Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier.com/locate/physc

Low-temperature synthesis of the infinite-layer compound LaNiO_2 using CaH_2 as reductant

Tomohisa Takamatsu*, Masatsune Kato, Takashi Noji, Yoji Koike

Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

ARTICLE INFO

Article history: Accepted 28 October 2009 Available online 31 October 2009

Keywords: LaNiO₂ Infinite-layer CaH₂ Low-temperature synthesis

ABSTRACT

We have successfully synthesized *bulk* samples of the infinite-layer compound $LaNiO_2$ by reduction of the perovskite $LaNiO_3$ using CaH_2 . First, $LaNiO_3$ has been prepared using molten KOH at 450 °C. Next, the infinite-layer compound $LaNiO_2$ has been synthesized by heating $LaNiO_3$ mixed with a double stoichiometric excess of CaH_2 in an evacuated Pyrex tube at 300 °C for 24 h.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The compound LaNiO₂ with formally monovalent Ni-ions synthesized first by Crespin et al. [1] has attracted great interest, because it is isostructural to the so-called infinite-layer compound SrCuO₂ which is a parent material of high- T_c superconducting cuprates, as shown in Fig. 1. Moreover, the 3d⁹ electronic configuration of Ni⁺ is the same as that of Cu²⁺ in the high- T_c cuprates. Accordingly, LaNiO₂ is a promising candidate for a parent material of new high- T_c superconductors. The synthesis of LaNiO₂ by Crespin et al. [1] was done by topotactic reduction of the perovskite LaNiO₃ using H₂ at 250–450 °C, but, it was hard to synthesize it reproducibly. Later, the reproducible synthesis of LaNiO₂ was achieved by Hayward et al. [2] through oxygen deintercalation from LaNiO₃ using NaH as reductant in a narrow temperature range of 190– 210 °C, which was limited by the low decomposition-temperature of NaH (210 °C).

Recently, an infinite-layer compound SrFeO₂ has been synthesized by low-temperature reduction of the perovskite SrFeO₃ using CaH₂ at 280 °C by Tsujimoto et al. [3]. Since CaH₂ has a high decomposition-temperature (885 °C) and is relatively stable, it is easier to handle CaH₂ than NaH. In addition, very recently, both Kawai et al. and Kaneko et al. have successfully synthesized a thin film of LaNiO₂ by low-temperature reduction using CaH₂ and H₂, respectively [4,5].

* Corresponding author. Tel.: +81 22 795 7977. E-mail address: tomo-105@teion.apph.tohoku.ac.jp (T. Takamatsu).

In this paper, we report the synthesis of *bulk* samples of the infinite-layer compound $LaNiO_2$ by low-temperature reduction of $La-NiO_3$ using CaH_2 . Here, we have prepared the parent compound $LaNiO_3$ by the method using molten KOH, which is useful for the preparation of compounds containing transition metals in the elevated oxidation state, and is much easier than the sol-gel and coprecipitation methods used by Crespin et al. [1] and Hayward et al. [2], respectively.

2. Experimental

Polycrystalline bulk samples of LaNiO₂ were synthesized as follows. First, powdered samples of LaNiO₃ with the perovskite structure were prepared using molten KOH. KOH of 50 g was placed in an alumina crucible and melted at 450 °C in air. After 6.5 h, a mixture of La_2O_3 of 0.3428 g and NiO of 0.1572 g (La:Ni = 1:1 in molar ratio) was added. The crucible was kept at 450 °C for 6 h and then cooled to room temperature. Black polycrystalline powder was isolated by dissolving the hydroxides with distilled water and dried at 130 °C in air [6]. Next, the reduction of LaNiO₃ was performed using CaH₂ as reductant. The obtained powder of LaNiO₃ was mixed with a double stoichiometric excess of CaH₂, ground finely and then pressed into pellets in an Ar-filled glove box. Then, the pellets were sealed in an evacuated Pyrex tube and then heated at 150-400 °C for 24 h. The products were washed with NH₄Cl in anhydrous ethanol to remove the residual CaH₂ and the reaction byproduct CaO. All products were characterized by powder X-ray diffraction using Cu K α radiation at room temperature.

^{0921-4534/\$ -} see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2009.10.132

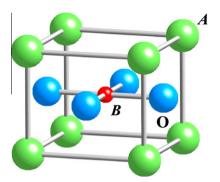


Fig. 1. Crystal structure of the infinite-layer compound ABO₂.

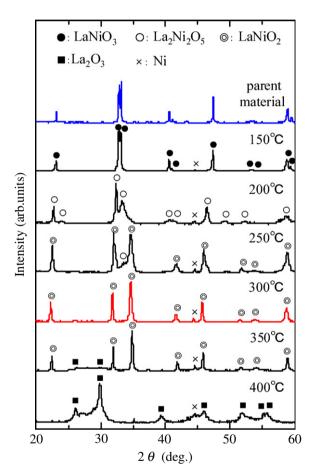


Fig. 2. Powder X-ray diffraction patterns of products obtained by the reaction between LaNiO₃ and CaH₂ at various reaction-temperatures using Cu K α radiation.

3. Results

Fig. 2 shows the variation of the powder X-ray diffraction patterns with the heat-treatment-temperature for the products obtained by the reaction between LaNiO₃ and CaH₂. LaNiO₃ has not reacted with CaH₂ at 150 °C. At 200 °C, La₂Ni₂O₅ with Ni²⁺ is formed. The infinite-layer compound LaNiO₂ with Ni⁺ is dominant at 250 °C, though a small amount of La₂Ni₂O₅ still remains. An almost single-phase sample of LaNiO₂ is obtained at 300 °C, though a very small amount of Ni is included. The lattice parameters of LaNiO₂ are estimated to be *a* = 3.964 Å and *c* = 3.399 Å, which are in good agreement with those in the previous reports [1,2]. At 350 °C, LaNiO₂ is dominant, but LaNiO₃ is partially decomposed into La₂O₃ and Ni at high temperatures above 400 °C.

4. Conclusions

We have successfully synthesized *bulk* samples of the infinitelayer compound LaNiO₂. First, the pervskite LaNiO₃ was prepared using molten KOH at 450 °C. Next, LaNiO₂ was synthesized by reduction of LaNiO₃ with CaH₂ as reductant at 300 °C. At present, unfortunately, we have not yet succeeded in elucidating intrinsic magnetic properties of LaNiO₂ because of the inclusion of a small amount of ferromagnetic Ni in the samples.

Acknowledgments

This work was partly supported by the Program Research in Center for Interdisciplinary Research, Tohoku University, by a Grant-in-Aid for Scientific Research from JSPS, Japan and also by Nippon Sheet Glass Foundation for Materials Science and Engineering.

References

- [1] M. Crespin et al., J. Chem. Soc., Faraday Trans. 79 (1983) 1181.
- [2] M.A. Hayward et al., J. Am. Chem. Soc. 121 (1999) 8843.
- [3] Y. Tsujimoto et al., Nature 450 (2007) 1062.
- [4] M. Kawai et al., Appl. Phys. Lett. 94 (2009) 082102.
- [5] D. Kaneko et al., Physica C 469 (2009) 936.
- [6] C. Shivakumara et al., Solid State Sci. 5 (2003) 351.