THE PALLADIUM(0)-CATALYZED REDUCTIVE COUPLING OF HALIDES USING sym-DICHLOROTETRAMETHYLDISILANE AS A REDUCING AGENT

Taichi NAKANO^{*}, Masatoshi TAKAHASHI, Toshiyuki ASHIZAWA, Takeshi ARAI Shinji SEKI, Hideyuki MATSUMOTO, and Yoichiro NAGAI Department of Chemistry, Gunma University, Kiryu, Gunma 376

The reaction of benzylidene chlorides as well as 1,2-dihalogeno-1,2-diphenylethanes with sym-dichlorotetramethyldisilane in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium(0) gave aryl-substituted ethenes in good yields.

The reductive coupling of benzylidene chlorides yielding 1,2-dichloro-1,2-diarylethanes and stilbenes usually employs active metal agents in low oxidation state such as various zero-valent metals¹⁾ as well as Cr(II),²⁾ Cu(I),³⁾ V(II),⁴⁾ Ti(II),⁵⁾ and Co(I)⁶⁾ species.

We report herein our results on reductive coupling of benzylidene chlorides 1 to aryl-substituted ethenes 3 or to aryl-substituted 1,2-dichloroethanes 4 and dehalogenation of 1,2-dichloro- and 1,2-dibromo-1,2-diphenylethane to trans-stilbene 3(Ar=Ph), using sym-dichlorotetramethyldisilane 2, formally tetra-valent silicon species.⁷⁾

ArCHCl₂ + $(ClMe_2Si)_2 \xrightarrow{Pd(0)} 1/2 \text{ ArCH=CHAr} + 2 Me_2SiCl_2 (1)$ 3 1 $\operatorname{ArCHCl}_{2} + \frac{1}{2} (\operatorname{ClMe}_{2}\operatorname{Si})_{2} \xrightarrow{\operatorname{Pd}(0)} \frac{1}{2} \operatorname{ArCHClCHClAr} + \operatorname{Me}_{2}\operatorname{SiCl}_{2} (2)$ 4 PhCHXCHXPh + $(ClMe_2Si)_2 \xrightarrow{Pd(0)}$ PhCH=CHPh + 2 Me_2SiClX (3) 5 (X= Cl, Br)

A typical experiment is as follows. A mixture of benzylidene chloride (1.16g, 10 mmol), sym-dichlorotetramethyldisilane (2.8g,15 mmol), tetrakis(triphenylphosphine)palladium(0) (50mg,0.08 mmol) and mesitylene (3 ml) was stirred at 130°C for 2.5 h under argon. GLC analysis of the resulting mixture disclosed that the trans -stilbene had been produced in 78% yield. Results were summarized in the Table.

Hexamethyldisilane was found to work as well for the coupling reaction. In this case, however, the yield of trans-stilbene from benzylidene chloride was slightly low(40%) and the reaction required prolonged heating.

The use of slight excess of the disilane is sufficient to promote reaction (1), while the use of a half mole of the disilane relative to benzylidene chloride gives the dichlorodiphenylethane $\underline{4}(Ar=Ph)$. Reaction (2) can be rationalized in terms of the palladium(0)-catalyzed metathesis(eqn 5) between a benzylidene chloride and a rather unstable intermediate, α -chlorobenzylchlorodimethylsilane $\underline{6}$ which would be produced by reaction (4). The formation of $\underline{6}$ is reasonably anticipated, since it has been reported by Eaborn and coworkers that the Pd(0) -catalyzed reaction of benzyl chlorides with hexamethyldisilane gives benzyltrimethylsilanes in variable yields.⁸⁾ Reaction (5) is reminiscent of the Pd(0)-catalyzed reaction of allyltrimethylsilane with allyl bromide that gives 1,5-hexadiene together with trimethylbromosilane(eqn 6).⁹⁾

$$\operatorname{ArCHCl}_{2} + (\operatorname{ClMe}_{2}\operatorname{Si})_{2} \xrightarrow{\operatorname{Pd}(0)} \operatorname{ArCHClSiMe}_{2}\operatorname{Cl} + \operatorname{Me}_{2}\operatorname{SiCl}_{2} \quad (4)$$

$$\underline{6}$$

$$\underline{6} + \operatorname{ArCHCl}_{2} \xrightarrow{\operatorname{Pd}(0)} \operatorname{ArCHClCHClar} + \operatorname{Me}_{2}\operatorname{SiCl}_{2} \quad (5)$$

$$CH_2 = CHCH_2 SiMe_3 + CH_2 = CHCH_2 Br \xrightarrow{Pd(0)} (CH_2 = CHCH_2 -)_2 + Me_3 SiBr$$
 (6)

1,2-Dichloro- and 1,2-dibromo-1,2-diphenylethane gave trans-stilbene in quantitative yield. This reaction can be similarly elucidated by the metathesis of 5 with 2 giving 1,2-diphenyl-1-halogeno-2-(chlorodimethylsilyl)ethanes(eqn 7), which release spontaneously chlorohalogenodimethylsilane via the well-known β -elimination¹⁰ resulting in the formation of trans-stilbene(eqn 8).

The reported reactions are all clean and homogeneous and good yields of aryl-substituted alkenes are generally obtained. Disilanes are available in

614

Chemistry Letters, 1982

Run ^{a)}	Halide	Conditions	Product ^{b)}	Yield(%) ^{c)}
1	C-H-CHCl	130°C, 2.5 h	$(C_H_CH=)$	78
2	C _c H _c CHCl ₂	", 1.0 h	$(C_{c}H_{c}CHCl-)^{d}$	90 ^{e)}
3	o-ClC ₆ H ₄ CHCl ₂	", 0.5 h	$(o-ClC_6H_4CH=)_2$	94(75)
4	p-clc ₆ H ₄ CHCl ₂	", 0.5 h	$(p-ClC_6^H 4^{CH=})_2$	100(81)
5	2,4-C1 ₂ C ₆ H ₃ CHC1 ₂	", 0.5 h	(2,4-Cl ₂ C ₆ H ₃ CH=) ₂	94(76)
6	(C ₆ H ₅ CHC1-) ₂ ^{d)}	", 5.0 h	(C ₆ H ₅ CH=) ₂	99
7	$(C_6H_5CHBr-)_2^d)$	", 5.0 h	(C ₆ ^H 5 ^{CH=)} 2	100
8 ^{f)}	C6H5CHC12	reflux, 12.0 h	(C ₆ H ₅ CH=) ₂	40
			(C6H5CHC1-)2	39

Table The Palladium(0)-Catalyzed Reductive Coupling Reaction of Benzylic Halides with (ClMe₂Si)₂

a) Conditions(molar ratio). Run 1,6,7,8; Halide/Disilane/Pd(0)=1.00/1.50/0.005. Run 2; " " =1.00/0.50/0.005. Run 3,4,5; " " =1.00/2.00/0.01.

b) Only trans-isomer was obtained. Analyses and physical properties are consistent with the assigned structures.

c) GLC yields based on the halide charged. In parentheses are given isolated yields.

d) meso-Form. e) Yield is based on the halide consumed (Conversion; 50%).

f) Hexamethyldisilane was used as a reducing agent.

PhCHXCHXPh + $(ClMe_2Si)_2 \xrightarrow{Pd(0)} PhCHXCH(SiMe_2Cl)Ph + Me_2SiClX (7)$

PhCHXCH(SiMe₂Cl)Ph

 β -Elimination

 \rightarrow PhCH=CHPh + Me₂SiClX (8)

X= Cl, Br

large quantities¹¹⁾ and removal of the counter product, dichlorodimethylsilane (bp. 70°C), from the reaction mixture can be most easily achieved by evaporation.

References

- J. Mathieu and J. Weill-Raynal, "Formation of C-C Bonds", Vol II, Georg Thieme Publishers, Stuttgart, (1975); H. Nozaki and R. Noyori, Tetrahedron, <u>22</u>, 2163 (1966); K. Sisido, Y. Udo, H. Nozaki, and E. V. Jensen, J. Org. Chem., <u>26</u>, 1227 (1961); K. Sisido, Y. Udo, and H. Nozaki, J. Am. Chem. Soc., <u>82</u>, 434 (1960); K. Sisido, H. Nozaki, and H. Kuyama, J. Org. Chem., <u>14</u>, 1124 (1949).
- 2. J. K. Kochi and D. M. Singleton, J. Am. Chem. Soc., 90, 1528 (1968).
- 3. H. Nozaki, T. Shirafuji, and Y. Yamamoto, Tetrahedron, 25, 3461 (1969).
- 4. T-L. Ho and G. A. Olah, Synthesis, 170 (1977).
- 5. G. A. Olah and G. S. Prakash, Synthesis, 607 (1976).
- 6. Y. Yamada and D. Momose, Chem. Lett., <u>1981</u>, 1277.
- 7. In some cases, disilanes act as reducing agents, e.g., see; K. Tamao, O. Okazaki, and M. Kumada, J. Organometal. Chem., <u>146</u>, 87 (1978); H. Okinoshima and W. P. Weber, J. Organometal. Chem., <u>155</u>, 165 (1978).
- D. Azarian, S. S. Dua, C. Eaborn, and D. D. M. Walton, J. Organometal. Chem., <u>117</u>, C55 (1976) and see also: H. Matsumoto, M. Kasahara, I. Matsubara, M. Takahashi, T. Nakano, and Y. Nagai, Chem. Lett., <u>1982</u>, 399.
- 9. H. Matsumoto, T. Yako, S. Nagashima, T. Motegi, and Y. Nagai, J. Organometal. Chem., 148, 97 (1978).
- 10. C. Eaborn, "Organosilicon Compounds", Butterworths, London, (1960), p133.
- 11. Commercially available(Petrarch Systems) and also see: H. Matsumoto, T. Motegi, M. Hasegawa, and Y. Nagai, J. Organometal. Chem., <u>142</u>, 149 (1977).

(Received March 9, 1982)