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Abstract: Thymidine phosphorylase (TP) inhibitors have attracted great attention due to their 

ability to suppress the tumors formation. In our ongoing research, a series of 1,3,4-oxadiazole-2-

thione (1-12)  has been synthesized  under simple reaction conditions in good to excellent yields 

(86-98%) and their TP inhibition potential has also been evaluated. The majority of synthesized 

compounds showed moderate thymidine phosphorylase inhibitory activity with IC50 values 

ranging from 38.24 + 1.28 to 258.43 ± 0.43 μM, and 7-deazaxanthine (7DX) was used as a 

reference compound (IC50 38.68 ± 4.42). The TP activity was very much dependent on the C-5 

substituents; among this series the compound 6 bearing 4-hydroxyphenyl group was found to be 

the most active with IC50 38.24 + 1.28 μM. Molecular docking studies revealed their binding 

mode.  
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Introduction 

Although angiogenesis is a very critical process in a repairing of tissues and organs it is a highly 

undesirable phenomenon during the tumor formation. It is believed that, tumor  growth could be 

blocked by stopping angiogenesis.1,2 Regarding the mechanism of the action of thymidine 

phosphorylase (TP), it triggers the reversible phosphorolysis of thymidine to produce thymine 

and 2�-deoxy-D-ribose 1-phosphate.3,4 Subsequently, 2�-deoxy-D-ribose 1-phosphate shows 

dephosphorylation reaction and as a result 2�-deoxy-D-ribose is produced. It is possible that the 

2�-deoxy-D-ribose stimulates the production of vascular endothelial growth factor (VEGF), 

which initiates a number of processes, for example, invites endothelial cells for secretion of 

matrix metalloproteinases, proliferation, and also migration to tumor tissue. All these actions 

help in the formation of new blood vessels, which could cause cancer metastasis.5 This is the 

reason why anti-angiogenic substances are highly desirable.  

The 2�-deoxy-D-ribose is considered a valuable target to suppress the tumor growth, and TP 

inhibitors are able to reduce the production of 2�-deoxy-D-ribose.5,6 In such scenario, one can 

easily understand the advantages of TP inhibitors in the control of cancer and that is the reason 

recently a number of efforts have been reported on the development of TP inhibitors.5,7,8 One of 

the leading candidate in this field is the 5-chloro-6-[1-(2-iminopyrrolidinyl) methyl] uracil 

hydrochloride (TPI). It is a pyrimidine based compound and the most active human TP inhibitor, 

whereas, 7-deazaxanthine (7DX) is the first known TP inhibitor as shown in Figure 1.9-12  
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Figure 1. Chemical structure of known TP inhibitors; TPI, 7DX, our previously reported potent 

TP inhibitor and newly proposed TP inhibitors 

Oxadiazole motif is well known due to its huge importance in medicinal chemistry.13-16
 We 

have recently identified and reported the TP inhibitory potential of 1,3,4-oxadiazole-2-thiones 



  

Mannich base derivatives,17 derived from the compounds listed in the current paper. There it was 

observed that the oxadiazole motif played a crucial role in the inhibitory process along with the 

contributions from the various substituents around the molecules. In that effort we synthesized 

the Mannich base derivatives of 1,3,4-oxadiazole-2-thiones, which indeed required an extra 

synthetic step and additional chemicals. As part of our ongoing medicinal chemistry interests,17-

23 in current research, we have synthesized the simple 1,3,4-oxadiazole-2-thione derivatives24,25
 

and  analyzed their TP inhibition potential. We have also performed molecular modeling studies 

for all the synthesized compounds to rationalize their binding modes with the TP.  

1. Results and Discussion 

1.1. Chemistry 

In our current research, a series of 1,3,4-oxadiazoline-2-thione derivatives 1-1217 bearing 

different level of C-5 substituents was prepared by condensing respective hydrazides with carbon 

disulfide in the presence of potassium hydroxide and ethanol on alumina as a solid support as 

shown in Scheme 1.24 Neutral alumina oxide was used as solid support which does not affect the 

yield and speed of reaction25 The reaction proceeded and completed efficiently under microwave 

irradiation within 7 minutes. The pure solid products were isolated as precipitates, which were 

washed with 50% aqueous ethanol and needed no further chromatographic techniques for 

purification. Also, it can be seen from percentage yield that different substituents influence the 

conversion rate and shorten the reaction time (please see Table 1). All final compounds were 

structurally characterized by IR, NMR, EIMS and elemental analysis.  
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Scheme 1: Synthetic protocol of 1,3,4-oxadiazole-2-thione derivatives 1-12. 

 

 



  

 

1.2. Thymidine phosphorylase inhibition activities 

In this study, to develop and understand structure–activity relationship (SAR) twelve derivatives 

of oxadiazole-2-thione were synthesized bearing different degree of aryl substituents at C-5 

position. Among the tested compounds, compound 6 having 4-hydroxyphenyl at C-5 position 

was found to be the most active with an IC50 value 38.24 ± 1.28μM (entry 6, Table 1), which was 

decreased to IC50 68.37±1.23μM in the case of its analogue 2 having 2-hydroxyl group at C-5 

(entry 2 and 6, Table 1). Similarly, compound 7, having methoxy group at para position showed 

IC50 72.43 ± 0.48μM while its trimethoxy analogue 8 exhibited slightly enhanced enzyme 

inhibition activity (IC50 63.43 ± 0.92), this is may be due to combined greater inductive effect by 

three methoxy substituents. 

Again very interesting results have been seen on the basis of position of substituents. For 

example, compound 10 and 11, they both contain chloro substituents in phenyl ring but IC50 

value of compound 11 having chloro group at para position was 63.97 ± 0.73μM, and the IC50 

value dramatically increased to 258.43 ± 0.43μM in case of compound 10 having chloro group at 

meta position. The results also revealed the electron-withdrawing polar group like nitro 

completely hinders the enzyme inhibition activity and resulted as precipitates. 

 

Table 1: Showing percentage yield and thymidine phosphorylase inhibition activity of 
synthesized oxadiazole derivatives 
 

NHN

O S
R
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Comp. R Yield % IC50 (μM)a 

1 
 

90 50.00 + 0.78 



  

2 

HO

 

89 68.37  ±  1.23 

3 

H2N

 

86 74.34 ± 0.73 

4 

CH3

 

96 91.78 ± 0.97 

5 CH3
 

98 - 

6 OH
 

91 38.24 + 1.28 

7 OCH3
 

94 72.43 + 0.48 

8 OCH3

OCH3

OCH3  

91 63.43 ± 0.92 

9 NO2
 

93 PPT 

10 

Cl

 

95 258.43 ± 0.43 

11 Cl
 

92 63.97  ± 0.73 

12 Br
 

93 63.97  ± 0.73 

Standard 7-Deazaxanthine 
 

 38.68± 4.42 

a 
Enzyme inhibition IC50 values are means of three independent experiments (mean ± SEM, n = 3) 

1.3. Molecular modeling studies 

 Analysis of the binding mode for the novel derivatives 1-12 was performed according to the 

previously described method.17 Thymidine phophorylase (TP) from Escherichia coli of high 

resolution (1.50 A; PDB code: 4EAD) was used for docking studies upon initial preparation. 



  

This enzyme structure represents the most closed form, characteristic for the most complexes 

with inhibitors, bound with 3�-azido-2�-fluoro-dideoxyuridine (ONP). Docking validation was 

based on two reference compounds from crystal structures – ONP and TPI (5-chloro-6-[1-(2-

iminopyrrolidinyl)methyl]-uracil) and it was shown that docking runs were able to reproduce 

original arrangement of the ligand with low rmsd (root mean square deviation) value below 1. 

Further, 7-deazaxanthine (7DX) - assay reference compound – was docked to TP. It was 

observed that NH and CO groups formed hydrogen bonds with Lys190, Ser186 and Arg171 

while the whole molecule created π-π stacking with Tyr168 residue. 

 

 

Figure 2. The novel compounds can occur in tautomeric forms (top). The ionization of lactim 

form (bottom). 

Initial calculations revealed that all compounds 1-12 occurred in physiological conditions in 

ionized form II (Figure 2) and therefore such form was docked into thymidine phosphorylase. It 

was noted that the binding mode of novel compounds was highly dependent on the substituents 

in the phenyl ring (Figure 3). In case of the most active compound 6, phenyl ring created CH-π 

interactions with Phe210. The hydroxyl group in position 4 formed hydrogen bond with Arg171. 

The oxadiazole moiety was engaged in two hydrogen bonds. The oxygen atom interacted with 

water molecule while nitrogen atom in position 4 created H-bond with hydroxyl group of 

Tyr168. The orientation of the inactive compound 5 was reversed. The phenyl ring created π-π 

stacking with Tyr168 while the oxygen atom from oxadiazole ring formed hydrogen bond with 

Ser186. Comparing both compounds 5 and 6, it’s worth to note that inhibitor 6 provided more 

interactions of greater importance within active center than inactive derivative 5. This could 
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of triplet), dd (double doublets), t (triplet), and m (multiplet). Chemical shifts are reported in δ 

(ppm) and coupling constants are given in Hz. The progress of all reactions was monitored by 

TLC, which was performed on 2.0 X 5.0 cm aluminum sheets precoated with silica gel 60F254 to 

a thickness of 0.25 mm (Merck). The chromatograms were visualized under ultraviolet light 

(254-366 nm) or iodine vapors. All the reagents were commercially available (Flulka, Aldrich, 

and Wako). 

3.2. General procedure for the synthesis of 5-substituted -1,3,4-oxadiazole-2-thione (1-12) 

A mixture of respective hydrazide (10 mmol), potassium hydroxide (0.56 g, 10 mmol) and 

alumina were finely ground in a glove box with a mortar and pestle. Then carbon disulfide (1.2 

mL, 20 mmol) was added to this mixture in a pyrex glass vial, which was placed in a 

screw‐capped thick‐walled Teflon® vessel. Microwave‐irradiation (MW domestic type oven 900 

W with a frequency 2450 MHz, Dawlance, Pakistan) was applied for 7 minutes. After the 

completion of reaction (TLC analysis), ethanol was added into reaction mixture and filtered. 

Filtrate was evaporated; distilled water was added to semi‐solid material and acidified with 

hydrochloric acid to pH = 4. Precipitates so obtained were filtered and dried to afford off white 

solid compound 2a‐r and then recrystallized from ethanol:water (50:50) mixture (Table 1). 

5-phenyl-1,3,4-oxadiazole-2(3H)-thione (1) 

Yield: 1.43 g, (80%). Rf = 0.61 (Ethyl acetate/hexane = 1:1).FTIR (KBr) νmax: 3431 (NH), 1641 

(C=N), 1328 (C=S), 1020 (C-O). EI-MS, (m/z %): 178 (M+, 25), 118 (100), 105 (25), 103 (41), 

77 (81), 51 (82).  1H NMR (400 MHz, CDCl3, drops of CD3OD): 14.70 (bs, 1H, NH), 7.90 (d, 

2H, δ, J = 7.3 Hz), 7.47-7.59 (m, 3H). Anal. calcd. for C8H6N2OS: C, 53.92; H, 3.39; N, 15.72; 

found: C, 53.86; H, 3.41; N, 15.65. 

5-(2′‐Hydroxyphenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (2) 

Yield: 1.33 g (89%). M.p.: 200‐201 °C. Rf = 0.67 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, 

νmax, cm-1): 3364 (NH), 1618 (C=N), 1309 (C=S), 1051 (C‐O‐C). MS (m/z, %): 194 (M+, 100), 

134 (1), 121 (99), 119 (16), 93 (7), 65 (8). 1H NMR (400 MHz, Acetone‐d6, δ, ppm): 14.33 (bs, 

1H, NH), 8.84 (br s, 1H, OH), 7.61 (m, 1H, H‐4´), 7.08 (d, 1H, H‐3´), 7.07 (dd, 1H, J = 8.1 Hz, 

J = 6.4 Hz, H‐5´), 7.01 (1H, J = 7.7 Hz, J = 5.0, J = 1.5 Hz, H‐6´). Anal. calcd. for 

C8H6N2O2S: C, 49.47; H, 3.11; N, 14.42. Found: C, 49.49; H, 3.15; N, 14.46%. 



  

5-(2′‐Amino phenyl)‐1,3,4‐oxadiazole‐2(3H)‐thione (3): 

Yield: 1.31 g (86 %). M.p.: 156‐157 °C. Rf = 0.68 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, 

νmax, cm-1): 1054 (C‐O‐C), 1616 (C=N), 3585 (NH). MS (m/z, %): 193 (M+, 17), 177 (100), 133 

(47), 120 (15), 118 (33), 92 (15), 76 (10). 1H NMR (500 MHz, DMSO‐d6, δ, ppm): 14.63 (bs, 

1H, NH), 7.89 (dd, 1H, J = 7.0 Hz, 1.5 Hz, H‐6´), 7.88 (bs, 2H, NH2), 7.61 (dd, 1H, J = 7.2 Hz, 

1.7 Hz, H‐3´), 7.55 (dd , 1H, J = 7.0 Hz, 1.9 Hz, H‐4´), 7.48 (t, 1H, J = 7.0 Hz, H‐5´). Anal. 

calcd. for C8H7N3OS: C, 49.73; H, 3.65; N, 21.75. Found: C, 49.71; H, 3.63; N, 21.74%. 

5-(3′‐Methylphenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (4): 

Yield: 1.44 g (96%). M.p.: 148‐149 °C. Rf = 0.69 (Ethyl acetate:hexane = 1:2). FT‐IR (KBr, νmax, 

cm-1): 3400 (NH), 1635 (C=N), 1319 (C=S), 1022 (C‐O). MS (m/z, %): 192 (M+, 49), 132 (100), 

116 (10), 104 (17), 91 (59), 77 (17), 65 (34), 63 (20), 51 (24). 1H NMR (500 MHz, CDCl3, drops 

of CD3OD, δ, ppm): 14.45 (bs, 1H, NH), 7.71 (s, 1H, H‐2′), 7.67 (d, 1H, J = 6.1 Hz, H‐2′), 7.39 

(bs, 2H, H‐ 3´/4′), 2.4 (s, CH3). Anal. calcd. for C9H8N2OS: C, 56.23; H, 4.19; N, 14.57. Found: 

C, 56.28; H, 4.17; N, 14.62%. 

5-(4′‐Methylphenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (5): 

Yield: 1.47 g (98%). M.p.: 159‐160 °C. Rf = 0.69 (Ethyl acetate:hexane = 1:2). FT‐IR (KBr, νmax, 

cm-1): 3409 (NH), 1636 (C=N), 1333 (C=S), 1016 (C‐O). MS (m/z, %): 192 (M+, 52), 132 (100), 

119 (20), 117 (10), 104 (12), 102 (2), 91 (45), 65 (16). 1H NMR (400 MHz, CDCl3, drops of 

CD3OD, δ, ppm): 14.53 (bs, 1H, NH), 7.74 (d, 2H, J =8.1 Hz H‐2´/6´), 7.30 (d, 2H, J = 8.1 Hz, 

H‐3´/5´), 2.38 (s, 3H, CH3). Anal. calcd. for C9H8N2OS: C, 56.23; H, 4.19; N, 14.57. Found: C, 

56.28; H, 4.14; N, 14.52%. 

5(4′‐Hydroxyphenyl)‐1,3,4‐oxadiazole‐2(3H)‐thione (6): 

Yield: 1.36 g (91%). M.p.: 233‐235 °C. 1H NMR (400 MHz, CDCl3, drops of CD3OD, δ, ppm): 

11.4 (s, 1H, SH), 7.18 (d, 2H, J =8.46 Hz, Ar-H), 7.08 (d, 2H, J = 8.46 Hz, Ar-H), 5.12 (s, 1H, 

OH). Anal. calcd. for C8H6N2O2S: C, 49.47; H, 3.11; N, 14.42. Found: C, 49.52; H, 3.18; N, 

14.47%. 

5-(4′‐Methoxyphenyl)‐1,3,4‐oxadiazole‐2(3H)‐thione (7): 



  

Yield: 1.41 g (94%). M.p.: 190‐191 °C. Rf = 0.65 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, νmax, 

cm-1): 3399 (NH), 1659 (C=N), 1333 (C=S), 1019 (C‐O). MS (m/z, %): 208 (M+, 100), 148 (54), 

135 (12), 133 (88), 107 (3), 105 (20), 92 (10), 77 (13), 64 (14), 51 (18). 1H NMR (500 MHz, 

CDCl3, drops of CD3OD, δ, ppm):14.23 (br s, 1H, NH), 7.84(d, 2H, J = 8.8 Hz, H‐2´/6´), 7.05 (d, 

2H, J =8.8 Hz, H‐3´/5´), 3.61 (s, 3H, OCH3). Anal. calcd. for C9H8N2O2S: C, 51.91; H, 3.87; N, 

13.45. Found: C, 51.96; H, 3.83; N, 13.49%. 

5-(3′,4′,5′‐Trimethoxyphenyl)‐1,3,4‐oxadiazole‐2(3H)‐thione (8):  

Yield: 1.36 g (91%). M.p.: 175‐176 °C. Rf = 0.59 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, νmax, 

cm-1): 3171 (NH), 1579 (C=N), 1331 (C=S), 1041 (C‐O‐C). MS (m/z, %): 268 (100), 208 (32), 

193 (70), 178 (12), 167 (6), 152 (7), 135 (13). 1H NMR (300 MHz, DMSO‐d6, δ, ppm): 14.81 (br 

s, 1H, NH), 7.09 (s, 2H, H‐2´,6´), 3.84 (s, 6H, OCH3‐3´/5´), 3.72 (s, 3H, OCH3‐4´). Anal. calcd. 

for C11H12N2O4S: C, 49.24; H, 4.51; N, 10.44. Found: C, 49.28; H, 4.56; N, 10.47%. 

5-(4′‐Nitrophenyl)‐1,3,4‐oxadiazole‐2(3H)‐thione (9):  

Yield: 1.39 g (93%). M.p.: >250 °C (Decompose). Rf = 0.64 (Ethyl acetate:hexane = 1:1). FT‐IR 

(KBr, νmax, cm-1): 3366 (NH), 1632 (C=N), 1328 (C=S), 1086 (C‐O‐C). MS (m/z, %): 223 (M+, 

79), 163 (100), 150 (4), 133 (21), 117 (28), 105 (4), 104 (12), 102 (9), 76 (34). 1H NMR (400 

MHz, CDCl3, drops of CD3OD, δ, ppm): 14.73 (bs, 1H, NH), 8.40 (d, 2H, J = 8.7 Hz, H‐3′,5′), 

8.17 (d, 2H, J = 8.7 Hz, H‐ 2′,6′). Anal. calcd. for C8H5N3O3S: C, 43.05; H, 2.26; N, 

18.83.Found: C, 43.01; H, 2.22; N, 18.86%. 

5-(3′‐Chlorophenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (10):  

Yield: 1.42 g (95%). M.p.: 178‐179 °C. Rf = 0.69 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, νmax, 

cm-1): 1063 (C‐O‐C), 1608 (C=N), 3594 (NH). MS (m/z, %): 214 (M+, 48), 212 (M+, 100), 179 

(3), 155 (6), 154 (37), 153 (11), 152 (100), 141 (5), 139 (17), 137 (12), 117 (7), 102 (8), 76 (7). 1 

H‐NMR (500 MHz, DMSO‐d6): 14.49 (bs, 1H, NH), 7.85 (d, 1H, J = 1.6 Hz, H‐6´), 7.83 (d, J = 

7.8 Hz, H‐ 2´), 7.70 (dd, 1H, J =7.9 Hz, J = 1.2 Hz, H‐4´), 7.60 (t, 1H, J = 7.9 Hz, J = 7.9 Hz, 

H‐3´). Anal. calcd. for C8H5ClN2OS: C, 45.18; H, 2.37; N, 13.17. Found: C, 45.23; H, 2.42; N, 

13.15%. 

5-(4′‐Chlorophenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (11):  



  

Yield: 1.38 g (92%). M.p.: 173‐174 °C. Rf = 0.69 (Ethyl acetate:hexane = 1:1). FT‐IR (KBr, νmax, 

cm-1): 1023 (C‐O‐C), 1669 (C=N), 3348 (NH). MS (m/z, %): 214 (M+,35), 212 (M+, 100), 179 

(3),154 (30), 152 (82), 141 (4), 139 (14), 137 (14), 117 (5), 102 (8), 76 (7). 1H NMR (500 MHz, 

DMSO‐d6, δ, ppm): 14.52 (bs, 1H, NH), 7.88 (d, 2H, J = 8.6 Hz, H‐2´/6´), 7.65 (d, 2H, J = 8.6 

Hz, H‐3´/5´). Anal. calcd. for C8H5ClN2OS: C, 45.18; H, 2.37; N, 13.17. Found: C, 45.15; H, 

2.39; N, 13.14%. 

5-(4′‐Bromophenyl‐1,3,4‐oxadiazole‐2(3H)‐thione (12):  

Yield: 1.39 g (93%). M.p.: 230‐231 °C. R f = 0.66 (Ethyl acetate:hexane = 1:2). FT‐IR (KBr, 

νmax, cm-1): 1073 (C‐O‐C), 1633 (C=N), 3280 (NH). MS (m/z, %): 258 (M+, 60), 256 (M+, 59), 

198 (47), 196 (46), 185 (9), 184 (69), 183 (15), 181 (6), 157 (7), 155 (8), 117 (6), 76 (7), 50 (8). 
1H NMR (500 MHz, CDCl3, drops of CD3OD, δ, ppm): 14.59 (bs, 1H, NH), 7.8 (d, 2H, J = 8.4 

Hz, H‐2′/6′), 7.7 (d, 2H, J = 8.4 Hz, H‐3′/5′). Anal. calcd. for C8H5BrN2OS: C, 34.37; H, 1.96; N, 

10.90. Found: C, 34.32; H, 1.98; N, 10.96%. 

3.3. Docking studies 

Corina online tool29 was applied to creating three-dimensional structure of compounds. 

Protonation states were predicted by Marvin online tool30 Gasteiger-Marsili charges were 

assigned by Sybyl-X 1.131
 following check of atom types and protonation states of the ligands. 

Finally, analyzed structures were saved in the mol2 format.  

Escherichia coli TP from 4EAD crystal structure was prepared in two steps. Initially, sulfate 

ion was replaced by phosphate in its dihydrogen form, the N- and C-terminal amino acids were 

set as charged and hydrogen atoms were added to the protein, water and ligands using Sybyl-X 

1.1. Then, all histidine residues were protonated at Ne, ligand molecules except phosphate 

removed, and binding site defined as all amino acid residues within 10 Å from ONP using 

Hermes 1.532 The presence of water molecules within 5 Å from ONP was also taken into 

account. They were set as toggle. 

Docking was performed using Gold 5.1 program.33 A standard set of genetic algorithm with 

population size 100 and number of operations 100 000 was applied. As a result, 20 poses for 

each ligand were obtained and sorted according to GoldScore values. Results were visualized by 

PyMOL.34 



  

3.4. Procedure for Thymidine Phosphorylase Inhibition 

TP/PD-ECGF (E. coli TP (Sigma T6632) activity was determined by measuring the absorbance 

at 290 nm spectrophotometrically. The original method reported by Krenitsky35 was modified. 

Briefly, a total reaction mixture of 200 µl contained 145 µl of potassium phosphate buffer (pH 

7.4), 30 µl of enzyme (E. coli TP (Sigma T6632) at concentration 0.05 and 0.002 U, respectively, 

were incubated with 5 µl of test materials for 10 min at 25 °C in microplate reader. After 

incubation, pre read at 290 nm was taken to deduce the absorbance of substrate molecules. 

Substrate (20 µl, 1.5 mM) was dissolved in potassium phosphate buffer and was immediately 

added to plate and continuously read after 10, 20, and 30 min in micro-plate reader. All assays 

were performed in triplicate. The plate reader used was SpectraMax Plus 384 while 96-wells 

plate was used and the value of blank was subtracted from experimental wells to eliminate the 

back ground absorbance. 
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Highlights 

 

• Efficient synthesis of 1,3,4-oxadiazole-2-thione derivatives 

• Thymidine phosphorylase inhibition studies 

• Molecular docking studies for binding mode investigations 

• Compound 6 bearing 4-hydroxyphenyl group was found to be the most active  

 
 

 
 


