SILYL-NITROGEN COMPOUNDS # I. REACTIONS OF DILITHIUM BIS(TRIMETHYLSILYL)HYDRAZINE WITH GROUP IV HALIDES SHAM KUMAR VASISHT*, MOHINI SOOD, NIRUPMA SOOD and GURSHARAN SINGH Department of Chemistry, Panjab University, Chandigarh-160014 (India) (Received July 17th, 1985) ## Summary Dilithium 1,2-bis(trimethylsilyl)hydrazine (1) reacts with CCl₄, Me₃SiCCl₃ and CBr₄ to form predominantly bis(trimethylsilyl)aminocarbonimidic dichloride, bis(trimethylsilyl)aminoisocyanide and bis(trimethylsilyl)diazene, whereas similar reactions with HCCl₃, HCl₃, H₂CCl₂, H₂Cl₂, C₂H₄Cl₂ or C₂H₂Cl₄ lead to increasing amounts of bis(trimethylsilyl)hydrazine. In addition to the hydrazone, (Me₃Si)₂N-N=CH(Cl), the reaction of 1 with CHCl₃ forms a small amount of triazasilacyclopentane, (Me₃Si)₂N-N=CN(NHSiMe₃)SiMe₂NHNSiMe₃. In contrast, Me₂SnCl₂ reacts with 1 to give tetraazadistannacyclohexane [Me₂Sn(NSi-Me₃))₂, whereas SnCl₄, SnCl₂ and PbCl₂ act mainly as oxidants and Me₂SiCl₂ forms polymers. Another product of the reaction of 1 with SnCl₂ or PbCl₂ is LiN(SiMe₃)₂ originating perhaps from LiNH(SiMe₃) or [LiNN(SiMe₃)₂]₂. ## Introduction Besides the synthesis and thermal stability of a variety of silylated alkalimetal tetrazenines [1] and diazanides [2,3], some reactions of lithium tris(trimethylsilyl)hydrazide [4] and tris(trimethylgermyl)hydrazine [5] have been reported. As part of our study on silyl-nitrogen compounds [6], we report here the reactions of Group IV halides with dilithium 1,2-bis(trimethylsilyl)hydrazine, Li₂N₂(SiMe₃)₂, undertaken with the aim of synthesizing nonmetallic hydrazines, hydrazones and redox reaction products. #### Results and discussion An isomeric mixture of bis(trimethylsilyl)hydrazine provides dilithium 1,2-bis(trimethylsilyl)hydrazine (1), [2]. An important feature of its reaction with CCl₄ or Me₃SiCCl₃ (CXCl₃) involves substitution followed by isomerization due to an anionic rearrangement [9] (eq. 1). Besides a 75% yield of bis(trimethylsilyl)amino- carbonimidic dichloride $(Me_3Si)_2N-N=CCl_2$ (2) [7], the reaction mixture also contained small amounts of bis(trimethylsilyl)amine, $(Me_3Si)_2NH$ (BSA), and tris(trimethylsilyl)hydrazine, $(Me_3Si)_3N_2H$ (TrSH), which are attributed to the free radical decomposition of the intermediate bis(trimethylsilyl)diazene, $Me_3SiN=NSiMe_3$ (BSD), [8] originating from a redox side reaction of 1 with CCl_4 (cf. eq. 2). Carbon tetrabromide behaves primarily as an oxidant to form BSD in a reaction with 1 at -78°C: $$1 + CBr_4 \rightarrow Me_3SiN = NSiMe_3 + LiBr + LiCBr_3$$ (2) Pure BSD could not be isolated by this method because it reacted further with (Me₃Si)₂N-N=CBr₂ (detected in the early stages but disappeared due to subsequent reactions), Me₃SiCBr₃ (formed from LiCBr₃ + Me₃SiBr) and CBr₄ to form (Me₃Si)₂N-N≡C. Me₃SiBr and N₂, in each step [4]. The reaction products at room temperature indicate almost 30% BSD thermolysis (BSA, TrSH and tetrasilylhydrazine, TSH) with the remainder undergoing the above reactions. Compound 1 acts as a strong base and abstracts protons from weak acids like chloroform, iodoform, dichloromethane, diiodomethane, 1,2-dichloroethane and 1.1,2.2-tetrachloroethane to form BSH and LiRX (X = halogen). Also 1 undergoes a redox reaction similar to eq. 2 to give BSD. Additionally, chloroform causes substitution followed by isomerization and elimination to provide N, N-bis(trimethylsilyl)chloroformylhydrazone (4). $$1 + HCCl3 \rightarrow (Me3Si)2N-N=CH(Cl) + 2LiCl$$ (3) Another product of the reaction of **1** and HCCl₃ is a white crystalline solid $C_{15}H_{44}N_6Si_5$ which appears to be either, 1-trimethylsilyl-3-dimethyl-4-silylamino-5-exo-[N,N-bis(trimethylsilyl)hydrazido]-1,2,4-triaza-3-silacyclopentane (**5a**) or 1,5-bis(trimethylsilyl)-3-dimethyl-6-exo-[N,N-bis(trimethylsilyl)hydrazido]-1,2,4,5-tetra-aza-3-silacyclohexane (**5b**). The mass spectrum of 5 shows the molecular ion with a relatively higher intensity (22%, 70 eV) at m/e 448, and the observed isotopic pattern (Fig. 1) agrees with that calculated for $C_{15}H_{44}N_6Si_5$ (see Experimental). Besides prominent fragments at 433 $(M - Me)^+$, 346 $(M - NNHSiMe_3)^+$ and 274 $[M - NN(SiMe_3)_2^+]$ valuable metastable transitions for establishing fragmentation pathways have also been observed. $$448 \xrightarrow{m^* = 419} 433$$ $$448 \xrightarrow{m^* = 267} 346$$ $$448 \xrightarrow{m^* = 167} 274$$ $$448 \xrightarrow{\text{calcd } 167.6} 274$$ Fragmentation patterns and modes of decomposition, however, fail to distinguish between structures 5a and 5b. The ¹H NMR spectra of **5** in benzene, Et₂O and CCl₄ are similar and consist of five signals with an integrated ratio of 18/18/6/1/1. The ¹H NMR spectrum in C₆H₆ shows the highest field signal at δ 0.130 ppm in line with the expectation for (Me₃Si)₂N and a signal at 0.330 ppm due to Me₂Si protons. A singlet at δ 0.286 ppm for the remaining Me₃SiN protons supports structure **5b** because two separate signals could have been expected for Me₃SiN and Me₃SiNH protons in **5a**. On the other hand, the differently placed NH protons with singlets at 4.1 and 6.4 ppm favour **5a**. This is also supported by the IR spectrum with two separate bands at 3410 and 3365 cm⁻¹ for ν (NH). In view of the above observations, structure **5a** is more likely. Compound 5 undergoes easy stannylation with Me_3SnNEt_2 to form $C_{21}H_{60}$ - $N_6Si_5Sn_2$ with a probable structure of, 1-trimethylsilyl-2-trimethylstannyl-3-dimethyl-4-trimethylsilyltrimethylstannylamine-5-exo-[N, N-bis(trimethylsilyl)hydrazido]-1,2,4-triaza-3-silacyclopentane, $(Me_3Si)_2N-N=CN(NSiMe_3SnMe_3)SiMe_2-NSn-Me_3NSiMe_3$. Its 1H NMR spectrum in benzene shows the absence of NH protons. Fig. 1. Observed isotopic pattern of molecular ion in C₁₅H₄₄N₆Si₅. The spectrum shows singlets at 0.124, 0.274, 0.300 and 0.34 ppm with the relative ratio at 3/3/3/1. The signal at 0.300 ppm is assigned to stannyl protons. The reaction of 1 with iodoform is slower but similar to that with CHCl₃ except that it shows the formation of a small amount of $(Me_3Si)_2N-N\equiv C$ which may involve the intermediate formation of $(Me_3Si)_2N-N=C(H)I$. Diiodomethane reacts with 1 to give a 40% yield of N, N-bis(trimethylsilyl)formylhydrazone $(Me_3Si)_2N-N=CH_2$ [4b], whereas, CH_2Cl_2 behaves differently forming BSH. BSD and $LiN(SiMe_3)_2$. 1,2-Dichloroethane and 1,1,2,2-tetrachloroethane react with 1 to give high yields (70 and 100%, respectively) of BSH. The reactions are very fast and appear to occur by a free radical mechanism. The reaction of dichlorodimethylstannane with 1 generates a set of two products Fig. 2. Observed isotopic pattern of molecular ion in C₁₆H₄₈N₄Si₄Sn₂. (eq. 4). The white crystalline compound C₁₆H₄₈N₄Si₄Sn₂ (6) has two possible $$1 + Me_2SnCl_2 \xrightarrow{80\% \frac{1}{2} \left[Me_2Sn(NSiMe_3)_2 \right]_2}$$ $$(6)$$ $$(4)$$ $$(6)$$ $$(6)$$ $$(6)$$ $$(1)$$ $$(6)$$ $$(1)$$ $$(7)$$ configurations: 1,2,4,5-tetrakis(trimethylsilyl)-3,3,6,6-tetramethyl-1,2,4,5-tetraaza-3,6-distannacyclohexane (**6a**) or 1,3-bis[bis(trimethylsilyl)amino]-2,2,4,4-tetramethyl-1,3-diaza-2,4-distannacyclobutane (**6b**). Simple elimination of LiCl followed by an anionic rearrangement [9] leading to $(Me_3Si)_2N-N(Me_2SnCl)Li$ can cause further intramolecular loss of LiCl to form a transitory stannimine $[(Me_3Si)_2N-N=SnMe_2]$, which dimerises immediately to give **6b**. On the other hand, intermolecular loss of LiCl will give rise to **6a**. Mass spectral analysis of **6** shows a molecular ion peak at m/e 646 and the isotopic pattern (Fig. 2) agrees almost quantitatively with that calculated for $C_{16}H_{48}N_4Si_4Sn_2$ (see Experimental). In contrast to tetraazadisilacyclohexanes [10], the loss of silylnitrene Me₃Si-N: from the molecular ion is not observed in **6**. The first prominent fragment at 472 $(M - Me_3SiN = NSiMe_3)^+$ supported by the appropriate metastable ion at $m^* = 345$ is the loss of the neutral molecule BSD: $$\begin{bmatrix} Me_3Si & SiMe_3 \\ N & N & N \end{bmatrix}$$ $$Me_2Sn & SnMe_2 \\ N & N & N \end{bmatrix}$$ $$Me_3SiN & SiMe_3$$ $$Me_3SiN & NSiMe_3$$ $$Me_472 = m'$$ $$m/e 646$$ This is understandable considering the initial ionization at the largely polar Sn-N bond. The molecular ion m/e 472 = M' shows successive loss of up to 3 Me radicals before losing the important fragments silylnitrene Me₃Si-N; at 385 (M' - Me₃SiN) and BSD at 298 (M' - Me₃SiN=NSiMe₃). The mass spectral analysis favours structure **6a** with the tetraazadistannacyclohexane configuration. The ¹H NMR spectrum in benzene (ether) shows a silyl signal at δ 0.203 (0.140) ppm and a stannyl signal at 0.397 (0.440) ppm with an integrated ratio of 3/1. The hydrazine (Me₂SnCl)(Me₃Si)N- N(SiMe₃)(Me₂SnCl) (7) shows a different ¹H NMR spectrum in benzene (ether) with a silyl singlet at 0.183 (0.089) ppm and a stannyl singlet at 0.465 (0.483) ppm with a relative ratio of 3/2. In contrast to this, SnCl₄ acts primarily as an oxidant (eq. 5, 6). The reaction of 1 $$1 + SnCl_4 \rightarrow Me_3SiN = NSiMe_3 + 2LiCl + SnCl_4$$ (5) $$Me_3SiN=NSiMe_3 + SnCl_4 \rightarrow 2Me_3SiCl + N_2 + SnCl_5$$ (6) with Me₂SiCl₂ is complicated by a variety of products which are highly viscous and polymeric in nature. There appears to be a small yield of tetraazadisilacyclohexane [Me₂Si(NSiMe₃)₂]₂ contaminated with some other silyl-nitrogen derivatives. This has been tentatively derived from ¹H NMR spectra, wherein signals with a relative ratio of 1/3 are observed at δ 0.473 (0.533) and 0.233 (0.263) ppm in benzene (CCl₁) due to Me₂Si and Me₃Si protons, respectively. Stannous chloride reacts with 1 predominantly in a redox reaction to form BSD which thermolyses to give BSA. TrSH and TSH [8]. Also, small amounts of lithium bis(trimethylsilyl)amide are formed due to a free radical reaction. This is supported by the reaction of 1 with PbCl₂, wherein, besides BSA, TrSH. TSH and BSH, a significant amount of LiN(SiMe₃)₂ (> 25% yield) is obtained as a white sublimate whose ¹H NMR spectra in Et₂O, benzene and CCl₄ show a singlet at 0.047, 0.128 and 0.043 ppm, respectively. However, its ¹H NMR spectrum in THF shows two broad signals at $\delta = 0.113$ and 0.03 ppm (very small). On treatment with Me₃SiCl this compound forms mainly (Me₃Si)₃N and a small amount of HN(SiMe₃)₂ indicative of contamination of LiN(SiMe₃)₂ with LiNH(SiMe₃). It appears that 1 undergoes free radical decomposition into Li(Me₃Si)N' which interacts with the solvent to form LiNH(SiMe₃). It then undergoes disproportionation (eq. 7). $$2LiNH(SiMe_3) \rightarrow LiN(SiMe_3)_2 + LiNH_2$$ (7) LiN(SiMe₃)₂ can also arise as a decomposition product from the radical LiNN(SiMe₃)₂ via tetraazanide [16]: $$[\operatorname{LiN}_{2}(\operatorname{SiMe}_{3})_{2}]_{2} \rightleftharpoons [(\operatorname{Me}_{3}\operatorname{Si})_{2}\operatorname{N-NLi-NLi-N}(\operatorname{SiMe}_{3})_{2}]$$ $$(\operatorname{Me}_{3}\operatorname{Si})_{2}\operatorname{NLi} + \operatorname{N}_{2} + \operatorname{LiN}(\operatorname{SiMe}_{3})_{2}$$ (8) ## Experimental General comments All investigations were carried out under vacuum and in the absence of air and moisture. All glassware was flame-dried also under vacuum. Bis(trimethylsilyl)hydrazine [11], butyllithium [12], dilithium bis(trimethylsilyl)hydrazine [2], dichlorodimethylstannane [13] and trimethylsilyltrichloromethane [14] were prepared as re- ported in the literature. Diethyl ether and tetrahydrofuran were dried over sodium benzophenoneketyl and the hydrocarbons were kept over sodium wire. Carbon halides and hydrohalides were rigorously dried. ¹H NMR spectra were recorded on a Varian EM-390 apparatus, IR spectra on a Perkin–Elmer 621 spectrometer and the mass spectrum on a Varian MAT CH7. 1H NMR of Me₃Si protons, δ (ppm) in benzene (Et₂O): (Me₃Si)₂N₂H₂, 0.117 (0.066); (Me₃Si)₄N-NH(SiMe₃), 0.041 (0.000); (Me₃Si)₂N-N(SiMe₃)₂, 0.225 (0.205); (Me₃Si)₂N-NH(SiMe₃), 0.133 and 0.108 doublet 2/1 (0.095); (Me₃Si)₂NH, 0.087 (0.050); LiN(SiMe₃)₂, 0.128 (0.047); Me₃SiN=NSiMe₃, 0.260 (0.200); (Me₃Si)₃N, 0.047 (0.215); Me₃SiCl, 0.208 (0.400); Me₃SiBr, 0.334 (0.550); Me₂SnCl₂, 0.400 (0.520); Me₃SiCCl₃, 0.144 (0.360); Me₃SiCHCl₂ (CCl₄), 0.27 [15]; Me₃SiCH₂Cl(CCl₄), 0.14 [15]; (Me₃Si)₂N-N=CCl₂, 0.135 (0.160); (Me₃Si)₂N-N=CBr₂, 0.140 (0.167); Me₃SiCBr₃, 0.193 (0.400); (Me₃Si)₂N-N=C, 0.070 (0.255). # General procedure Dilithium bis(trimethylsilyl)hydrazine (1) (40 mmol, 7.520 g) was suspended (dissolved) in 40-50 ml of Et₂O (THF) and cooled to -40 (to -78° C). The required amounts of carbon halides (80 mmol or as stated) and of silicon, tin or lead halides (40 mmol or as stated) were added dropwise (or in small quantities) and the reaction mixture was allowed to warm slowly to room temperature with stirring. It was filtered to isolate LiX (X = Cl, Br or I). The ¹H NMR spectrum of a part of the filtrate was studied. The main filtrate was carefully evacuated to remove the solvents (up to 60 Torr/room temperature) and then fractionated (sublimed) to isolate various products. These products were refractionated in an appropriate column or resublimed to isolate pure fractions which were characterised mostly by ¹H NMR (in the case of known compounds) and other methods which are indicated in each case. The yield of pure products, obtained in significant amounts, is based on the amount isolated, whereas that of unseparable mixtures or very small amounts of compounds is calculated from ¹H NMR integrated ratios after adding a known amount of cyclohexane or toluene. #### Reaction with CCl₄ The reaction of 1 with CCl₄ in ether occurring at about -50° C gave a white solid LiCl (77 mmol) and a light greenish yellow solution changing to yellow at room temperature. Its fractional distillation provided bis(trimethylsilyl)hydrazine, (BSH) (2 mmol) at 55° C/10 Torr; (Me₃Si)₂NH (BSA) (4 mmol) at 50° C/60 Torr and (Me₃Si)₂NNH(SiMe₃), (TrSH) (1 mmol) and (Me₃Si)₂N-N=CCl₂ (30 mmol) together at $75-80^{\circ}$ C/10 Torr. (Me₃Si)₂N-N=CCl₂ was purified by redistillation or crystallisation from n-pentane and characterised [4,7]. ## Reaction with Me SiCCl 3 An equimolar reaction with 1 in Et₂O at -78°C was slow and provided an almost quantitative yield of LiCl. The colourless filtrate was fractionated. The ¹H NMR spectrum of the fractions at 55-60°C/740 Torr and 95-100°C/740 Torr in CCl₄ indicate the presence of Me₃SiCl (17 mmol) and Me₃SiCH₂Cl (4 mmol), respectively. The ¹H NMR spectrum of the fraction at 50-60°C/50-10 Torr in Et₂O, CCl₄ and benzene indicated a mixture consisting of BSA (2 mmol), BSH (4 mmol), $Me_3SiCHCl_2$ (6 mmol) and Me_3SiCCl_3 (1 mmol). A fraction at $30-50^{\circ}C/0.1$ Torr consisted of $(Me_3Si)_2N-N\equiv C$ and TrSH (¹H NMR) from which the former (20 mmol) was distilled out at $35^{\circ}C/0.1$ Torr [4]. ## Reaction with CBr. The green coloured reaction mixture in Et₂O at $-78^{\circ}C$ showed the formation of BSD which could not be sublimed out in pure form at $-30^{\circ}C/10^{-3}$ Torr. The mixture at room temperature gave LiBr (70 mmol). An immediate ¹H NMR study of the filtrate in Et₂O (benzene) showed (besides others) signals due to Me₃SiCBr₃ at δ (ppm) 0.400 (0.193) [4]; (Me₃Si)₂NN=CBr₂ at 0.167 (0.140) [4] and Me₃SiN=NSiMe₃ at 0.200 (0.260) which soon disappear. Fractional distillation provided Me₃SiBr (26 mmol) at 80°C/740 Torr; BSH (4 mmol) and BSA (6 mmol) at the temperatures indicated above and TrSH (2 mmol). (Me₃Si)₄N₂ (TSH) (0.5 mmol) and (Me₃Si)₂N-N=C (12 mmol) together at $30-60^{\circ}C/0.1$ Torr from which the latter was isolated at $35^{\circ}C/0.1$ Torr [4]. #### Reaction with CHCl₃ Chloroform reacted with 1 in Et₂O at -40° C. The filtrate, after separation of LiCl (72 mmol), was fractionated to isolate BSH (24 mmol) and BSA (6 mmol) at the temperatures given above and $C_7H_{19}ClN_2Si_2$ (4) (5 mmol) at $80^{\circ}C/6$ Torr. Found: C. 36.95; H, 8.32; N, 12.21; Cl, 14.85. $C_7H_{19}ClN_2Si_2$ calcd.: C. 37.75; H, 8.54; N, 12.58; Cl, 15.95%. Important IR bands (thin film, cm⁻¹): 1575s (ν (C=N)), 990s (ν (N-N)), 945s (ν _{as}(Si₂N)). ¹H NMR(CCl₄): δ (ppm) 0.160 (s, 18H, Me₃Si) and 7.10 (s, 1H, CH). (Et₂O) δ (ppm) 0.156 (s. 18H, Me₃Si) and 7.10 (s, 1H, CH). After distillation of the silylhydrazone **4**, the residue was heated to $80-120^{\circ}\text{C}/10^{-2}$ Torr to give white crystals in a yellowish liquid which were cooled in a glass boat to -78°C . The product was recrystallised twice from n-hexane at low temperatures forming white crystals which were sublimed at $70^{\circ}\text{C}/10^{-3}$ Torr and analysed as $\text{C}_{15}\text{H}_{44}\text{N}_6\text{Si}_5$ (5). Found: C, 39.86; H, 9.63; N, 18.81; $\text{C}_{15}\text{H}_{44}\text{N}_6\text{Si}_5$ calcd.: C, 40.16; H, 9.82; N. 18.75%. Important IR bands (Nujol mull, cm⁻¹): 3410m, 3365m (ν (NH)). 1600s (ν (C=N)), 1090sh, 1050s (ν (N-N)), 950sb (ν ₄₈(Si₂N)). ¹H NMR(CCl₄, Et₂O, C₆H₆, C₆D₆): δ (ppm) 0.058, 0.106, 0.130, 0.127 (s, 18H, (Me₃Si)₂N); 0.137, 0.160, 0.286, 0.315 (s, 18H, 2Me₃SiN); 0.193, 0.207, 0.330, 0.355 (s, 6H, Me₂Si); 3.83, -, 4.1, 4.1 (s, 1H, NH); 6.17, 6.13, 6.4, 6.4 (s, 1H, NH). Mass spectrum (70, 15eV). m/e (assignment; relative intensity 70, 15 eV, %): 448 (M^+ ; 22, 100), 447 (M^+ – H; 1.5, 0), 433 (M^+ – Me; 5, 4), 346 (M^+ – Me₃SiN₂H; 11, 8), 274 (M^- – Me₃SiNNSiMe₃; 24, 11), 273 (M^+ – 175; 2, 1), 232 (M^+ – 216; 6, 10), 231 (M^+ – 217; 2, 3), 190 (M^+ – 258; 18, 57), 189 (Me₃SiNNHSiMe₂NNH⁺; 6, 15), 175 (Me₃SiNHNSiMe₂NH⁺; 65, 40), 98 (HNSiMe₃⁺; 77, 41), 97 (NSiMe₃⁺; 32, 10), 73 (Me₃Si⁺; 100, 1). Metastable fragments at 419, 267 and 167 have been observed both at 70 and 15 eV. $C_{15}H_{44}Si_5N_6$: Isotopic pattern (calcd.): ``` Mass 448 449 450 451 452 453 454 455 I_{\rm max} = 100 100.000 45.142 26.197 7.888 2.458 0.531 0.108 0.012 ``` C₁₅H₄₄N₆Si₅ (1 mmol) was dissolved in benzene (2 ml) and treated with Me₃Sn-NEt₂ (4 mmol) at room temperature. After 6 h stirring the reaction mixture was evacuated to remove $\rm Et_2NH$, $\rm Me_3SnNEt_2$ and benzene. Vacuum sublimation led to decomposition, therefore, the residue was crystallised from n-hexane to get $\rm C_{21}H_{60}N_6Si_5Sn_2$. Found: C, 30.50; H, 7.60; N, 10.23. $\rm C_{21}H_{60}N_6Si_5Sn_2$ calcd.: C, 32.58; H, 7.76; N, 10.86%. ¹H NMR (benzene): δ (ppm) 0.124 (s, 18H, (Me₃Si)₂N), 0.274 (s, 18H, 2Me₃SiN), 0.340 (s, 6H, Me₂Si) and 0.300 (s, 18H, 2Me₃Sn) with $J(^{1}H^{-117}Sn)$ and $J(^{1}H^{-119}Sn)$ satellites at 52.4 and 55.0 Hz. # Reaction with CHI3 Equimolar amounts of 1 with CHI₃ in Et₂O or THF at room temperature (48 h) gave only 50% yield (40 mmol) of LiI. A dark yellow filtrate provided BSH (10 mmol), BSA (4 mmol) and $(Me_3Si)_2N-N\equiv C$ (3 mmol) at temperatures already mentioned and CHI₃ crystals (15 mmol) subliming at $50-60^{\circ}C/1$ Torr. ## Reaction with CH₂Cl₂ CH_2Cl_2 reacted with 1 in Et_2O or THF at -30 to -40°C to form LiCl (65 mmol) in a mustard yellow solution which provided BSH (17 mmol), BSA (12 mmol), TrSH (4 mmol) and a small amount of TSH at temperatures already mentioned. A white sublimate obtained at 100-120°C/ 10^{-3} Torr (resublimable at 70-80°C/ 10^{-3} Torr) was characterised as discussed later for the reaction with PbCl₂. ## Reaction with CH_2I_2 The reaction in Et_2O was slow at $-40^{\circ}C$ and led to LiI (70 mmol). The yellow filtrate was distilled to get BSH (3 mmol) and BSA (15 mmol) as mentioned above and a mixture of $(Me_3Si)_2N-N=CH_2$ [4] (15 mmol) and CH_2I_2 together at $60-70^{\circ}C/10$ Torr. The mixture consisted of two layers with the upper layer containing mainly $(Me_3Si)_2N-N=CH_2$ and the lower layer predominantly CH_2I_2 . In order to obtain pure $(Me_3Si)_2N-N=CH_2$, equimolar amounts of reactants are recommended. ¹H NMR of $(Me_3Si)_2N-N=CH_2$ (CCl_4): δ (ppm) 0.177 (s, 18H, $2Me_3Si$); 6.56 (d, J(H-H) 12.0 Hz, 1H, CH); 7.0 (d, J(H-H) 12.0 Hz, 1H, CH) [4]. #### Reaction with $C_2H_4Cl_2$ This reaction in $\rm Et_2O$ at $-40^{\circ}C$ gave a low yield of LiCl (60 mmol) and the filtrate gave BSH (28 mmol), BSA (8 mmol) and TrSH (1 mmol) at the temperatures given above. #### Reaction with $C_2H_2Cl_4$ The reaction of 1 with $C_2H_2Cl_4$ in Et_2O at $-40^{\circ}C$ gave almost a quantitative yield of BSH (36 mmol) with trace amounts of BSA and TrSH. The yield of LiCl was 96% (76.8 mmol). #### Reaction with Me₂SnCl₂ Equivalent amounts (20 mmol) of 1 in 40 ml $\rm Et_2O$ and $\rm Me_2SnCl_2$ in 30 ml $\rm Et_2O$ were taken in separate flasks of a V unit. The flasks were cooled to liquid nitrogen temperature and then evacuated to 10^{-3} Torr. The main stop cock was closed and the two were reacted in vacuo at $-78^{\circ}C$ and then allowed to come to room temperature and stirred for a further one hour. The mixture was toeplered and no $\rm N_2$ gas was found to evolve. Lithium chloride (35 mmol) was removed to get a pale yellow filtrate showing ^{1}H NMR signals at δ 0.059, 0.094, 0.288 and 0.322 ppm. Ether was evacuated to get a solid residue which could not be purified by sublimation at $100^{\circ}\text{C}/10^{-3}$ Torr because both the compounds sublimed together. Crystallisation from n-pentane at -78°C provided a white crystalline solid (m.p. 135°C and s.p. $100^{\circ}\text{C}/10^{-3}$ Torr) $C_{16}H_{48}N_4\text{Si}_4\text{Sn}_2$. Found: C. 28.80; H. 6.92; N. 8.37. $C_{16}H_{48}N_4\text{Si}_4\text{Sn}_2$ calcd.: C. 29.72; H. 7.43; N. 8.67%. ¹H NMR (Et₂O, benzene): δ 0.142, 0.205 (s. 36H, 4Me₃Si) and 0.440, 0.397 (s. 12H, 2Me₂Sn). Mass spectrum (70, 15 eV), m/e (assignment; relative intensity 70, 15 eV, %); 646 (M^+ ; 4, 100) 472 (M^+ – Me₃SiN=NSiMe₃ = M'; 8, 76) 457 (M' – Me; 2, 6), 427 (M' – 3Me; 1, 0), 385 (M' – Me₃SiN; 0.5, 4), 323 (M' – Me₂Sn; 1, 2), 313 (M' – Me₅Si₂N₂; 6, 27), 298 (M' – 2Me₃SiN; 1, 1), 248 (M' – 224; 1, 12), 239 (M' – 233; 1, 4), 190 (M' – 258; 3, 5), 174 (2Me₃SiN $^+$; 32, 91), 146 (2Me₃Si $^+$; 22, 40), 118 (Me₄Si $^+$; 3, 0), 73 (Me₃Si $^+$; 100, 0). A metastable fragment has been observed at 345 both in 70 and 15 eV. C₁₆H₄₈N₄Si₄Sn₂: Isotopic pattern (calcd.) | Mass | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | |------------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------| | $I_{\rm max} = 100$ | 0.057 | 0.048 | 1.110 | 1.037 | 3.009 | 2.638 | 13.042 | 14.852 | 37.842 | | Mass | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | | $I_{\rm max} = 100$ | 40.131 | 82.266 | 69.133 | 100.000 | 64.886 | 85.416 | 39.864 | 40.590 | 18.581 | | Mass | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | | $I_{\text{max}} = 100$ | 23.951 | 8.916 | 6.177 | 1.909 | 2.096 | 0.725 | 0.325 | 0.083 | 0.021 | Repeated crystallisation of the mother liquor gave pure hydrazine $C_{10}H_{30}N_2Cl_2$ -Si₂Sn₂ whose yield improved considerably in a 1/2 ratio of 1 with Me₂SnCl₂. Found: C, 20.48; H, 5.12; N, 4.86; Cl, 13.01, $C_{10}H_{30}N_2Cl_2Si_2Sn_2$ calcd.: C, 22.12; H, 5.53; N, 5.16; Cl, 13.09%. H NMR (Et₂O, benzene): δ (ppm) 0.089, 0.183 (s, 18H, 2Me₃Si) and 0.483, 0.465 (s, 12H, 2Me₃Sn). #### Reaction with SnCl₃ A 1/1 or 1/2 ratio of **1** with SnCl₄ in Et₂O at -78° C in a V shaped unit gave an initial green colour (due to BSD) which soon vanished. The reaction mixture (1/2) gave a white residue of LiCl and SnCl₂. The ¹H NMR of the filtrate showed 2 predominant signals at δ 0.053 and 0.400 ppm due to BSA and Me₃SiCl, respectively. After careful removal of Et₂O at 35–40°C, Me₃SiCl (60 mmol) at 57°C/740 Torr and BSA (8 mmol) at 50°C/60 Torr were isolated. A small amount of BSH was also indicated in the residue. ## Reaction with Me SiCl . A 1/1 or 1/2 ratio of 1 with Me₂SiCl₂ in Et₂O at -78° C did not show a green colour and both gave similar ¹H NMR spectra. In the 1/2 reaction ratio, the colourless solution, after removal of LiCl (75 mmol), gave BSH (1.5 mmol) at 55°C/10 Torr and 0.3 ml of a liquid distilling at 75°C/0.1 Torr. This liquid contained two compounds one of which seemed to be tetraazadisilacyclohexane [Me₂Si(NSiMe₃)₂]₂ with ¹H NMR in CCl₄ (benzene) showing singlets at δ 0.533 (0.473) and 0.263 (0.233) ppm with a relative ratio of 1/3. The compound could not be collected in a pure state. The main fraction (4.8 ml) was distilled at 115–120°C/0.1 Torr as a colourless, viscous liquid soluble in benzene, Et₂O or CCl₄. It contained a very large number of silyl proton signals between 0 to 0.3 ppm. ## Reaction with SnCl, A 1/2 ratio of 1 with $SnCl_2$ in Et_2O was stirred for 48 h at room temperature to give 2.5 g of LiCl (calcd., 3.4 g) contaminated with tin and $SnCl_2$. The filtrate gave BSH (10 mmol), BSA (9 mmol) and TrSH (4.2 mmol) at the temperatures given above and a small amount of white sublimate at $80-100^{\circ}C/10^{-3}$ Torr consisting of $LiN(SiMe_3)_2$ and $(Me_3Si)_4N_2$. ## Reaction with PbCl, An equimolar reaction of 1 with PbCl₂, as above, gave an insoluble mixture of LiCl and greyish black Pb. The filtrate was fractionated to get BSH (1 mmol), BSA (2 mmol) and TrSH (2 mmol) as above and TSH (trace amounts) and LiN(SiMe₃)₂ subliming together at $80^{\circ}\text{C}/10^{-3}$ Torr. The latter was purified by recrystallisation from n-hexane (12 mmol). Its ¹H NMR (Et₂O, benzene, CCl₄) showed singlets at δ 0.047, 0.128, and 0.043 ppm, respectively. The ¹H NMR spectrum in THF showed the main signal at -0.113 and a small signal at 0.030 ppm. The compound on treatment with Me₃SiCl formed (Me₃Si)₃N and a small amount of (Me₃Si)₂NH to indicate that the white sublimate is primarily LiN(SiMe₃)₂ with some impurity of LiN(H)(SiMe₃). ## Acknowledgements We thank Dr. Gerd Fischer, Institut für Anorganische Chemie der Universität, München-2, for some mass spectral work, elemental analyses and useful suggestions. Ms M.S. and Dr. G.S. thank CSIR, New Delhi for research followships. #### References - 1 N. Wiberg, H. Bayer, and S.K. Vasisht, Chem. Ber., 114 (1981) 2658. - 2 N. Wiberg, E. Weinberg, and W.Ch. Joo, Chem. Ber., 107 (1974) 1764. - 3 N. Wiberg, S.K. Vasisht, G. Fischer, and E. Weinberg, Chem. Ber., 109 (1976) 710. - 4 (a) N. Wiberg, and G. Hübler, Z. Naturforsch. B, 31 (1976) 1317; 32 (1977) 1003; 33 (1978) 575; (b) - G. Hübler, Doktor Arbeit, L.M. Universität, München, 1977. 5 N. Wiberg, S.K. Vasisht, and G. Fischer, Angew. Chem., 88 (1976) 257. - 6 N. Wiberg, R. Meyers, S.K. Vasisht, and H. Bayer, Chem. Ber., 117 (1984) 2886. - 7 N. Wiberg, and W. Uhlenbrock, Chem. Ber., 104 (1971) 3989. - 8 N. Wiberg, and W. Uhlenbrock, J. Organomet. Chem., 70 (1974) 239, 249. - 9 R. West, Adv. Organomet. Chem., 16 (1977) 1. - 10 K.G. Das, P.S. Kulkarni, V. Kalyanaraman, and M.V. George, J. Org. Chem., 35 (1970) 2140. - 11 U. Wannagat, and H. Niederprüm, Z. Anorg. Allg. Chem., 310 (1961) 32. - 12 H. Gilman, J.A. Beel, C.G. Brannen, M.W. Bullock, G.E. Dunn, and L.S. Miller, J. Am. Chem. Soc., 71 (1949) 1499. - 13 E.V. Van Berghe, and G.P. Van Der Kelen, J. Organomet. Chem., 6 (1966) 522. - 14 W.R. Bamford, and B.C. Pant, J. Chem. Soc. C, (1967) 1470. - 15 H. Sakurai, H. Yamamori, and M. Kumada, J. Org. Chem., 33 (1968) 1527. - 16 N. Wiberg, W.CH. Joo, and E. Weinberg, J. Organomet. Chem., 73 (1974) 49.