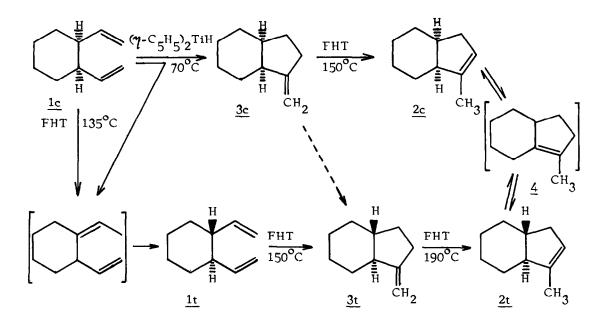

## RING CLOSURE IN 1,2-DIVINYLCYCLOHEXANES AND ISOMERIZATION TO 3-METHYL-3a,4,5,6,7,7a-HEXAHYDRO-1H-INDENES CATALYZED BY TITANOCENE HYDRIDE DERIVATIVES

K. Mach, P. Sedmera<sup>1</sup>, L. Petrusová, H. Antropiusová, V. Hanuš and F. Tureček Jaroslav Heyrovský Institute of Physical Chemistry & Electrochemistry, Czechoslovak Academy of Sciences, Machova 7, 121 38 Prague 2, Czechoslovakia.

Summary: Titanocene hydride derivatives induce the cyclization of 1,2-divinylcyclohexanes to trans- and cis-1-methylene-octahydro-1H-indene and their isomerization to trans- and cis-3-methyl-3a,4,5,6,7,7a-hexahydro-1H-indene.

cis-1,2-Divinylcyclohexane 1c is easily accessible by the Cope rearrangement of (E,Z)-1.5-cyclodecadiene<sup>2</sup> - the product of nickel catalyzed co-oligomerization of 1,3butadiene and ethylene<sup>3</sup>. Since it has been recently shown that  $\mu$ -( $\eta^5$ : $\eta^5$ -fulvalene)-diµ-hydrido-bis(cyclopentadienyltitanium) (FHT) catalyzes both the conversion of vinylcycloalkanes to ethylidenecycloalkanes<sup>4</sup> and the convergent double bond shift in 1,5-dienes to produce 2,4-dienes<sup>4,5</sup>, we attempted preparation of 1,2-bis-(ethylidene)cyclohexane from 1c using FHT<sup>6</sup> and a bis(cyclopentadienyl)titanium(III)hydride complex<sup>7</sup>. Compound 1c containing FHT ([Ti] =  $2.10^{-3}$  mol.1<sup>-1</sup>) was heated in sealed glass ampoules in vacuo to 135-190°C for 3 h. After cooling, the ampoules were opened and the volatile products were distilled off in vacuo giving a better than 98% recovery of C10-hydrocarbons. The content of compounds bearing the terminal double bonds decreased considerably only after heating to 170-190°C. The two main products were separated by preparative GLC<sup>8</sup> and their composition  $C_{10}H_{16}$  was determined through their mass spectra. According to <sup>1</sup>H- and <sup>13</sup>C-NMR spectra, both compounds exhibit similar structural features (one trisubstituted double bond with the attached methyl group, two  $sp^3$ -methines and five  $sp^3$ methylenes, see Table 1), consistent with the structure of trans- and cis-3-methyl-3a, 4,5,6,7,7a-hexahydro-1H-indene, 2t, and 2c. cis-lsomer 2c was readily identified by  $^{13}$ C-NMR spectra, for its bridgehead carbons were more shielded than those of  $\underline{2t}$ , owing to the  $\gamma$ -gauche interactions<sup>9</sup>. As the reaction path to these compounds was not clear, the formation of intermediates was followed at lower reaction temperatures. At

the lowest temperature at which FHT is still active  $(135^{\circ}C)$ , trans-1,2-divinylcyclohexane <u>1t</u> was identified among main reaction products by GLC and infrared spectra. After heating to  $150^{\circ}C$  for 3 h the reaction mixture already contained <u>2t</u> (22%) accompanied by a new compound <u>3t</u> (66%). On heating to  $190^{\circ}C$  the following composition of products was obtained: 2t (45%), 2c (42%) and 3t (12%).




Since the double bond shift in 1c to give ethylidene derivatives might require milder conditions, we catalyzed the isomerization of 1c by a preformed complex containing  $(\eta - C_5H_5)_2$  TiH bound to AlH<sub>3</sub><sup>7</sup>. After heating a solution of the complex in <u>1c</u> ([Ti] =  $5.10^{-2}$  mol.1<sup>-1</sup>) to 70°C for 3 h, the product contained 1t (22%), 3t (30%) and 3c (30%). Compounds <u>3t</u> and <u>3c</u> were separated by preparative GLC and proved to be bicyclic  $C_{10}H_{16}$  isomers containing one exomethylene group (NMR: one sp<sup>2</sup>-methylene, one sp<sup>2</sup>quaternary carbon;  $IR: \gamma = 1654 \text{ cm}^{-1}$ ; see Table 1). The structure of cis-1-methyleneoctahydro-1H-indene, 3c, was assigned by <sup>13</sup>C-NMR spectra to the compound in which the bridgehead methine carbon atoms appeared at a higher field<sup>9</sup>. cis-Isomer <u>3c</u> could be trapped only in the  $(\eta$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiH-catalyzed reaction (70<sup>o</sup>C) and its absence among the reaction products of the FHT-catalyzed reaction (135°C) points at its higher propensity to further isomerization to <u>3t</u> and/or <u>2c</u>. Isomerization of <u>1t</u> with  $(\eta - C_5H_5)_2$ TiH catalyst (80°C, 3 h) yielded the expected trans-isomers 3t (42%), and 2t (19%), together with unreacted 1t (16%). However, at 170°C FHT converted both 1c and 1t to the same mixture of products, i.e. 2t (58%), 2c (18%) and 3t (15%). If compared with the results obtained at  $190^{\circ}$ C, this shows that 2t and 2c are interconverted via another isomer, 9-methylbicyclo [4.3.0] non-1(9)-ene 4. Actually, 4 appeared to be more abundant when the isomerization was run above 200°C and it could be isolated from the reaction mixture.

The isomerization of <u>lc</u> to <u>lt</u> suggests a reversible addition of titanium hydride to the double bond yielding intermediate 1-vinyl-2-ethylidenecyclohexane and 1,2-bis(ethylidene)cyclohexane which have also been reported for nickel-catalyzed isomerization of <u>lc</u><sup>10</sup>. The simultaneous detection of a trace amount of 1,2-diethylbenzene which had to arise by intra- and intermolecular hydrogen transfer reactions confirms the probable Table 1. Spectroscopic Data of Hydrocarbons 2t, 2c, 3t and 3c

| 2t IR $(cm^{-1})$ : 3042 s, 2920 vs, 2850 vs, 2800 s, 1633 m, 1587 w, 1560 w,                   |
|-------------------------------------------------------------------------------------------------|
| 1444 vs, 1376 s, 1260 m, 1173 m, 1073 m, 1006 s, 933 m,                                         |
| 924 m, 900 m, 797 vs, 562 m, 542 m, 457 m.                                                      |
| <sup>1</sup> H-NMR ( <b>d</b> , ppm): 1.0 - 2.4 (m, 12H), 1.67 (br s, 3H), 5.35 (m, 1H).        |
| <sup>13</sup> C-NMR (d, ppm): 14.3 q, 26.6 t, 26.7 t, 29.1 t, 30.6 t, 36.5 t, 50.3 d,           |
| 53.1 d, 123.8 d, 144.4 s.                                                                       |
| <u>2c</u> IR (cm <sup>-1</sup> ): 3042 s, 2920 vs, 2854 vs, 1650 m, 1602 w, 1582 w, 1444 vs,    |
| 1380 s, 1260 m, 1176 m, 1028 m, 1010 m, 926 m, 906 m,                                           |
| 858 m, 850 m, 806 s, 798 s, 620 w, 570 m, 530 w, 502w.                                          |
| <sup>1</sup> H-NMR (d, ppm): 1.38 br s, 1.68 (br s, 3H), 2.12 m, 2.29 m, 5.28 (m, 1H).          |
| <sup>13</sup> C-NMR (d, ppm): 14.9 q, 23.4 t, 23.6 t, 27.0 t, 28.3 t, 36.5 t, 38.5 d,           |
| 46.4 d, 123.5 d, 144.4 s.                                                                       |
| <u>3t</u> IR (cm <sup>-1</sup> ): 3073 s, 2987 s, 2927 vs, 2854 vs, 1760 w, 1654 s, 1458 s,     |
| 1446 s, 1432 s, 1212 m, 966 m, 906 m, 878 s, 858 m,                                             |
| 838 m, 568 m, 530 w, 418 m.                                                                     |
| <sup>1</sup> H-NMR ( $d$ , ppm): 1.1 - 2.2 (m, 12H), 2.29 (t, J=7.8 Hz, 2H), 4.71 (t, J=2.4 Hz, |
| 2H).                                                                                            |
| <sup>13</sup> C-NMR ( <i>d</i> , ppm): 25.9 t, 26.3 t, 28.8 t, 30.3 t, 30.5 t, 32.2 t, 46.5 d,  |
| 50.5 d, 101.8 t, 145.7 s.                                                                       |
|                                                                                                 |
| <u>3c</u> IR (cm <sup>-1</sup> ): 3073 s, 2985 s, 2920 vs, 2850 vs, 1760 w, 1654 s, 1468 sh,    |
| 1458 sh, 1448 s, 1434 sh, 1032 m, 985 m, 910 m, 876 s,                                          |
| 863 sh, 850 m, 486 m.                                                                           |
| <sup>1</sup> H-NMR ( <i>d</i> , ppm): 1.3 - 2.2 (m, 12H), 2.39 (t, J=7.6 Hz, 2H), 4.83 (m, 2H). |
| <sup>13</sup> C-NMR (d, ppm): 22.3 t, 24.2 t, 26.4 t, 27.5 t, 28.6 t, 30.1 t, 39.6 d,           |
| 44.1 d, 104.0 t, 146.7 s.                                                                       |
|                                                                                                 |

participation of ethylidene isomers in conversion of  $\underline{1c}$  to  $\underline{1t}$ . The overall reaction scheme of isomerization of  $\underline{1c}$  under different reaction conditions is shown below.



## REFERENCES

- 1. The Institute of Microbiology, Czechoslovak Academy of Sciences, 142 20 Prague 4.
- 2. P. Heimbach, Angew. Chem. 78, 604 (1966).
- 3. P. Heimbach, G. Wilke, Justus Liebigs Ann. Chem. 727, 183 (1969).
- 4. K. Mach, H. Antropiusová, F. Tureček, L. Petrusová, V. Hanuš, Synthesis (in press).
- 5. F. Tureček, H. Antropiusová, K. Mach, V. Hanuš, P. Sedmera, Tetrahedron Lett. 21, 637 (1980).
- 6. Prepared by refluxing a mixture of (2-C5H5)2TiCl2 and LiAlH4 (Ti : Al = 1 : 4) in mesitylene: H. Antropiusová, A. Dosedlová, V. Hanuš, K. Mach, Transition Met. Chem. 6, 92 (1981).
- Prepared by reduction of (7-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiCl)<sub>2</sub> with LiAlH<sub>4</sub> in benzene at room temperature: K. Mach, F. Tureček, V. Hanuš, L. Petrusová, H. Antropiusová, A. Dosedlová, Chem. Zvesti (in press).
- Perkin-Elmer F-21, Carbowax M-20, 10% on Chromaton N-AW, 2.5 m. Retention times increase in the order <u>1t</u>, <u>1c</u>, <u>2t</u>, <u>2c</u>, <u>3t</u>, <u>4</u>, <u>3c</u>.
- 9. J. B. Stothers, Carbon-13 NMR Spectroscopy, p.63, Academic Press, New York 1972.
- W. Jolly, G. Wilke, The Organic Chemistry of Nickel, Vol. II, Academic Press, New York 1975.

(Received in UK 23 December 1981)