Catalysis Science & Technology

PAPER

Cite this: Catal. Sci. Technol., 2014, 4, 780

Molten copper hexaoxodivanadate: an efficient catalyst for SO₃ decomposition in solar thermochemical water splitting cycles[†]

Takahiro Kawada, Tonami Tajiri, Hiroaki Yamashita and Masato Machida*

Molten copper hexaoxodivanadate (CuV₂O₆) was identified as an active catalyst for SO₃ decomposition, which is an oxygen generation step in solar thermochemical water splitting cycles, at moderate temperatures (*ca.* 600 °C). The SO₃ decomposition over CuV₂O₆ was significantly accelerated when the reaction temperature approached the melting point (*ca.* 630 °C) compared with solid phases of Cu₂V₂O₇ as well as other compounds in the CuO-V₂O₅ system with higher melting points (\geq 780 °C). A possible intermediate CuSO₄ species formed by SO₃ adsorption onto the Cu oxide site may decompose promptly to evolve SO₂ and O₂ on contact with the molten catalyst phase. Furthermore, the molten catalyst contained a large fraction of monovalent Cu formed by spontaneous desorption of oxygen. A possible reaction mechanism consisting of the fast dissolution of CuSO₄ and Cu²⁺/Cu⁺ redox cycles in the melt is proposed.

Received 3rd November 2013, Accepted 16th December 2013

DOI: 10.1039/c3cy00880k

www.rsc.org/catalysis

Introduction

The large-scale production of hydrogen fuel by indirect thermochemical water splitting cycles using concentrated solar radiation as a heat source has attracted considerable attention.^{1–4} Many such cycles have been proposed which rely on the decomposition of sulfuric acid as the oxygen-generating reaction.⁵ One of the most promising candidates is the sulfuriodine process, consisting of reactions (1)–(3).^{5–7}

$$H_2SO_4 \rightarrow H_2O + SO_2 + 1/2O_2 (ca. 900 \ ^{\circ}C)$$
 (1)

$$2\text{HI} \rightarrow \text{H}_2 + \text{I}_2 (ca. 400 \text{ }^{\circ}\text{C})$$
 (2)

$$SO_2 + I_2 + 2H_2O \rightarrow H_2SO_4 + 2HI (ca. 100 \text{ °C})$$
 (3)

Of these reactions, sulfuric acid decomposition (1) requires the highest reaction temperature. Sulfuric acid dissociates into H_2O and SO_3 in the gas phase above 400 °C. However, the subsequent decomposition of SO_3 into SO_2 and O_2 in the gas phase is kinetically impossible at moderate temperatures of around 600 °C, which can be achieved using conventional parabolic trough solar collectors. Therefore, economically viable catalysts which promote the slow forward reaction at or below 600 $^{\circ}\mathrm{C}$ are crucial.

We have recently reported that copper pyrovanadate $(Cu_2V_2O_7)$ is an efficient catalyst for SO₃ decomposition below 650 °C,⁸ temperatures at which most conventional oxide catalysts are less active and less stable.⁹⁻¹⁸ The combination of the pyrovanadate $(V_2O_7^{2-})$ framework, which is resistant to sulfate formation, and a copper redox species achieves both catalytic activity and stability. The catalytic activity can be enhanced by supporting the catalyst on 3-D mesoporous SiO₂ followed by thermal aging above the melting point of $Cu_2V_2O_7$ (>780 °C).¹⁹ The thermal aging melts the Cu₂V₂O₇ and allows it to penetrate the mesopores of SiO₂. The simultaneous dissolution-reprecipitation of SiO₂ in the melt converts mesopores to macroporous cavities. The enhanced catalytic performance of macroporous Cu₂V₂O₇/SiO₂ arises from surface cavities completely covered with a thin layer of active Cu₂V₂O₇ and makes the catalyst an attractive alternative to Pt.19

These results demonstrated that melting copper vanadate opens up novel methods for preparing highly-dispersed active catalysts. In addition, the catalytic activity of the molten phase may be higher than that of the solid phase, as is the case for industrial SO₂ oxidation catalysts based on alkali metal vanadates.^{20,21} Other examples of molten catalysts have been reported for partial oxidation and oxidative dehydrogenation of alkanes^{22,23} and oxidation of diesel soot.²⁴ According to CuO–V₂O₅ phase diagrams,^{25,26} CuV₂O₆, Cu₂V₂O₇, Cu₃V₂O₈, and Cu₅V₂O₁₀ are binary compounds. Although these three compounds with Cu/V ratios more than or equal to unity exhibit melting points above 780 °C, copper hexaoxodivanadate (CuV₂O₆)

View Article Online

Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. E-mail: machida@kumamoto-u.ac.jp; Fax: +81 96 342 3651 † Electronic supplementary information (ESI) available. See DOI: 10.1039/ c3cy00880k

has the lowest melting point (*ca.* 630 °C) and may be a promising candidate as a molten catalyst for SO_3 decomposition.

We report that molten CuV_2O_6 is a highly efficient catalyst for SO₃ decomposition at or below 650 °C. Its catalytic activity and oxygen desorption properties were compared with those of our solid phase $Cu_2V_2O_7$ catalyst (m.p.: *ca.* 780 °C),¹⁹ which does not melt at the reaction temperature. A model reaction using $CuSO_4$ as a possible intermediate was studied to elucidate the origin of the higher SO₃ decomposition activity of the molten phase compared with the solid phase.

Experimental

Preparation and characterization

Supported copper vanadate catalysts were prepared by stepwise impregnation of 3-D mesoporous SiO₂ with Cu(NO₃)₂ and NH₄VO₃ as described in our previous paper (see the ESI[†]).¹⁹ Molar ratios of Cu:V:Si = 1:2:20 (CuV₂/SiO₂) or 1:1:20 (CuV/SiO₂) were used for the deposition of monophasic CuV₂O₆ and Cu₂V₂O₇, respectively.

X-ray diffraction (XRD) measurements were performed using monochromated Cu K_{α} radiation (30 kV, 20 mA; Multiflex, Rigaku). Raman spectra were obtained using a 532.1 nm laser excitation source (NRS-3100, Jasco). X-ray photoelectron spectroscopy (XPS) was performed using monochromated Al K_{α} radiation (12 keV; K-Alpha, Thermo). The Brunauer–Emmett–Teller (BET) surface area and pore volume of the as-prepared catalysts were determined from N₂ adsorption–desorption isotherms measured at 77 K (Belsorp mini, Bel Japan).

Catalytic reactions

The catalytic reaction was carried out in a quartz tubular flow reactor (ESI,† Fig. S1) as described in our previous paper.¹⁹ Sulfuric acid (95%) was pumped (50 μ L min⁻¹) and vaporized at 450 °C in a flow of N₂ (100 cm³ min⁻¹) and thermally decomposed into SO₃ and H₂O at 600 °C. The gas mixture of 14% SO₃, 18% H₂O, and N₂ balance (WHSV = 55.2 g-H₂SO₄ (g-cat)⁻¹ h⁻¹) was supplied to a catalyst bed (\geq 600 °C). The conversion of SO₃ to SO₂ was calculated from the O₂ concentration downstream of the catalyst bed using a magnetopneumatic oxygen analyzer (MPA3000, Horiba) and a gas chromatograph (GC8A, Shimadzu) fitted with a MS-5A column and a thermal conductivity detector. He was used as the carrier. The SO₂ concentration in the effluent gas was also determined using iodimetric titration.

Temperature-programmed desorption of oxygen (O_2 -TPD) from CuV₂O₆ and Cu₂V₂O₇ was measured in a conventional flow reactor. Prior to the measurements, the sample was treated under a flow of 20 vol% O₂/He at 500 °C for 1 h. After cooling and evacuation, the sample was heated from ambient temperature to the melting temperature at a constant rate of 10 °C min⁻¹ in a flow of He. The gas leaving the sample was analyzed using an online quadrupole mass spectrometer (Omnistar, Pfeiffer).

The thermal decomposition behavior of $CuSO_4$ and a $CuSO_4$ - CuV_2O_6 mixture in a He flow was determined by

thermogravimetry-differential thermal analysis coupled with evolved gas analysis using mass spectrometry (TG-DTA-MS) (20 °C min⁻¹; ThermoMass, Rigaku). The evolved gases were introduced directly to the MS ion source using a skimmer interface system without condensation or further reactions.²⁷ Quantitative evolved gas analysis was carried out using a non-diffusive infrared (NDIR) SO₂ analyzer and a magnetopneumatic O₂ analyzer (MPA) (VA3000, Horiba). The evolved SO₃ was removed from the stream before gas analyses by using an adsorbent (MC050A, Horiba) to protect the detectors.

Results and discussion

Catalytic activity for SO₃ decomposition

Table 1 summarizes the physicochemical properties of CuV_2/SiO_2 (Cu:V:Si = 1:2:20) and CuV/SiO₂ (Cu:V:Si = 1:1:20). The deposition of CuV_2O_6 and $Cu_2V_2O_7$ on the as-prepared catalysts, CuV_2/SiO_2 and CuV/SiO_2 , respectively, was verified by Raman spectroscopy (ESI,† Fig. S2). Because the BET surface area and the pore volume of as-prepared catalysts are comparable, their effect on catalytic activity would be negligible. The Cu and V loadings used in this study were less than those used in our previous work (Cu:V:Si = 1:1:15)¹⁹ to evaluate the catalytic activity under kinetic control.

Fig. 1 shows the evolution of SO₃ conversion over two types of catalysts versus time during stepwise changes of the reaction temperature. Although the activity of both catalysts increased with increasing temperature from 600 to 750 °C, their time-onstream behaviors at 650 °C were different. In contrast to the stable but low SO₃ conversion (<1.5%) over CuV/SiO₂ (Fig. 1b), the conversion for CuV2/SiO2 increased with time-on-stream (Fig. 1a) and achieved a twenty-fold higher value (>25%) than that for CuV/SiO₂. The higher SO₃ conversion for CuV₂/SiO₂ suggests that the intrinsic activity of CuV2O6 is higher than that of Cu₂V₂O₇. Furthermore, the catalytic activity was accelerated when the reaction temperature reached the melting point of CuV₂O₆ (ca. 630 °C). In contrast, CuV/SiO₂ remained in a solid state because of the higher melting point of Cu₂V₂O₇ (780 °C). Steady-state SO3 conversions for each catalyst are shown in the ESI† (Fig. S3). Other Cu-V oxides with higher melting points $(Cu_3V_2O_8 \text{ and } Cu_5V_2O_{10})$ were less active than $Cu_2V_2O_7$.⁸

Although CuV₂/SiO₂ initially showed some activity at 600 °C, this activity declined after a short time (Fig. 1a). The structural changes in CuV₂O₆ during this period were studied by Raman spectroscopy (ESI,† Fig. S4). After the catalytic reaction, bands corresponding to the solid CuV₂O₆ phase became weak and new bands corresponding to the sulfate (SO₄) appeared, suggesting a reaction between SO₃ and the Cu oxide species on the catalyst surface. Thermodynamic calculations predict that the formation of CuSO₄ (CuO + SO₃ \rightarrow CuSO₄, $\Delta G^{\circ} = -57$ kJ mol⁻¹) is more favorable at 600 °C than the formation of VOSO₄ (1/2V₂O₅ + SO₃ \rightarrow VOSO₄ + 1/4O₂, $\Delta G^{\circ} = -5$ kJ mol⁻¹). Considering that CuSO₄ is an intermediate species in SO₃ decomposition over molten CuV₂/SiO₂, its thermal behavior should help elucidate the cause of the accelerated SO₃ decomposition at the melting point of CuV₂O₆.

Catalysis Science & Technology

Catalyst	Molar ratio Cu:V:Si	Cu–V phase (m.p./°C)	$S_{\rm BET}^{a}/{ m m}^2~{ m g}^{-1}$	Pore volume ^{<i>a</i>} /cm ³ g ⁻¹
CuV ₂ /SiO ₂	1:2:20	CuV_2O_6 (630 °C)	463	0.74
CuV/SiO ₂	1:1:20	$Cu_2V_2O_7$ (780 °C)	485	0.72

^a BET surface area and pore volume after calcination at 600 °C.

Fig. 1 Catalytic SO₃ conversion over a) CuV_2/SiO_2 and b) CuV/SiO_2 versus time-on-stream during stepwise changes in reaction temperature. Equilibrium conversions are shown as dashed lines.

Thermal behavior of CuSO₄

We studied the thermal behavior of a physical mixture of $CuSO_4$ - CuV_2O_6 (1:1 molar ratio) as a model system by TG-DTA-MS. Fig. 2 compares the results for pure $CuSO_4$ and a $CuSO_4$ - CuV_2O_6 mixture during heating in a He flow. When $CuSO_4$ was heated, sulfate decomposition occurred at around 550 °C. Double peaks in the DTA and gas evolution profiles suggest that the decomposition takes place in two steps *via* an oxysulfate.

$$CuSO_4 \rightarrow 0.5CuO \cdot CuSO_4 \rightarrow CuO \tag{4}$$

In the MS spectra, signals for m/z = 64 (SO₂), 48 (SO fragment, not shown), and 32 (O₂) were detected, but the signal

Fig. 2 TG-DTA-MS profiles for a) CuSO₄ and b) CuSO₄-CuV₂O₆ measured at a heating rate of 20 °C min⁻¹ in a flow of He. The data are normalized by the unit amount of CuSO₄.

at m/z = 80 (SO₃) was negligible. The parallel quantitative gas analysis results are summarized in Table 2. The amounts of SO₂ and O₂ evolution normalized by the amount of SO₄ in the solid suggest the occurrence of stoichiometric reaction (5).

$$CuSO_4 \rightarrow CuO + SO_2 + 1/2O_2 \tag{5}$$

The CuSO₄–CuV₂O₆ mixture also underwent decomposition at around 550 °C (Fig. 2b), although a very steep increase in the mass signals at m/z = 64 and 32 was accompanied by rapid weight loss at 630 °C, where melting of CuV₂O₆ produced a sharp endothermic peak. The intensity of mass signals indicated that the maximum rate of decomposition for CuSO₄–CuV₂O₆ is more than six-fold that of CuSO₄ alone. The amount of evolved gases in Table 2 also shows an amount of SO₂ nearly equivalent to the amount of SO₄ in the solid, which demonstrates almost complete decomposition of CuSO₄ as shown in (5), although excess O₂ in the evolved gas (SO₂:O₂ = 0.95:0.71) results from oxygen desorption from CuV₂O₆. These results suggest that the decomposition of CuSO₄ to evolve SO₂/O₂ is significantly accelerated in contact with the molten CuV₂O₆ catalyst.

To clarify why molten CuV2O6 promotes sulfate decomposition to SO_2/O_2 , the CuSO₄-CuV₂O₆ mixture was characterized from the Raman spectra after a temperature ramp to 600 and 630 °C at 10 °C min⁻¹ and subsequent rapid cooling to ambient temperature in a flow of N_2 (Fig. 3). The as-prepared mixture (a) showed the CuV_2O_6 bands, v(VO) (906 cm⁻¹), v(VOV) (791, 712 and 512 cm⁻¹), and δ (OVO) (434 cm⁻¹), and the CuSO₄ bands, $v(SO_4)$ (1005 and 980 cm⁻¹). The CuV₂O₆ bands indicate that the crystal structure of CuV2O6 consisted of distorted octahedral VO6.28 Heating at 600 °C, just below the melting point of CuV₂O₆, significantly weakened the CuSO₄ bands and yielded several new bands (b). The bands indicated with circles at 930, 915, 856, and 501 cm⁻¹ were attributed to stretching and bending modes of tetrahedral VO4 in an infinite-chain arrangement,²⁹ whereas those with asterisks at 1150-1200, 1056, 605, and 458 cm⁻¹ belong to stretching and bending modes of tetrahedral SO₄. This shows that the structural transformation from octahedral VO₆ in CuV₂O₆ to tetrahedral VO₄ in the melt is in progress. Tetrahedral VO₄ is the predominant coordination polyhedron in many melts containing V₂O₅.³⁰⁻³³ Another set of bands corresponding to tetrahedral SO₄ probably arose from the oxysulfate (CuO·CuSO₄) coming into contact with the melt. Therefore, the molten phase was composed of VO₄ and SO₄ units. Finally, the SO₄ Raman bands disappeared as soon as the temperature reached 630 °C (c), where a sharp endothermic peak was observed (Fig. 2b). The sudden disappearance of sulfate at 630 °C, where CuV₂O₆ melts, is consistent with the sudden evolution of SO_2 and O_2 in Fig. 2b.

Table 2 Evolved gas analysis for thermal decomposition of CuSO₄

	SO ₄ in solid/mol	SO ₂ evolved ^{<i>a</i>} /mol	$O_2 \text{ evolved}^b/\text{mol}$
CuSO ₄	1.00	1.01	0.47
$CuSO_4 + CuV_2O_6$	1.00	0.95	0.71

^a Determined using a NDIR SO₂ analyzer. ^b Determined using a magnetopneumatic O₂ analyzer.

Fig. 3 Raman spectra of $CuSO_4$ - CuV_2O_6 a) before heating and after heating at b) 600 °C and c) 630 °C in a flow of N₂ followed by rapid cooling to ambient temperature. Bands indicated by circles and asterisks are assigned to tetrahedral VO₄ and SO₄, respectively.

The sulfate species dissolved in the melting vanadate is thus probably responsible for the efficient SO_3 decomposition in Fig. 1a.

In the Raman spectrum after heating at 630 °C, the bands due to $Cu_2V_2O_7$ appeared in addition to CuV_2O_6 bands (Fig. 3c). According to the phase diagram of $CuO-V_2O_5$,²⁶ incongruent melting of CuV_2O_6 yields a solid phase ($Cu_2V_2O_7$) and a liquid phase with a Cu/V ratio of less than 0.5, which solidifies as CuV_2O_6 and V_2O_5 . However, because immediate solid-state reactions between $Cu_2V_2O_7$ and V_2O_5 produce CuV_2O_6 , it appears to behave just like congruent melting.

Proposed mechanism for catalysis by molten CuV₂O₆

According to the reaction scheme firstly proposed by Tagawa and a co-worker,¹⁷ SO₃ decomposition over metal oxide catalysts proceeds *via* a sulfate intermediate.

$$MO + SO_3 \rightarrow (MSO_4) \rightarrow MO_2 + SO_2$$
 (6)

$$MO_2 \rightarrow MO + 1/2O_2$$
 (7)

This reaction scheme suggests that the oxygen removal after desorption of SO₂ is a key step for the SO₃ decomposition. Fig. 4 compares O₂-TPD profiles of unsupported CuV₂O₆ and Cu₂V₂O₇. Although both materials desorbed a considerable amount of O₂ above 550 °C, CuV₂O₆ exhibited much faster O₂

Fig. 4 Temperature programmed desorption of O_2 from CuV_2O_6 and $Cu_2V_2O_7$ in a flow of He. Heating rate: 10 °C min⁻¹.

desorption than did Cu₂V₂O₇. Fig. 5 shows the Cu2p and V2p XPS spectra of CuV₂O₆ before and after O₂-TPD measurements up to 600 °C. The V2p spectra consisting of a single V⁵⁺ peak remain unchanged after O₂ desorption. By contrast, the Cu2p spectra show the presence of Cu⁺ in addition to Cu²⁺ even for the as-prepared sample after calcination in air. This means that the surface of CuV₂O₆ is easily reducible. The monovalent

Fig. 5 Cu2p and V2p XPS spectra of CuV_2O_6 a) before and b) after O_2 -TPD measurements up to 600 °C (Fig. 4).

Paper

Fig. 6 Proposed reaction mechanism for SO_3 decomposition over a supported molten CuV_2O_6 catalyst.

copper increased after O_2 -TPD measurements from 25% $Cu^+/75\%$ Cu^{2+} to 50% $Cu^+/50\%$ Cu^{2+} , suggesting that the spontaneous O_2 release in Fig. 4 is the result of elimination of lattice oxygen accompanied by Cu^{2+} reduction to Cu^+ . It is noteworthy that the O_2 release from CuV_2O_6 increased rapidly when approaching the melting point (*ca.* 630 °C). This means that the molten phase of CuV_2O_6 contains a considerable amount of monovalent Cu, the proportion of which reached 100% at 650 °C as determined by thermogravimetric analysis (ESI,† Fig. S5).

Fig. 6 shows our proposed mechanism for the accelerated catalytic SO₃ decomposition over the supported molten copper vanadate catalyst. On the surface of the molten vanadate, SO₃ adsorption to Cu oxide species produces CuSO₄ species because it is thermodynamically favored around 600 °C. Here, one important contribution of the liquid surface to the catalytic reaction is the dissolution of the Cu[SO₄] species in the molten phase, leaving the liquid surface with more vacant sites for further SO₃ adsorption. Because the molten phase consists of tetrahedral VO₄ and Cu⁺, the dissolved [SO₄] is immediately reduced to evolve SO₂ and then the reoxidized Cu²⁺ oxides, Cu[2O], release oxygen. The resulting free monovalent copper oxide species, Cu[O], defuses back to the liquid surface, where its reaction with SO₃ forms Cu[SO₄] again. In this way, the molten copper vanadate enables fast cycles of SO₃ capture and decomposition to SO₂/O₂. This reaction mechanism is quite different from well-known molten salt catalysts for industrial SO₂ oxidation. In SO₂ oxidation over molten V2O5 catalysts containing alkali metals, several vanadium oxosulfato complexes are proposed as catalytically active species.^{20,34} Although these complexes were not observed in our system, analogy to SO2 oxidation catalysts implies that interactions between molten Cu vanadate and SO₄ play a key role in SO₃ decomposition. Further attempts to identify the catalytically active species in the SO3 decomposition are in progress.

Conclusions

We demonstrated that molten CuV_2O_6 is an efficient catalyst for SO_3 decomposition at moderate temperatures.

The molten CuV_2O_6 is capable of decomposing the CuSO_4 species, which is a possible intermediate formed by SO₃ adsorption to Cu oxide species on the surface of the molten catalyst. Unlike solid surfaces, the molten catalyst surface enables quick regeneration of the SO₃ adsorption sites by dissolving the CuSO₄ species in the melt. The molten phase also enables spontaneous desorption of oxygen and thus the generation of monovalent Cu, which accelerates the decomposition of SO₃ to SO₂. The proposed mechanism provides a new strategy for designing efficient catalyst materials for SO₃ decomposition at moderate temperatures, which is a key requirement for solar thermochemical hydrogen production.

Acknowledgements

This work was supported by JSPS KAKENHI grant number 24246130 and by the Energy Carrier Project of JST ALCA (Japan Science and Technology Agency – Advanced Low Carbon Technology Research and Development Program).

Notes and references

- S. Brutti, G. De Maria, G. Cerri, A. Giovannelli, B. Brunetti, P. Cafarelli, V. Barbarossa and A. Ceroli, *Ind. Eng. Chem. Res.*, 2007, 46, 6393–6400.
- 2 J. E. Funk, Int. J. Hydrogen Energy, 2001, 26, 185-190.
- 3 A. Meyer, J. Ganz and A. Steinfeld, *Chem. Eng. Sci.*, 1996, 51, 3181.
- 4 A. Steinfeld, Sol. Energy, 2005, 78, 603-615.
- 5 D. R. O'Keefe, J. H. Norman and D. G. Williamson, *Catal. Rev.: Sci. Eng.*, 1980, 22, 325–369.
- 6 M. Dokiya, T. Kameyama, K. Fukuda and Y. Kotera, *Bull. Chem. Soc. Jpn.*, 1977, **50**, 2657–2660.
- 7 D. O'Keefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp and K. McCorkle, *Int. J. Hydrogen Energy*, 1982, 7, 381–392.
- 8 M. Machida, Y. Miyazaki, Y. Matsunaga and K. Ikeue, *Chem. Commun.*, 2011, 47, 9591–9593.
- 9 H. Abimanyu, K. D. Jung, K. W. Jun, J. Kim and K. S. Yoo, *Appl. Catal.*, *A*, 2008, 343, 134–141.
- 10 A. M. Banerjee, M. R. Pai, S. S. Meena, A. K. Tripathi and S. R. Bharadwaj, *Int. J. Hydrogen Energy*, 2011, 36, 4768–4780.
- 11 V. Barbarossa, S. Brutti, B. Brunetti, M. Diamanti and G. Ricci, *Ind. Eng. Chem. Res.*, 2009, 48, 625–631.
- R. D. Brittain and D. L. Hildenbrand, J. Phys. Chem., 1983, 87, 3713–3717.
- A. Giaconia, S. Sau, C. Felici, P. Tarquini, G. Karagiannakis, C. Pagkoura, C. Agrafiotis, A. G. Konstandopoulos, D. Thomey, L. de Oliveira, M. Roeb and C. Sattler, *Int. J. Hydrogen Energy*, 2011, 36, 6496–6509.
- 14 D. M. Ginosar, H. W. Rollins, L. M. Petkovic and K. C. Burch, *Int. J. Hydrogen Energy*, 2009, 34, 4065–4073.
- 15 G. Karagiannakis, C. C. Agrafiotis, A. Zygogianni, C. Pagkoura and A. G. Konstandopoulos, *Int. J. Hydrogen Energy*, 2011, 36, 2831–2844.

- 16 T. H. Kim, G. T. Gong, B. G. Lee, K. Y. Lee, H. Y. Jeon, C. H. Shin, H. Kim and K. D. Jung, *Appl. Catal.*, A, 2006, 305, 39–45.
- 17 H. Tagawa and T. Endo, *Int. J. Hydrogen Energy*, 1989, 14, 11-17.
- 18 L. N. Yannopoulos and J. F. Pierre, *Int. J. Hydrogen Energy*, 1984, 9, 383.
- 19 M. Machida, T. Kawada, S. Hebishima, S. Hinokuma and S. Takeshima, *Chem. Mater.*, 2012, 24, 557–561.
- 20 A. Christodoulakis and S. Boghosian, J. Catal., 2003, 215, 139–150.
- 21 O. B. Lapina, B. S. Bal'zhinimaev, S. Boghosian, K. M. Eriksen and R. Fehrmann, *Catal. Today*, 1999, **51**, 469–479.
- 22 J. B. Branco, G. Lopes, A. C. Ferreira and J. P. Leal, *J. Mol. Liq.*, 2012, 171, 1–5.
- 23 C. P. Kumar, S. Gaab, T. E. Müller and J. A. Lercher, *Top. Catal.*, 2008, **50**, 156–167.
- 24 S. J. Jelles, B. A. A. L. Van Setten, M. Makkee and J. A. Moulijn, *Appl. Catal., B*, 1999, 21, 35–49.
- 25 P. Fleury, C. R. Seances Acad. Sci., Ser. C, 1966, 263, 1375-1377.

- 26 V. Cirilli, A. Burdese and C. Brisi, Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat., 1961, 95, 197–228.
- 27 T. Tsugoshi, T. Nagaoka, K. Hino, T. Arii, M. Inoue, Y. Shiokawa and K. Watari, *J. Therm. Anal. Calorim.*, 2005, 80, 787–789.
- 28 C. Calvo and D. Manolescu, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1973, 29, 1743–1745.
- 29 S. Onodera and Y. Ikegami, *Inorg. Chem.*, 1980, 19, 615–618.
- 30 S. Takeda, Y. Kawakita, M. Inui, K. Maruyama, S. Tamaki, K. Sugiyama and Y. Waseda, *J. Non-Cryst. Solids*, 1996, 205–207, 151–154, Part 1.
- 31 S. Kaoua, S. Krimi, A. El Jazouli, E. K. Hlil and D. de Waal, *J. Alloys Compd.*, 2007, **429**, 276–279.
- 32 D. Maniu, I. Ardelean and T. Iliescu, *Mater. Lett.*, 1995, 25, 147–149.
- 33 H. Li, H. Lin, W. Chen and L. Luo, J. Non-Cryst. Solids, 2006, 352, 3069–3073.
- 34 S. Boghosian, A. Chrissanthopoulos and R. Fehrmann, *J. Phys. Chem. B*, 2001, **106**, 49–56.