Contents lists available at ScienceDirect

ELSEVIER

Letter

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Magnetic structure of the NaCl-type NdSb compound

P. Manfrinetti^a, A. Provino^a, A.V. Morozkin^{b,*}, O. Isnard^{c,d}

^a LAMIA-CNR-INFM, Dipartimento di Chimica, Università di Genova, Via Dodecaneso 31, 16146 Genova, Italy

^b Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992, Russia

^c Institut Laue-Langevin, 6 Rue J. Horowitz, 38042 Grenoble, France

^d Institut Néel du CNRS - Université J. Fourier, BP166X, 38042 Grenoble, France

ARTICLE INFO

ABSTRACT

Article history: Received 26 June 2009 Received in revised form 10 August 2009 Accepted 11 August 2009 Available online 19 August 2009

Keywords: Rare earth intermetallic compounds and alloys Neutron diffraction antiferromagnetic ordering with magnetic moments of Nd directed along Z axis ($M_{Nd} = 3.1(1) \mu_B$). Thermal variation of intensity of (001) magnetic reflection shows the temperature of magnetic ordering at $T_N = 13$ K. © 2009 Elsevier B.V. All rights reserved.

Neutron powder diffraction experiments have been carried out on the well-known NaCl-type polycrys-

talline NdSb compound. The neutron diffraction data obtained in zero field at 2 K, reveal commensurate

Well-known NaCl-type NdSb [1] show antiferromagnetic ordering at $T_{\rm N} = 10-16$ K with effective magnetic moment $M_{\rm eff}^{\rm Nf} = 3.75 \,\mu_{\rm B}$, paramagnetic temperature $\theta_{\rm P} = -3$ K [2]. Meantime, the NaCl-type NdAs and NdBi compounds demonstrate the antiferromagnetic commensurate magnetic structure [2].

In order to examine the magnetic structure of NaCl-type NdSb compound, a powder neutron diffraction study was undertaken.

The NdSb compound was prepared by arc melting under argon atmosphere starting from high purity elements (Nd—99.9%, Sb—99.99% pure).

The neutron diffraction investigation was carried out from 90 K down to 2 K in the absence of applied magnetic field the zero at the Institute Laue-Langevin, Grenoble, France, using the high neutron flux powder diffractometer *D1B* [3], operating at a wavelength $\lambda = 0.2524$ nm selected by a pyrolitic graphite monochromator. In the configuration used, the resolution of *D1B* was about 0.3° (Full Width at Half Maximum) the multicounter is composed of 400 cells covering a total angular domain of 80° ($2\theta = 4-84^\circ$). The diffraction patterns were indexed, and the calculations performed using the FULLPROF 98-program [4].

The powder neutron diffraction patterns obtained at 90 K and 2 K in zero magnetic field show the development of commensurate reflections (Fig. 1) that correspond to pure antiferromagnetic structure whose details are given in Fig. 2 and Table 1. Thermal variation of intensity of (001) magnetic reflection shows the temperature of magnetic ordering at $T_{\rm N}$ = 13 K (Fig. 3a). The

Fig. 1. Neutron diffraction patterns of NdSb at 90 K (paramagnetic state) (a) and at 2 K (commensurate antiferrimagnet) (b).

^{*} Corresponding author. Tel.: +7 095 9393472; fax: +7 095 9328846. *E-mail address*: morozkin@general.chem.msu.ru (A.V. Morozkin).

^{0925-8388/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2009.08.038

Table 1

Crystallographic and magnetic parameters of NaCl-type NdSb compound (space group Fm3m, No. 225) at different temperatures T: magnetic type, unit cell data (cell parameter a and atomic position of Nd atoms); temperature T_N refers to a magnetic transition from neutron diffraction experiment; magnetic moment of Nd atom M; φ and θ angles (φ the angle of magnetic moment with X axis of unit cell and θ the angle of magnetic moment with Z axis of unit cell). Reliability factors R_F (crystal structure) and R_F^m (magnetic structure) are given in percent (%).

Magnetic type	<i>T</i> _N (K)	<i>T</i> (K)	Unit cell data	R _F (%)	Atom	<i>M</i> (μ _B)	φ(°)	θ(°)	$R_{\rm F}^m$ (%)
Paramagnetic		90	$a = 0.6338(2) \mathrm{nm}$	4.4					
Collinear AF	13	2	a=0.6336(2) nm Nd1 [0, 0, 0] Nd2 [0, 1/2, 1/2] Nd3 [1/2, 1/2, 0] Nd4 [1/2, 0, 1/2]	5.0	Nd1 Nd2 Nd3 Nd4	3.1(1)	0 0 0 0	0 180 0 180	12.0

Fig. 2. The magnetic ordering in Cu-type sublattice of NaCl-type NdSb compound.

I001, a.u. $T_{\rm N} = 13 \, {\rm K}$ 16000 (a) 14000 12000 10000 8000 6000 4000 2000 0 ò 10 15 20 25 30 35 40 T,K M_{Nd}, μ_B $T_N = 13 \text{ K}$ 3,5 (b) 3 2,5 2. 1,5 0,5 0. 12 0 2 8 10 14 16 18 20 6 T,K

Fig. 3. Thermal variation of intensity I_{001} of magnetic reflection (001) (a) and magnetic moment of Nd atom (b).

magnitude of Nd magnetic moment rich the $3.1(1)\,\mu_B$ at 2K (Fig. 3b).

The magnetic structure of NdSb equals to the magnetic structure of NdAs and NdBi compounds.

Acknowledgements

This work was supported by the *Russian Fund for Basic Research* through the project N 09-03-00173-a. This work was supported by the *Indo-Russian Fund for Basic Research* through the project N 09-03-92653-IND_a. The authors thank Prof. C. Ritter (Institut Laue-Langevin, Grenoble, France) for help in the neutron diffraction experiment and useful discussion.

References

- Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 1–3, American Society for Metals, Metals Park, OH 44073, 1985.
- [2] V.I. Ozhogin, V.G. Shapiro, in: A.I. Kikoin (Ed.), Antiferromagnetics, Table of Physical Data, M. Atomizdat, 1976, pp. 600–633 (in Russian).
- [3] www.ill.fr, Yellow Book.
- [4] J. Rodriguez-Carvajal, Physica B 192 (1993) 55-69.