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ABSTRACT: Due to its expression in various malignant tumors, the neurotensin receptor 1 (NTS1R) has been suggested and explored 
as a target for tumor diagnosis and therapy. Animal model-based investigations of various radiolabeled NTS1R ligands derived from 
the hexapeptide neurotensin(8-13) (NT(8-13)), e.g. 68Ga- and 18F-labeled compounds for PET diagnostics, give rise to optimize such 
radiotracers for clinical use. As NT(8-13) is rapidly degraded in vivo, structural modifications are required in terms of increased 
metabolic stability. In this study, the stabilization of the peptide backbone of NT(8-13) against enzymatic degradation was 
systematically explored by performing an N-methyl scan, replacing Ile12 by tert-butylglycine12 (Tle12) and N-terminal acylation. N-
methylation of either arginine, Arg8 or Arg9, combined with the Ile12/Tle12 exchange proved to be most favorable with respect to 
NTS1R affinity (Ki < 2 nM) and stability in human plasma (t1/2 > 48 h), a valuable result regarding the development of 
radiopharmaceuticals derived from NT(8-13).

Introduction. The neuromodulator neurotensin (NT), a 13 
amino acid peptide (Figure 1), is found in the central nervous 
system (CNS), mediating e.g. analgesic effects, as well as in the 
periphery (primarily in the gastrointestinal tract).1-2 The 
carboxy-terminal hexapeptide of NT (NT(8-13) (1), Figure 1), 
is biologically equi-active to NT.3 The physiological effects of 
NT are mediated by three cell-surface receptors: the NT 
receptors 1 and 2 (NTS1R, NTS2R), both G-protein coupled 
receptors,4 and the NTS3R, which belongs to the Vps10p-
domain receptor family.2, 5 The NTS1R has increasingly gained 
interest as a target for tumor diagnosis and therapy, as it was 
reported to be (over)expressed in a variety of malignancies, 
among them the prognostically poor pancreatic 
adenocarcinoma, Ewing’s sarcoma, breast cancer, and 
colorectal carcinoma.6-9 Thus, radiolabeled NTS1R ligands 
harbor the potential of being used as radiopharmaceuticals. The 
majority of such compounds (e.g. 68Ga- and 18F-labeled for PET 
diagnostics, 177Lu-labeled for radioendotherapy) has been 
derived from the agonist 1.10-19 Noteworthily, also NTS1R 
ligands derived from non-peptidic antagonists have been 
explored as radiodiagnostics and radiotherapeutics.20-21 
Recently reported data of a clinical trial on the treatment of 
pancreatic adenocarcinoma in men by 177Lu-labeled NTS1R 
antagonists give reason to develop clinical trial candidates with 
improved properties.22 Therefore, peptidic NTS1R ligands, such 
as radiolabeled derivatives of 1, should be considered for 
clinical trials.
A major drawback of peptide 1 is its rapid degradation in vivo 
by peptidases (see Figure 1).23-24 Enzymatic degradation of 1 
occurs at three major sites: the Arg8-Arg9 bond, the Pro10-Tyr11 
bond and the bond between Tyr11 and Ile12 (cf. Figure 1).24-25 

The predominant approaches to stabilize the backbone of 1 are 
N-methylation of Arg8 or Arg9, N-terminal acylation and the 
exchange of Ile12 by tert-butylglycine (Tle).10-15, 17, 26-38 
However, for some interesting analogs of 1, such as N-
methylated derivatives, investigations on the stability are 
lacking.33, 39. It is worth mentioning that described derivatives 
of 1, containing Tle12 instead of Ile12, include additional 
structural modifications throughout,10-12, 29, 31-32, 38, 40 i.e. 
[Tle12]NT(8-13) (2, cf. Figure 1) has not been reported to date 
to the best of the authors’ knowledge. Therefore, it is difficult 
to estimate the impact of the Ile12/Tle12 exchange on the stability 
of Tle12-containing derivatives of 1.

pGlu1-Leu2-Tyr3-Glu4-Asn5-Lys6-Pro7-Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13

NT iKi (NTS1R): 0.28 nMa

NT(8-13), 1 Ki (NTS1R): 0.14 nMb

Arg8-Arg9-Pro10-Tyr11-Tle12-Leu13

[Tle12]NT(8-13), 2Tle = tert-butylglycine

EC 3.4.24.15

EC 3.4.24.16
EC 3.4.24.11

EC 3.4.15.1
EC 3.4.24.11

Figure 1. Amino acid sequences of neurotensin, 1 (NT(8-13), in 
blue) and 2, as well as major enzymatic cleavage sites (in red) of 
1.3, 24-25 EC 3.4.24.15: metalloendopeptidase 24.15, EC 3.4.24.16: 
metalloendopeptidase 24.16, EC 3.4.24.11: neutral endopeptidase 
24.11, EC 3.4.15.1: angiotensin converting enzyme (ACE).24-25  
aBarroso et al.41 bKeller et al.42
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Aiming at a systematic study on the stabilization of the NT(8-
13) core structure, we synthesized compound 2, performed an 
N-methyl scan of 1, combined N-methylation with the 
Ile12/Tle12 exchange and, additionally, prepared N-terminally 
acylated derivatives of 1. All compounds were studied with 
respect to NTS1R binding and plasma stability.

Results and Discussion. Peptides 2, 3,34 4,33 5,33, 39 6,33 7, 8 and 
933 were prepared by solid-phase peptide synthesis (SPPS) 
according to the  9-fluorenylmethoxycarbonyl (Fmoc) 
protecting group strategy using 1-hydroxybenzotriazole 
(HOBt)/O-(1H-benzotriazol-1-yl)-N,N,N′,N′-
tetramethyluronium hexafluorophosphate (HBTU) and 
diisopropylethylamine (DIPEA) for amide bond formation 
(Scheme 1). Coupling of Fmoc-protected amino acids to the 
secondary amino group of N-methylated amino acids turned out 
to be the yield limiting factor in case of 5, 6 and 9 (overall 
yields: 18%, 15% and 20%, respectively). The N-terminally 
propionylated derivative 11 was obtained by treatment of the 
respective resin-bound, side chain-protected, but N-terminally 
deprotected precursor peptide with succinimidyl propionate 
(10) followed by cleavage off the resin and side chain 
deprotection. By contrast, the N-terminally propionylated 
peptide 12 was prepared by solution phase treatment of 2 with 
compound 10 (Scheme 1).
NTS1R binding data (Ki values) were determined for 1-9, 11 and 
12 by competition binding with [3H]UR-MK30042 ([3H]13, for 
structure see Figure S1, Supporting Information) at intact 
hNTS1R expressing HT-29 colon carcinoma cells (Table 1). 
The replacement of Ile12 by Tle12 in 1 (compound 2) resulted in 
a minor decrease in NTS1R affinity (Ki values of 1 and 2: 0.33 
vs. 1.17 nM, cf. Table 1). Regarding the N-methyl scan of 1 
(peptides 3-6 and 9), methylation at Arg8 or Arg9 (3, 4) did not 
affect NTS1R affinity (Ki < 0.5 nM, Table 1). By contrast, N-
methylation of Tyr11, Ile12 or Leu13 (5, 6, 9) led to a considerable 
decrease in NTS1R affinity (Ki values: > 1,000 nM, 60 nM and 
880 nM, respectively, cf. Table 1). As expected, the 
combination of the N-methylation at Arg8 or Arg9 with the 
replacement of Ile12 by Tle12 (peptides 7 and 8) resulted in 
NTS1R affinities comparable to that of 2 (Table 1). The N-
terminally propionylated analogs of 1 and 2 (compounds 11 and 
12) exhibited Ki values (NTS1R) of 1.0 and 18 nM, respectively.
Figure 2 illustrates a general decrease in NTS1R affinity caused 
by the replacement of Ile12 by Tle12 in 1, 3, 4 and 11, giving 2, 
7, 8 and 12, respectively, and a dependency of the extent of the 
decrease in affinity on the primary structure of the peptides. 
This is in agreement with reported NTS1R binding data of 
derivatives of 1 containing Tle12.10-11, 27, 31, 38, 40

In order to investigate the effect of N-methylation (3-9), the 
Ile12/Tle12 exchange (2, 7, 8, 12) and N-terminal acylation (11, 
12) on the stability of the peptides against enzymatic cleavage, 
the stability of all compounds was investigated in human 
plasma at 37 °C for up to 48 h (Figure 3, Table 1). Whereas N-
methylation of Arg8 or Arg9 in 1 (compounds 3 and 4) 
significantly enhanced the peptide stability in plasma compared 
to 1, methylation of Tyr11, Ile12 and Leu13 (5, 6, 9) did not lead 
to higher plasma stabilities. Strikingly, peptide 2, which 
differed from 1 only with respect to the replacement of Ile12 by 
Tle12, proved to be as unstable as 1 (Figure 3, Table 1). 
However, the combination of the Ile12/Tle12 exchange with N-

methylation of Arg8 or Arg9 (7, 8) resulted in significantly 
higher plasma stabilities (t1/2 > 48 h) compared to 3 and 4. These 
results confirmed that both, N-terminal (cleavage between Arg8 
and Arg9) and C-terminal (cleavage between Tyr11 and Ile12) 
degradation are highly relevant, and revealed that the former 
occurs faster than the latter. As in case of N-terminal 
methylation of 1 (peptide 3), N-terminal propionylation of 1 
(peptide 11) resulted in a moderate increase in enzymatic 
stability compared to 1 (t1/2 of 11 between 1 h and 2 h, cf. Table 
1). The combination of N-terminal propionylation with an 
Ile12/Tle12 exchange (compound 12) led to an excellent plasma 
stability as also observed in case of combining N-terminal 
methylation with an Ile12/Tle12 exchange (peptide 7) (Figure 3, 
Table 1).

Scheme 1. Syntheses of the NT(8-13) derivatives 2-9, 11 
and 12.a
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aReagents and conditions: (I) Fmoc strategy SPPS using 
HBTU/HOBt and DIPEA, solvent: DMF/NMP (80:20 v/v), 35 °C, 
2 × 1 h or 2 × 2 h, Fmoc-deprotection: 20% piperidine in 
DMF/NMP (80:20 v/v), rt, 2 × 8-10 min; (II) (1) hexafluoro-2-
propanol (HFIP)/CH2Cl2 (1:3 v/v), rt, 2 × 20 min, (2) TFA/H2O 
(95:5 v/v), rt, 3 h; (III) DIPEA, solvent: CH2Cl2, 35 °C, 14 h; (IV) 
DIPEA, solvent: DMF/NMP (80:20 v/v), rt, 1 h; overall yields: 
77% (2), 67% (3), 56% (4), 18% (5), 15% (6), 42% (7), 38% (8), 
20% (9), 56% (11), 85% (12). 

Page 2 of 13

ACS Paragon Plus Environment

ACS Medicinal Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 4 provides an overview of the major degradation 
fragments identified by LC-HRMS. The Arg8-Arg9, Pro10-Tyr11 
and Tyr11-Ile12 bonds were identified as the major cleavage sites 

(Figure 4), being in agreement with reported data on the 
metabolic stability of 1.24-25 As outlined above, the present study 
suggests that cleavage of Arg8 in 1 occurs faster than its 

Table 1. Peptide sequences and NTS1R affinities of 1-9, 11 and 12, as well as stabilities of 1-9, 11 and 12 in human plasma/PBS 
(1:2 v/v) (37 °C).

% intact peptide in plasmab after the specified incubation times:
compd. sequence Ki [nM] NTS1Ra

10 min 30 min 1 h 2 h 6 h 24 h 48 h

1 Arg-Arg-Pro-Tyr-Ile-Leu 0.33 [0.35, 0.31]
(lit. 0.14c)

23.1
± 0.2 n.d. < 1 n.d. n.d. < 1 < 1

2 Arg-Arg-Pro-Tyr-Tle-Leu 1.17 [1.17, 1.17] 10.8
± 0.5 n.d. < 1 n.d. n.d. < 1 < 1

3 N(Me)-Arg-Arg-Pro-Tyr-Ile-Leu 0.223 ± 0.005 
(lit. 0.29d)

92.1
± 0.1

88.2
± 0.2

79.7
± 0.1

70.8
± 0.1 n.d. n.d. n.d.

4 Arg-N(Me)-Arg-Pro-Tyr-Ile-Leu 0.29 ± 0.03 
(lit. 0.51e) > 99 93.6

± 0.1
83.7
± 0.3

66.4
± 0.1 n.d. n.d. n.d.

5 Arg-Arg-Pro-N(Me)-Tyr-Ile-Leu > 1,000
(lit. 5100e)

22.9
± 0.2 < 1 < 1 < 1 n.d. n.d. n.d.

6 Arg-Arg-Pro-Tyr-N(Me)-Ile-Leu 60 ± 5
(lit. 160e)

2.6
± 0.5 < 1 < 1 < 1 n.d. n.d. n.d.

7 N(Me)-Arg-Arg-Pro-Tyr-Tle-Leu 0.88 ± 0.13 n.d. n.d. > 99 n.d. > 99 98.3
± 0.8

86.8
± 0.3

8 Arg-N(Me)-Arg-Pro-Tyr-Tle-Leu 1.6 ± 0.1 n.d. n.d. > 99 n.d. > 99 > 99 > 99

9 Arg-Arg-Pro-Tyr-Ile-N(Me)-Leu 880 ± 260 
(lit. 190e)

39.9
± 0.9 < 1 < 1 < 1 n.d. n.d. n.d.

11 Propionyl-Arg-Arg-Pro-Tyr-Ile-Leu 1.0 ± 0.2 > 99 84.0
± 0.1

71.8
± 0.2

32.4
± 0.1 n.d. n.d. n.d.

12 Propionyl-Arg-Arg-Pro-Tyr-Tle-Leu 18 ± 2 n.d. n.d. > 99 n.d. > 99 > 99 92.5
± 0.9

aDetermined by radioligand competition binding with [3H]13 at HT-29 cells; mean values from two (1, 2), three (3, 4) or four (6-9, 11, 12)  independent 
experiments, each performed in triplicate (for n > 2 Ki values are given ± SEM, in case of n = 2 individual Ki values are given in square brackets). bThe initial 
concentration of the peptides in plasma/PBS (1:2 v/v) was 100 µM; presented are mean values ± SEM from three independent experiments (SEM not given if 
no decomposition was observed). cKeller et al.42 dOrwig et al.34 eHärterich et al.33 n.d. = not determined.

C-terminal degradation. This is, on one hand, in agreement with 
reports in the literature,24 on the other hand it is in disagreement 
with other reports, which suggest an Ile12/Tle12 exchange as the 
most crucial structural modification with respect to metabolic 
stabilization.27-28 

In conclusion, the synthesis and investigation of N-methylated 
derivatives of NT(8-13) (1), N-terminally acylated derivatives 
of 1 and analogs containing Tle12 instead of Ile12, revealed that 
only the combination of appropriate N-terminal (e.g. N-
methylation of Arg8) and C-terminal (replacement of Ile12 by 
Tle12) structural modifications in 1 affords highly stable (plasma 
half-live > 48 h) congeners of 1 (compounds 7, 8 and 12). 
Fortunately, two of the most stable compounds (7, 8) exhibited 
the highest NTS1R affinities of the investigated analogs of 1. 
This work answers open questions concerning the 
controversially discussed impact of various structural 
modifications of 1 on the enzymatic stability, thus supporting 
the development of stable radiolabeled derivatives of 1, which 
harbor the potential of being used as radiopharmaceuticals.

compound
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Figure 2. Decrease in NTS1R affinity (increase in Ki) resulting 
from the exchange of Ile12 by Tle12 in 1, 3, 4 and 11 (black bars) 
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giving 2, 7, 8 and 12 (grey bars), respectively. Note: the scales of 
the Y-axes are different.
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Figure 3. Stabilities of 1-9, 11 and 12 in human plasma/PBS (1:2 v/v) at 37 °C investigated for up to 48 h. Data represent mean values ± 
SEM from three independent experiments.
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ABBREVIATIONS
2-ClTrt, 2-Chlorotrityl; 2-ClTrt-Cl, 2-Chlorotrityl-chloride; 
DIPEA, diisopropylethylamine; FCS, fetal calf serum; Fmoc, 9-
fluorenylmethoxycarbonyl; HBTU, O-(1H-benzotriazol-1-yl)-
N,N,N′,N′-tetramethyluronium hexafluorophosphate; HFIP, 
1,1,1,3,3,3-hexafluoro-2-propanol; HOBt, 1-
hydroxybenzotriazole; HT-29, human colorectal adenocarcinoma 
cell line; IC50, inhibitor/antagonist concentration which suppresses 
50% of an agonist induced effect, or displaces 50% of a labeled 
ligand from the binding site; k, retention (or capacity) factor 
(HPLC); Kd, dissociation constant obtained from a saturation 
binding experiment; Ki, dissociation constant obtained from a 
competition binding experiment; NT, neurotensin; NT(8-13), 
neurotensin(8-13); NTS1R, neurotensin receptor 1; NTS2R, 
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neurotensin receptor 2; RP, reversed phase; SEM, standard error of 
the mean; SPPS, solid-phase peptide synthesis; Tle, tert-
butylglycine.

H
N

N
O

HN

HN NH2

O

HN

H2N NH

N N

O
N

OH

O
N COOH

A

O

F1

F3 F4

C1

C2 C3

compd. F1 F2 F3

1
2
3
4
5
6

11

x
x

x

x

x

x

Identified fragments after incubation in human plasma/PBS (1:2 v/v):

R1

R2

R3

R4

R5

F2

F4

x

x

x

x

x

R1 R2 R3 R4 R5 A

H H H H H (S)-1-methylpropyl
H H H H H tert-butyl

CH3 H H H H (S)-1-methylpropyl

H CH3 H H H (S)-1-methylpropyl

H H CH3 H H (S)-1-methylpropyl

H H H CH3 H (S)-1-methylpropyl

CO-C2H5 H H H H (S)-1-methylpropyl

7
8

CH3 H H H H tert-butyl

H CH3 H H H tert-butyl
9 H H H H CH3 (S)-1-methylpropyl

12 CO-C2H5 H H H H tert-butyl

x
x

x

x x

x x

Figure 4. Major enzymatic cleavage sites (C1-C3) of compounds 1-9, 11 and 12 as well as corresponding fragments F1-F4, identified by 
LC-HRMS analysis after incubation in human plasma at 37 °C for up to 48 h.
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