ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by UNIVERSITY OF TECHNOLOGY SYDNEY

Modifications at Arg and Ile give neurotensin(8-13) derivatives with high stability and retained NTS1 receptor affinity

Lisa Schindler, Günther Bernhardt, and Max Keller

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.9b00122 • Publication Date (Web): 10 May 2019 Downloaded from http://pubs.acs.org on May 11, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Modifications at Arg and Ile give neurotensin(8-13) derivatives with high stability and retained NTS₁ receptor affinity

Lisa Schindler,[†] Günther Bernhardt,[†] and Max Keller*,[†]

[†]Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany

KEYWORDS: peptide, neurotensin, NT(8-13), neurotensin receptor, plasma stability

ABSTRACT: Due to its expression in various malignant tumors, the neurotensin receptor 1 (NTS₁R) has been suggested and explored as a target for tumor diagnosis and therapy. Animal model-based investigations of various radiolabeled NTS₁R ligands derived from the hexapeptide neurotensin(8-13) (NT(8-13)), e.g. ⁶⁸Ga- and ¹⁸F-labeled compounds for PET diagnostics, give rise to optimize such radiotracers for clinical use. As NT(8-13) is rapidly degraded in vivo, structural modifications are required in terms of increased metabolic stability. In this study, the stabilization of the peptide backbone of NT(8-13) against enzymatic degradation was systematically explored by performing an N-methyl scan, replacing Ile¹² by *tert*-butylglycine¹² (Tle¹²) and N-terminal acylation. N-methylation of either arginine, Arg⁸ or Arg⁹, combined with the Ile¹²/Tle¹² exchange proved to be most favorable with respect to NTS₁R affinity ($K_i < 2$ nM) and stability in human plasma ($t_{1/2} > 48$ h), a valuable result regarding the development of radiopharmaceuticals derived from NT(8-13).

Introduction. The neuromodulator neurotensin (NT), a 13 amino acid peptide (Figure 1), is found in the central nervous system (CNS), mediating e.g. analgesic effects, as well as in the periphery (primarily in the gastrointestinal tract).¹⁻² The carboxy-terminal hexapeptide of NT (NT(8-13) (1), Figure 1), is biologically equi-active to NT.³ The physiological effects of NT are mediated by three cell-surface receptors: the NT receptors 1 and 2 (NTS₁R, NTS₂R), both G-protein coupled receptors,⁴ and the NTS₃R, which belongs to the Vps10pdomain receptor family.^{2, 5} The NTS₁R has increasingly gained interest as a target for tumor diagnosis and therapy, as it was reported to be (over)expressed in a variety of malignancies, among them the prognostically poor pancreatic adenocarcinoma, Ewing's sarcoma, breast cancer, and colorectal carcinoma.⁶⁻⁹ Thus, radiolabeled NTS₁R ligands harbor the potential of being used as radiopharmaceuticals. The majority of such compounds (e.g. 68Ga- and 18F-labeled for PET diagnostics, ¹⁷⁷Lu-labeled for radioendotherapy) has been derived from the agonist 1.10-19 Noteworthily, also NTS1R ligands derived from non-peptidic antagonists have been explored as radiodiagnostics and radiotherapeutics.²⁰⁻²¹ Recently reported data of a clinical trial on the treatment of pancreatic adenocarcinoma in men by 177Lu-labeled NTS1R antagonists give reason to develop clinical trial candidates with improved properties.²² Therefore, peptidic NTS₁R ligands, such as radiolabeled derivatives of 1, should be considered for clinical trials.

A major drawback of peptide **1** is its rapid degradation in vivo by peptidases (see Figure 1).²³⁻²⁴ Enzymatic degradation of **1** occurs at three major sites: the Arg⁸-Arg⁹ bond, the Pro¹⁰-Tyr¹¹ bond and the bond between Tyr¹¹ and Ile¹² (*cf.* Figure 1).²⁴⁻²⁵ The predominant approaches to stabilize the backbone of **1** are N-methylation of Arg^8 or Arg^9 , N-terminal acylation and the exchange of Ile^{12} by *tert*-butylglycine (Tle).^{10-15, 17, 26-38} However, for some interesting analogs of **1**, such as N-methylated derivatives, investigations on the stability are lacking.^{33, 39}. It is worth mentioning that described derivatives of **1**, containing Tle¹² instead of Ile¹², include additional structural modifications throughout,^{10-12, 29, 31-32, 38, 40} i.e. [Tle¹²]NT(8-13) (**2**, *cf*. Figure 1) has not been reported to date to the best of the authors' knowledge. Therefore, it is difficult to estimate the impact of the Ile¹²/Tle¹² exchange on the stability of Tle¹²-containing derivatives of **1**.

Figure 1. Amino acid sequences of neurotensin, **1** (NT(8-13), in blue) and **2**, as well as major enzymatic cleavage sites (in red) of **1**.^{3, 24-25} EC 3.4.24.15: metalloendopeptidase 24.15, EC 3.4.24.16: metalloendopeptidase 24.16, EC 3.4.24.11: neutral endopeptidase 24.11, EC 3.4.15.1: angiotensin converting enzyme (ACE).²⁴⁻²⁵ ^aBarroso *et al.*⁴¹ ^bKeller *et al.*⁴²

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Aiming at a systematic study on the stabilization of the NT(8-13) core structure, we synthesized compound **2**, performed an N-methyl scan of **1**, combined N-methylation with the Ile^{12}/Tle^{12} exchange and, additionally, prepared N-terminally acylated derivatives of **1**. All compounds were studied with respect to NTS₁R binding and plasma stability.

Results and Discussion. Peptides 2, 3, ³⁴ 4, ³³ 5, ^{33, 39} 6, ³³ 7, 8 and 9³³ were prepared by solid-phase peptide synthesis (SPPS) according to the 9-fluorenylmethoxycarbonyl (Fmoc) protecting group strategy using 1-hydroxybenzotriazole (HOBt)/O-(1H-benzotriazol-1-yl)-N,N,N'-

tetramethyluronium hexafluorophosphate (HBTU) and diisopropylethylamine (DIPEA) for amide bond formation (Scheme 1). Coupling of Fmoc-protected amino acids to the secondary amino group of N-methylated amino acids turned out to be the yield limiting factor in case of **5**, **6** and **9** (overall yields: 18%, 15% and 20%, respectively). The N-terminally propionylated derivative **11** was obtained by treatment of the respective resin-bound, side chain-protected, but N-terminally deprotected precursor peptide with succinimidyl propionate (**10**) followed by cleavage off the resin and side chain deprotection. By contrast, the N-terminally propionylated peptide **12** was prepared by solution phase treatment of **2** with compound **10** (Scheme 1).

23 NTS₁R binding data (K_i values) were determined for 1-9, 11 and 24 12 by competition binding with [³H]UR-MK300⁴² ([³H]13, for 25 structure see Figure S1, Supporting Information) at intact 26 hNTS₁R expressing HT-29 colon carcinoma cells (Table 1). 27 The replacement of Ile^{12} by Tle^{12} in 1 (compound 2) resulted in 28 a minor decrease in NTS₁R affinity (K_i values of 1 and 2: 0.33 29 vs. 1.17 nM, cf. Table 1). Regarding the N-methyl scan of 1 30 (peptides 3-6 and 9), methylation at Arg^8 or Arg^9 (3, 4) did not 31 affect NTS₁R affinity ($K_i < 0.5$ nM, Table 1). By contrast, Nmethylation of Tyr¹¹, Ile^{12} or $Leu^{13}(5, 6, 9)$ led to a considerable 32 decrease in NTS₁R affinity (K_i values: > 1,000 nM, 60 nM and 33 880 nM, respectively, cf. Table 1). As expected, the 34 combination of the N-methylation at Arg⁸ or Arg⁹ with the 35 replacement of Ile¹² by Tle¹² (peptides 7 and 8) resulted in 36 NTS₁R affinities comparable to that of 2 (Table 1). The N-37 terminally propionylated analogs of 1 and 2 (compounds 11 and 38 12) exhibited K_i values (NTS₁R) of 1.0 and 18 nM, respectively. 39 Figure 2 illustrates a general decrease in NTS₁R affinity caused 40 by the replacement of Ile¹² by Tle¹² in 1, 3, 4 and 11, giving 2, 41 7, 8 and 12, respectively, and a dependency of the extent of the 42 decrease in affinity on the primary structure of the peptides. 43 This is in agreement with reported NTS₁R binding data of derivatives of 1 containing Tle¹².^{10-11, 27, 31, 38, 40} 44

45 In order to investigate the effect of N-methylation (3-9), the 46 Ile¹²/Tle¹² exchange (2, 7, 8, 12) and N-terminal acylation (11, 12) on the stability of the peptides against enzymatic cleavage, 47 the stability of all compounds was investigated in human 48 plasma at 37 °C for up to 48 h (Figure 3, Table 1). Whereas N-49 methylation of Arg^8 or Arg^9 in 1 (compounds 3 and 4) 50 significantly enhanced the peptide stability in plasma compared 51 to 1, methylation of Tyr¹¹, Ile^{12} and Leu^{13} (5, 6, 9) did not lead 52 to higher plasma stabilities. Strikingly, peptide 2, which 53 differed from 1 only with respect to the replacement of Ile¹² by 54 Tle¹², proved to be as unstable as 1 (Figure 3, Table 1). 55 However, the combination of the Ile12/Tle12 exchange with N-

methylation of Arg⁸ or Arg⁹ (7, 8) resulted in significantly higher plasma stabilities ($t_{1/2} > 48$ h) compared to 3 and 4. These results confirmed that both, N-terminal (cleavage between Arg⁸ and Arg⁹) and C-terminal (cleavage between Tyr¹¹ and Ile¹²) degradation are highly relevant, and revealed that the former occurs faster than the latter. As in case of N-terminal methylation of 1 (peptide 3), N-terminal propionylation of 1 (peptide 11) resulted in a moderate increase in enzymatic stability compared to 1 ($t_{1/2}$ of 11 between 1 h and 2 h, *cf*. Table 1). The combination of N-terminal propionylation with an Ile¹²/Tle¹² exchange (compound 12) led to an excellent plasma stability as also observed in case of combining N-terminal methylation with an Ile¹²/Tle¹² exchange (peptide 7) (Figure 3, Table 1).

"Reagents and conditions: (I) Fmoc strategy SPPS using HBTU/HOBt and DIPEA, solvent: DMF/NMP (80:20 v/v), 35 °C, 2×1 h or 2×2 h, Fmoc-deprotection: 20% piperidine in DMF/NMP (80:20 v/v), rt, 2×8 -10 min; (II) (1) hexafluoro-2-propanol (HFIP)/CH₂Cl₂ (1:3 v/v), rt, 2×20 min, (2) TFA/H₂O (95:5 v/v), rt, 3 h; (III) DIPEA, solvent: CH₂Cl₂, 35 °C, 14 h; (IV) DIPEA, solvent: DMF/NMP (80:20 v/v), rt, 1 h; overall yields: 77% (2), 67% (3), 56% (4), 18% (5), 15% (6), 42% (7), 38% (8), 20% (9), 56% (11), 85% (12).

59 60

56 57 58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 4 provides an overview of the major degradation fragments identified by LC-HRMS. The Arg⁸-Arg⁹, Pro¹⁰-Tyr¹¹ and Tyr¹¹-Ile¹² bonds were identified as the major cleavage sites

(Figure 4), being in agreement with reported data on the metabolic stability of $1.^{24\cdot25}$ As outlined above, the present study suggests that cleavage of Arg⁸ in 1 occurs faster than its

Table 1. Peptide sequences and NTS₁R affinities of 1-9, 11 and 12, as well as stabilities of 1-9, 11 and 12 in human plasma/PBS (1:2 v/v) (37 °C).

compd.	sequence	$K_{\rm i}$ [nM] NTS ₁ R ^a	% intact peptide in plasma ^b after the specified incubation times:						
			10 min	30 min	1 h	2 h	6 h	24 h	48 h
1	Arg-Arg-Pro-Tyr-Ile-Leu	0.33 [0.35, 0.31] (lit. 0.14 ^c)	23.1 ± 0.2	n.d.	< 1	n.d.	n.d.	< 1	< 1
2	Arg-Arg-Pro-Tyr-Tle-Leu	1.17 [1.17, 1.17]	10.8 ± 0.5	n.d.	< 1	n.d.	n.d.	< 1	< 1
3	N(Me)-Arg-Arg-Pro-Tyr-Ile-Leu	0.223 ± 0.005 (lit. 0.29^d)	92.1 ± 0.1	88.2 ± 0.2	79.7 ± 0.1	70.8 ± 0.1	n.d.	n.d.	n.d.
4	Arg-N(Me)-Arg-Pro-Tyr-Ile-Leu	0.29 ± 0.03 (lit. 0.51^{e})	> 99	93.6 ± 0.1	83.7 ± 0.3	66.4 ± 0.1	n.d.	n.d.	n.d.
5	Arg-Arg-Pro-N(Me)-Tyr-Ile-Leu	> 1,000 (lit. 5100 ^e)	22.9 ± 0.2	< 1	< 1	< 1	n.d.	n.d.	n.d.
6	Arg-Arg-Pro-Tyr-N(Me)-Ile-Leu	60 ± 5 (lit. 160^{e})	2.6 ± 0.5	< 1	< 1	< 1	n.d.	n.d.	n.d.
7	N(Me)-Arg-Arg-Pro-Tyr-Tle-Leu	0.88 ± 0.13	n.d.	n.d.	> 99	n.d.	> 99	98.3 ± 0.8	86.8 ± 0.3
8	Arg-N(Me)-Arg-Pro-Tyr-Tle-Leu	1.6 ± 0.1	n.d.	n.d.	> 99	n.d.	> 99	> 99	> 99
9	Arg-Arg-Pro-Tyr-Ile-N(Me)-Leu	880 ± 260 (lit. 190 ^e)	39.9 ± 0.9	< 1	< 1	< 1	n.d.	n.d.	n.d.
11	Propionyl-Arg-Arg-Pro-Tyr-Ile-Leu	1.0 ± 0.2	> 99	84.0 ± 0.1	71.8 ± 0.2	32.4 ± 0.1	n.d.	n.d.	n.d.
12	Propionyl-Arg-Arg-Pro-Tyr-Tle-Leu	18 ± 2	n.d.	n.d.	> 99	n.d.	> 99	> 99	92.5 ± 0.9

^aDetermined by radioligand competition binding with [³H]**13** at HT-29 cells; mean values from two (**1**, **2**), three (**3**, **4**) or four (**6-9**, **11**, **12**) independent experiments, each performed in triplicate (for $n > 2 K_i$ values are given \pm SEM, in case of n = 2 individual K_i values are given in square brackets). ^bThe initial concentration of the peptides in plasma/PBS (1:2 v/v) was 100 μ M; presented are mean values \pm SEM from three independent experiments (SEM not given if no decomposition was observed). ^cKeller *et al.*³⁴ *e*Märterich *et al.*³³ n.d. = not determined.

C-terminal degradation. This is, on one hand, in agreement with reports in the literature,²⁴ on the other hand it is in disagreement with other reports, which suggest an Ile¹²/Tle¹² exchange as the most crucial structural modification with respect to metabolic stabilization.²⁷⁻²⁸

In conclusion, the synthesis and investigation of N-methylated derivatives of NT(8-13) (1), N-terminally acylated derivatives of 1 and analogs containing Tle¹² instead of Ile¹², revealed that only the combination of appropriate N-terminal (e.g. N-methylation of Arg⁸) and C-terminal (replacement of Ile¹² by Tle¹²) structural modifications in 1 affords highly stable (plasma half-live > 48 h) congeners of 1 (compounds 7, 8 and 12). Fortunately, two of the most stable compounds (7, 8) exhibited the highest NTS₁R affinities of the investigated analogs of 1. This work answers open questions concerning the controversially discussed impact of various structural modifications of 1 on the enzymatic stability, thus supporting the development of stable radiolabeled derivatives of 1, which harbor the potential of being used as radiopharmaceuticals.

Figure 2. Decrease in NTS₁R affinity (increase in K_i) resulting from the exchange of Ile¹² by Tle¹² in **1**, **3**, **4** and **11** (black bars)

giving **2**, **7**, **8** and **12** (grey bars), respectively. Note: the scales of the Y-axes are different.

Figure 3. Stabilities of 1-9, 11 and 12 in human plasma/PBS (1:2 v/v) at 37 °C investigated for up to 48 h. Data represent mean values \pm SEM from three independent experiments.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

General experimental conditions; experimental synthetic protocols and analytical data of compounds 2-9, 11 and 12; radioligand competition binding assay; experimental protocol for the investigation of the stability of 1-9, 11 and 12 in human plasma; Figures S1 and S2; RP-HPLC chromatograms of compounds 2-9, 11 and 12; ¹H-NMR spectra of compounds 2-9, 11 and 12 in DMSO-*d*₆ and DMSO-*d*₆/D₂O (PDF)

Molecular formula strings (CSV)

AUTHOR INFORMATION

Corresponding Author

* E-mail: max.keller@ur.de. Phone: (+49)941-9433329. Fax: (+49)941-9434820

Author Contributions

L.S. performed any syntheses, radioligand competition binding experiments and plasma stability studies. M.K. initiated and planned the project. M.K. and G.B. supervised the research. L.S., M.K. and G.B. wrote the manuscript. All authors have given approval to the final version of the manuscript.

Funding Sources

This work was funded by the Deutsche Forschungsgemeinschaft (research grant KE 1857/1-1 and 1-2, Graduate Training Program (Graduiertenkolleg) GRK1910)

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors thank Susanne Bollwein, Brigitte Wenzl, and Maria Beer-Krön for excellent technical assistance, Christoph Müller for the synthesis of compound **10** and Armin Buschauer for providing laboratory equipment.

ABBREVIATIONS

2-ClTrt, 2-Chlorotrityl; 2-ClTrt-Cl, 2-Chlorotrityl-chloride; DIPEA, diisopropylethylamine; FCS, fetal calf serum; Fmoc, 9fluorenylmethoxycarbonyl; HBTU, O-(1H-benzotriazol-1-yl)-*N*,*N*,*N*',*N*'-tetramethyluronium hexafluorophosphate; HFIP. 1,1,1,3,3,3-hexafluoro-2-propanol; HOBt, 1hydroxybenzotriazole; HT-29, human colorectal adenocarcinoma cell line; IC₅₀, inhibitor/antagonist concentration which suppresses 50% of an agonist induced effect, or displaces 50% of a labeled ligand from the binding site; k, retention (or capacity) factor (HPLC); K_d , dissociation constant obtained from a saturation binding experiment; K_i , dissociation constant obtained from a competition binding experiment; NT, neurotensin; NT(8-13), neurotensin(8-13); NTS_1R , neurotensin receptor 1; NTS_2R ,

1

neurotensin receptor 2; RP, reversed phase; SEM, standard error of the mean; SPPS, solid-phase peptide synthesis; Tle, *tert*-butylglycine.

Figure 4. Major enzymatic cleavage sites (C1-C3) of compounds 1-9, 11 and 12 as well as corresponding fragments F1-F4, identified by LC-HRMS analysis after incubation in human plasma at 37 °C for up to 48 h.

REFERENCES

- Myers, R. M.; Shearman, J. W.; Kitching, M. O.; Ramos-Montoya, A.; Neal, D. E.; Ley, S. V. Cancer, chemistry, and the cell: molecules that interact with the neurotensin receptors. *ACS Chem. Biol.* 2009, *4*, 503-525.
- (2) Vincent, J.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. *Trends Pharmacol. Sci.* **1999**, *20*, 302-309.
- (3) Carraway, R.; Leeman, S. E. The amino acid sequence of a hypothalamic peptide, neurotensin. *J. Biol. Chem.* **1975**, *250*, 1907-1911.
- (4) Tanaka, K.; Masu, M.; Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. *Neuron* 1990, *4*, 847-854.
- (5) Mazella, J.; Zsürger, N.; Navarro, V.; Chabry, J.; Kaghad, M.; Caput, D.; Ferrara, P.; Vita, N.; Gully, D.; Maffrand, J. P.; Vincent, J. P. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. *J. Biol. Chem.* **1998**, *273*, 26273-26276.
- (6) Maoret, J.-J.; Pospai, D.; Rouyer-Fessard, C.; Couvineau, A.; Laboisse, C.; Voisin, T.; Laburthe, M. Neurotensin receptor and its mRNA are expressed in many human colon cancer cell lines but not in normal colonic epithelium: binding studies and RT-PCR experiments. *Biochem. Biophys. Res. Commun.* **1994**, *203*, 465-471.
- (7) Reubi, J. C.; Waser, B.; Friess, H.; Büchler, M.; Laissue, J. Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. *Gut* **1998**, *42*, 546-550.
- (8) Reubi, J. C.; Waser, B.; Schaer, J.; Laissue, J. A. Neurotensin receptors in human neoplasms: high incidence in Ewing's sarcoma. *Int. J. Cancer* 1999, *82*, 213-218.
- (9) Souazé, F.; Dupouy, S.; Viardot-Foucault, V.; Bruyneel, E.; Attoub, S.; Gespach, C.; Gompel, A.; Forgez, P. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression. *Cancer Res.* 2006, *66*, 6243-6249.
- (10) Bergmann, R.; Scheunemann, M.; Heichert, C.; M\u00e4ding, P.; Wittrisch, H.; Kretzschmar, M.; Rodig, H.; Tourwé, D.; Iterbeke, K.; Chavatte, K.; Zips, D.; Reubi, J. C.; Johannsen, B.

Biodistribution and catabolism of ¹⁸F-labeled neurotensin(8-13) analogs. *Nucl. Med. Biol.* **2002**, *29*, 61-72.

- (11) Alshoukr, F.; Rosant, C.; Maes, V.; Abdelhak, J.; Raguin, O.; Burg, S.; Sarda, L.; Barbet, J.; Tourwé, D.; Pelaprat, D.; Gruaz-Guyon, A. Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. *Bioconjugate Chem.* **2009**, *20*, 1602-1610.
- (12) García-Garayoa, E.; Bläuenstein, P.; Blanc, A.; Maes, V.; Tourwé, D.; Schubiger, P. A. A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. *Eur. J. Nucl. Med. Mol. Imaging* 2009, *36*, 37-47.
- (13) Maschauer, S.; Einsiedel, J.; Hocke, C.; Hübner, H.; Kuwert, T.; Gmeiner, P.; Prante, O. Synthesis of a ⁶⁸Ga-labeled peptoidpeptide hybrid for imaging of neurotensin receptor expression in vivo. ACS Med. Chem. Lett. **2010**, *1*, 224-228.
- (14) Maschauer, S.; Einsiedel, J.; Haubner, R.; Hocke, C.; Ocker, M.; Hübner, H.; Kuwert, T.; Gmeiner, P.; Prante, O. Labeling and Glycosylation of Peptides Using Click Chemistry: A general approach to ¹⁸F-glycopeptides as effective imaging probes for positron emission tomography. *Angew. Chem., Int. Ed.* **2010**, *49*, 976-979.
- (15) Alshoukr, F.; Prignon, A.; Brans, L.; Jallane, A.; Mendes, S.; Talbot, J.-N.; Tourwé, D.; Barbet, J.; Gruaz-Guyon, A. Novel DOTA-neurotensin analogues for ¹¹¹In scintigraphy and ⁶⁸Ga PET imaging of neurotensin receptor-positive tumors. *Bioconjugate Chem.* **2011**, *22*, 1374-1385.
- (16) Maschauer, S.; Ruckdeschel, T.; Tripal, P.; Haubner, R.; Einsiedel, J.; Hübner, H.; Gmeiner, P.; Kuwert, T.; Prante, O. In vivo monitoring of the antiangiogenic effect of neurotensin receptor-mediated radiotherapy by small-animal positron emission tomography: a pilot study. *Pharmaceuticals* **2014**, *7*, 464-481.
- (17) Jia, Y.; Shi, W.; Zhou, Z.; Wagh, N. K.; Fan, W.; Brusnahan, S. K.; Garrison, J. C. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. *Nucl. Med. Biol.* **2015**, *42*, 816-823.
- (18) Maschauer, S.; Einsiedel, J.; Hübner, H.; Gmeiner, P.; Prante, O.

¹⁸F- and ⁶⁸Ga-labeled neurotensin peptides for PET imaging of neurotensin receptor 1. J. Med. Chem. 2016, 59, 6480-6492.

- (19) Deng, H.; Wang, H.; Zhang, H.; Wang, M.; Giglio, B.; Ma, X.; Jiang, G.; Yuan, H.; Wu, Z.; Li, Z. Imaging neurotensin receptor in prostate cancer with 64Cu-labeled neurotensin analogs. Mol. Imaging 2017, 16, 1536012117711369.
- (20) Lang, C.; Maschauer, S.; Hübner, H.; Gmeiner, P.; Prante, O. Synthesis and evaluation of a ¹⁸F-labeled diarylpyrazole glycoconjugate for the imaging of NTS1-positive tumors. J. Med. Chem. 2013, 56, 9361-9365.
- (21) Schulz, J.; Rohracker, M.; Stiebler, M.; Goldschmidt, J.; Grosser, O. S.; Osterkamp, F.; Pethe, A.; Reineke, U.; Smerling, C.; Amthauer, H. Comparative evaluation of the biodistribution profiles of a series of nonpeptidic neurotensin receptor-1 antagonists reveals a promising candidate for theranostic applications. J. Nucl. Med. 2016, 57, 1120-1123.
- (22) Baum, R. P.; Singh, A.; Schuchardt, C.; Kulkarni, H. R.; Klette, I.; Wiessalla, S.; Osterkamp, F.; Reineke, U.; Smerling, C. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J. Nucl. Med. 2018, 59, 809-814.
- (23) Pedersen, J. H.; Beck, H.; Shokouh-Amiri, M.; Fischer, A. Effect of neurotensin in the dumping syndrome. Scand. J. Gastroenterol. 1986, 21, 478-482.
- (24) García-Garayoa, E.; Allemann-Tannahill, L.; Bläuenstein, P.; Willmann, M.; Carrel-Rémy, N.; Tourwé, D.; Iterbeke, K.; Conrath, P.; Schubiger, P. A. In vitro and in vivo evaluation of new radiolabeled neurotensin(8-13) analogues with high affinity for NT1 receptors. Nucl. Med. Biol. 2001, 28, 75-84.
- (25) Kitabgi, P.; De Nadai, F.; Rovère, C.; Bidard, J. N. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann. N. Y. Acad. Sci. 1992, 668, 30-42.
- (26) Tyler-McMahon, B. M.; Boules, M.; Richelson, E. Neurotensin: peptide for the next millennium. Regul. Pept. 2000, 93, 125-136.
- (27) Bruehlmeier, M.; García-Garayoa, E.; Blanc, A.; Holzer, B.; Gergely, S.; Tourwé, D.; Schubiger, P. A.; Bläuenstein, P. Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding. Nucl. Med. Biol. 2002, 29, 321-327.
- (28) García-Garayoa, E.; Bläuenstein, P.; Bruehlmeier, M.; Blanc, A.; Iterbeke, K.; Conrath, P.; Tourwé, D.; Schubiger, P. A. Preclinical evaluation of a new, stabilized neurotensin(8-13) pseudopeptide radiolabeled with 99mTc. J. Nucl. Med. 2002, 43, 374-383.
- (29) Bläuenstein, P.; García-Garayoa, E.; Rüegg, D.; Blanc, A.; Tourwé, D.; Beck-Sickinger, A.; Schubiger, P. A. Improving the tumor uptake of 99mTc-labeled neuropeptides using stabilized peptide analogues. Cancer Biother. Radiopharm. 2004, 19, 181-188
- (30) Maes, V.; García-Garayoa, E.; Bläuenstein, P.; Tourwé, D. Novel ^{99m}Tc-labeled neurotensin analogues with optimized biodistribution properties. J. Med. Chem. 2006, 49, 1833-1836.
- (31) Nock, B. A.; Nikolopoulou, A.; Reubi, J. C.; Maes, V.; Conrath, P.; Tourwé, D.; Maina, T. Toward stable N4-modified

neurotensins for NTS₁-receptor-targeted tumor imaging with 99mTc. J. Med. Chem. 2006, 49, 4767-4776.

- (32) Maina, T.; Nikolopoulou, A.; Stathopoulou, E.; Galanis, A. S.; Cordopatis, P.; Nock, B. A. [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1804-1814.
- (33) Härterich, S.; Koschatzky, S.; Einsiedel, J.; Gmeiner, P. Novel insights into GPCR-Peptide interactions: Mutations in extracellular loop 1, ligand backbone methylations and molecular modeling of neurotensin receptor 1. Bioorg. Med. Chem. 2008, 16, 9359-9368.
- (34) Orwig, K. S.; Lassetter, M. R.; Hadden, M. K.; Dix, T. A. Comparison of N-terminal modifications on neurotensin(8-13) analogues correlates peptide stability but not binding affinity with in vivo efficacy. J. Med. Chem. 2009, 52, 1803-1813.
- (35) Boules, M.; Liang, Y.; Briody, S.; Miura, T.; Fauq, I.; Oliveros, A.; Wilson, M.; Khaniyev, S.; Williams, K.; Li, Z.; Qi, Y.; Katovich, M.; Richelson, E. NT79: A novel neurotensin analog with selective behavioral effects. Brain Res. 2010, 1308, 35-46.
- (36) Einsiedel, J.; Held, C.; Hervet, M.; Plomer, M.; Tschammer, N.; Hübner, H.; Gmeiner, P. Discovery of highly potent and neurotensin receptor 2 selective neurotensin mimetics. J. Med. Chem. 2011, 54, 2915-2923.
- (37) Held, C.; Plomer, M.; Hübner, H.; Meltretter, J.; Pischetsrieder, M.; Gmeiner, P. Development of a metabolically stable neurotensin receptor 2 (NTS2) ligand. ChemMedChem 2013, 8, 75-81.
- (38) Mascarin, A.; Valverde, I. E.; Mindt, T. L. Structure-activity relationship studies of amino acid substitutions in radiolabeled neurotensin conjugates. ChemMedChem 2016, 11, 102-107.
- (39) Bittermann, H.; Einsiedel, J.; Hübner, H.; Gmeiner, P. Evaluation of lactam-bridged neurotensin analogues adjusting $\psi(Pro^{10})$ close to the experimentally derived bioactive conformation of NT(8-13). J. Med. Chem. 2004, 47, 5587-5590.
- (40) Kokko, K. P.; Hadden, M. K.; Orwig, K. S.; Mazella, J.; Dix, T. A. In vitro analysis of stable, receptor-selective neurotensin[8-13] analogues. J. Med. Chem. 2003, 46, 4141-4148.
- (41) Barroso, S.; Richard, F.; Nicolas-Ethève, D.; Reversat, J. L.; Bernassau, J. M.; Kitabgi, P.; Labbé-Jullié, C. Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J. Biol. Chem. 2000, 275, 328-336.
- (42) Keller, M.; Kuhn, K. K.; Einsiedel, J.; Hübner, H.; Biselli, S.; Mollereau, C.; Wifling, D.; Svobodova, J.; Bernhardt, G.; Cabrele, C.; Vanderheyden, P. M.; Gmeiner, P.; Buschauer, A. Mimicking of Arginine by functionalized N ^{ω}-carbamoylated arginine as a new broadly applicable approach to labeled bioactive peptides: high affinity angiotensin, neuropeptide Y, neuropeptide FF, and neurotensin receptor ligands as examples. J. Med. Chem. 2016, 59, 1925-1945.

- 55
- 56

59

60

1	Table of Contents Graphic
2	
3	Arg ⁸ -Arg ⁹ -Pro ¹⁰ -Tyr ¹¹ -Ile ¹² -Leu ¹³
4	neurotensin(8-13), 1
5	$K_{\rm i}$ (NTS ₁ R) : 0.33 nM
6	$t_{1/2}$ (plasma): < 5 min
7	Arg ⁸ -Arg ⁹ -Pro ¹⁰ -Tyr ¹¹ -Tle ¹² -Leu ¹³ N-Me-Arg ⁸ -Arg ⁹ -Pro ¹⁰ -Tyr ¹¹ -Ile ¹² -Leu ¹³
8	Z 3 K. (NTS-R) : 1.2 nM K. (NTS-R) : 0.22 nM
9	$t_{1/2}$ (plasma): < 5 min $t_{1/2}$ (plasma): < 5 h
10	
11	N-Me-Arg ⁸ -Arg ⁹ -Pro ¹⁰ -Tyr ¹¹ -Tle ¹² -Leu ¹³
12	7 K (NTC R) + 0.99 mM
13	Λ_i (NIS ₁ R) : 0.00 NM t_{tro} (plasma): > 48 h TIe = tert-hutvicivcine
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

139x90mm (300 x 300 DPI)

ACS Paragon Plus Environment

177x59mm (300 x 300 DPI)

83x127mm (300 x 300 DPI)

