer, the
trans-product, was obtained. Following this success, a
range of a,b-unsaturated ketones was examined as cyclo-
propanation substrates (Table 1).

The results illustrated in Table 1 indicate that cyclopropa-
nation of a wide range of a,b-unsaturated ketones pro-
ceeds readily in 33–93% yield.19,20 The results
demonstrate a tolerance for both cyclic and acyclic sub-
strates; high yields being obtained in both series. Even in
the cases where moderate yields were obtained, there was
no evidence for any of the epoxide (1,2-addition prod-
ucts). Moreover, in all examples studied, only a single
diastereomer of product, the trans-cyclopropane, was ob-
tained. Most notably, (2E,4E)-1,5-diphenylpenta-2,4-
dien-1-one (entry 3) afforded only the 1,4-mono-addition
product 8 in 85% yield. Electron-poor and electron-rich
a,b-unsaturated ketones both seem to participate reason-
ably well as evidenced by the successful use of both (E)-
1,4-diphenylbut-2-ene-1,4-dione (entry 7) and chromone
(entry 9). Even a terminal vinyl group could be success-
fully cyclopropanated (entry 4). The reaction appears to
tolerate heterocyclic functionality (entry 2) and the use of
(E)-2-nitrostyrene illustrates the use of electron-with-
drawing groups other than carbonyls. In contrast to the use

of dimethylsulfoxonium methylide,12 enolisable sub-
strates can be problematic leading to alternative conden-
sation byproducts and a lower yield (entries 5 and 6).
Furthermore, the use of cyclohexenone led to only 4% of
the desired product. Presumably, the slower rate of cyclo-
propanation, due to the steric encumberance of an ylide
bearing three isopropyl groups, renders deprotonation a
competitive alternative for the basic ylide.

After developing a successful method for cyclopropana-
tion via isopropyl transfer we briefly investigated a one-
pot MnO2 oxidation–cyclopropanation reaction11

(Scheme 3). This procedure produced chalcone in 77%
yield along with a 7% yield of the oxidized/cyclopropan-
ated adduct 6. We are currently optimising these condi-
tions.
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Table 1 Cyclopropanation Using Triisopropylsulfoxonium Tetrafluoroborate 5 and NaH in DMFa

Entry Substrate Product Time (h) Yield (%)b

1

6

5 91

2

7

2 71

3

8

4 85

4

9

24 53

5

10

1.5 53

6

11

2 33

7

12

23 68

8

13

3 92

9

14

3 95

10

15

17 93

a Using 1.2 equiv i-Pr3S(O)BF4 in DMF at r.t.
b Isolated yield of chromatographically homogeneous material; >95% trans-isomers by 1H NMR spectroscopy.
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A 25 mL round-bottomed flask with stirrer bar was charged 
with NaH (60% dispersion in mineral oil, 23 mg, 0.57 mmol, 
1.2 equiv), sealed with a rubber septum and purged with 
argon. The flask was maintained under argon and anhyd 
DMF (4 mL) was added. The vigorously stirred suspension 
was cooled to 0 °C, the septum briefly removed and 
triisopropylsulfoxonium tetrafluoroborate (152 mg, 0.57 
mmol, 1.2 equiv) added in a single portion. The mixture was 
stirred for 5 min before the addition of a solution of (E)-
chalcone (100 mg, 0.48 mmol) in DMF (1 mL) dropwise by 
cannula. The cooling bath was removed and the brown-
coloured solution allowed to stir at r.t. until the reaction was 
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