Selective Reduction of Nitroarenes by a Hantzsch 1,4-Dihydropyridine: A Facile and Efficient Approach to Substituted Quinolines

Rui-Guang Xing,^a Ya-Nan Li,^a Qiang Liu,^{*a,b} Yi-Feng Han,^b Xia Wei,^a Jing Li,^a Bo Zhou^a

^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China

^b Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China

Fax +86(931)8625657; E-mail: liuqiang@lzu.edu.cn Received 16 March 2011; revised 21 April 2011

Receivea 16 March 2011; revisea 21 April 2011

Abstract: An efficient reductive cyclization of *o*-nitrocinnamoyl compounds was achieved by employing a Hantzsch 1,4-dihydropy-ridine ester as a biomimetic reducing agent in the presence of catalytic palladium on carbon. This approach was successfully applied to the synthesis of substituted quinolines.

Key words: quinolines, reductive cyclization, Hantzsch ester, biomimetic reducing agent

The search for a more efficient chemoselective hydrogenation is one of the most intensely pursued challenges in modern chemistry. In this regard, the selective transformation of nitroarenes bearing reducible functional groups to functionalized anilines is an important research area because of the relevance of these compounds to the pharmaceutical and fine chemical industries. The functionalization of quinolines, thanks to the abundance of quinolines in biologically and medicinally active compounds,¹ has received much attention to date. The reduction of o-nitrocinnamoyl compounds with reducing agents, followed by cyclization to form quinolines, is one of the major routes to access functionalized quinolines; however, the process is somewhat difficult because of the lack of selectivity in the reduction of a nitro group in the presence of olefinic and carbonyl substituents. Reduction systems such as CO,² Sm-TiCl₄,³ Zn-TiCl₄,⁴ SmI₂,⁵ In,⁶ $SnCl_2$,⁷ HCOONH₄–Pd/C,⁷ Fe/AcOH⁸ and baker's yeast⁹ have been used for the selective reductive cyclization of 2-nitrochalcones; however, some of these methods suffer from relatively low yields, poor regioselectivity, tedious reaction procedures, relatively expensive reagents and/or rather lengthy synthetic sequences. Therefore, the development of new strategies for the efficient reductive cyclization of *o*-nitrocinnamoyl compounds is urgently needed.

Generally, the reduction of nitro compounds to amines is approached using one of three methods. First is the catalytic hydrogenation of the nitro compounds with molecular hydrogen by metal catalysts.¹⁰ The second is the stoichiometric reduction of the corresponding aromatic nitro compounds by using iron,^{11a} tin,^{11b} zinc^{11c} and so on. The third is the chemoselective hydrogenation of aromatic nitro compounds catalyzed by metals in the presence of organic reductants, such as silane/siloxane12 and ammonium formate/copper nanoparticles.¹³ In contrast to the chemical conversions described above, the biomimetic reduction of nitroarenes using nicotinamide adenine dinucleotide (NADH) models has seldom been reported.¹⁴ The Hantzsch 1,4-dihydropyridine HEH (diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, see Scheme 1), a model compound of coenzyme NAD(P)H, is one of the most widely investigated biomimetic reductants. Recent

Scheme 1

SYNTHESIS 2011, No. 13, pp 2066–2072 Advanced online publication: 26.05.2011 DOI: 10.1055/s-0030-1260609; Art ID: H29111SS © Georg Thieme Verlag Stuttgart · New York

studies in our laboratory have shown that the reducibility of HEH is dramatically enhanced in the presence of palladium on carbon (Pd/C).¹⁵ Moreover, high chemoselectivities have been observed by regulating reaction conditions, such as the amount of HEH, reaction temperatures and solvents. We have examined the selective reduction of a nitro group with HEH and Pd/C in the presence of epoxy, ester or amide substituents and have successfully accomplished the synthesis of 2H-1,4-benzoxazine,^{15c} benzoxazole^{15e} and benzimidazole^{15e} derivatives. In this paper, we report that substituted quinolines can be efficiently synthesized by the highly chemoselective Pd/C-catalyzed reduction of o-nitrocinnamoyl compounds by HEH (Scheme 1).

As a new direction in the research of enantioselective hydrogenation catalyzed by organocatalysts, considerable progress has been made over the past decade in the use of HEH to selectively reduce the electron-deficient carboncarbon double bond of α,β -unsaturated carbonyl compounds.¹⁶ The steady transfer hydrogenation of α , β -unsaturated carbonyl compounds^{16a} 1 (Scheme 1 left) and quinolines¹⁷ 2 (Scheme 1 right) has been reported to occur using HEH in the presence of organocatalysts. These two side reactions pose difficulties in obtaining the desired quinolines efficiently. Our preliminary studies focused on the reductive cyclization of 2-nitrochalcone (1a) with HEH (Table 1). No reaction occurred at room temperature using ethanol or acetic acid as a solvent (Table 1, entries 1 and 3). Initial success was obtained by refluxing an ethanolic solution of 1a and HEH in the presence of Pd/C (Table 1, entry 2). To our delight, when the reaction was performed in refluxing acetic acid, quinoline 2a was obtained in excellent yield (Table 1, entry 4). Importantly, no conversion was observed when the reaction was refluxed in acetic acid in the absence of Pd/C or HEH (Table 1, entries 5 and 6).

Under the optimized conditions, the scope of the reaction was explored with a variety of o-nitrocinnamoyl compounds. The results are summarized in Table 2. The reac-

Table 1	Optimization of Reaction Conditions ^a
---------	--

Entry Substrate Product ^b Yield ^c (%) 1 1a R = Ph 2a 95 2 1b R = 4-MeC ₆ H ₄ 2b 85 3 1c R = 2-MeC ₆ H ₄ 2c 83 4 1d R = 4-MeOC ₆ H ₄ 2d 96 5 1e R = 3-MeOC ₆ H ₄ 2e 82 6 1f R = 2-MeOC ₆ H ₄ 2f 87 7 1g R = 4-ClC ₆ H ₄ 2g 72 ^d 8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\iint_{U_{U_{U_{U_{U_{U_{U_{U_{U_{U_{U_{U_{U_$	$ \begin{array}{c} $				
1 1a R = Ph 2a 95 2 1b R = 4-MeC ₆ H ₄ 2b 85 3 1c R = 2-MeC ₆ H ₄ 2c 83 4 1d R = 4-MeOC ₆ H ₄ 2d 96 5 1e R = 3-MeOC ₆ H ₄ 2e 82 6 1f R = 2-MeOC ₆ H ₄ 2f 87 7 1g R = 4-ClC ₆ H ₄ 2g 72 ^d 8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\zeta \zeta $	Entry	Substrate	Product ^b	Yield ^c (%)	
2 1b R = 4-MeC ₆ H ₄ 2b 85 3 1c R = 2-MeC ₆ H ₄ 2c 83 4 1d R = 4-MeOC ₆ H ₄ 2d 96 5 1e R = 3-MeOC ₆ H ₄ 2e 82 6 1f R = 2-MeOC ₆ H ₄ 2f 87 7 1g R = 4-CIC ₆ H ₄ 2g 72 ^d 8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\int_{V} = \int_{NO_2} \int_{U} \int_{U} \int_{NO_2} \int_{U} \int_{U} \int_{NO_2} \int_{U} \int_{U}$	1	1a R = Ph	2a	95	
3 1c R = 2-MeC ₆ H ₄ 2c 83 4 1d R = 4-MeOC ₆ H ₄ 2d 96 5 1e R = 3-MeOC ₆ H ₄ 2e 82 6 1f R = 2-MeOC ₆ H ₄ 2f 87 7 1g R = 4-ClC ₆ H ₄ 2g 72 ^d 8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\zeta \zeta $	2	1b R = 4 -MeC ₆ H ₄	2b	85	
4 1d R = 4-MeOC ₆ H ₄ 2d 96 5 1e R = 3-MeOC ₆ H ₄ 2e 82 6 1f R = 2-MeOC ₆ H ₄ 2f 87 7 1g R = 4-ClC ₆ H ₄ 2g 72 ^d 8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\int_{V \to V_{NO_2}} \int_{NO_2} \int_{NO_2$	3	$\mathbf{1c} \mathbf{R} = 2 \cdot \mathbf{MeC}_6 \mathbf{H}_4$	2c	83	
5 $1e R = 3 - MeOC_6H_4$ $2e$ 82 6 $1f R = 2 - MeOC_6H_4$ $2f$ 87 7 $1g R = 4 - CIC_6H_4$ $2g$ 72^4 8 $1h R = 4 - BrC_6H_4$ $2h$ 70^d 9 $1i R = 4 - F_3CC_6H_4$ $2i$ 80 10 $1j R = 1 - naphthyl$ $2j$ 78 11 $1k R = 3 - pyridyl$ $2k$ 86 12 $1l R = Me$ $2l$ 79 13 $\overbrace{\bigcup_{NO_2}}^{O}$ $\overbrace{\bigsqcup_N}$ 82 $1m$ $1n R = H$ $2n$ 82	4	$1 \mathbf{d} \mathbf{R} = 4 - \mathrm{MeOC}_6 \mathrm{H}_4$	2d	96	
6 If $R = 2$ -MeOC ₆ H ₄ 2f 87 7 Ig $R = 4$ -CIC ₆ H ₄ 2g 72 ^d 8 Ih $R = 4$ -BrC ₆ H ₄ 2h 70 ^d 9 Ii $R = 4$ -F ₃ CC ₆ H ₄ 2i 80 10 Ij $R = 1$ -naphthyl 2j 78 11 Ik $R = 3$ -pyridyl 2k 86 12 II $R = Me$ 2l 79 13 $\bigcup \bigcup $	5	$1e R = 3-MeOC_6H_4$	2e	82	
7 $1g R = 4 \cdot CIC_6H_4$ $2g$ 72^d 8 $1h R = 4 \cdot BrC_6H_4$ $2h$ 70^d 9 $1i R = 4 \cdot F_3CC_6H_4$ $2i$ 80 10 $1j R = 1 \cdot naphthyl$ $2j$ 78 11 $1k R = 3 \cdot pyridyl$ $2k$ 86 12 $1l R = Me$ $2l$ 79 13 $for equation (for equation (for$	6	$\mathbf{1f} \mathbf{R} = 2 \cdot \mathrm{MeOC}_6 \mathrm{H}_4$	2f	87	
8 1h R = 4-BrC ₆ H ₄ 2h 70 ^d 9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $\overbrace{\bigcup_{NO_2}}^{O}$ $\overbrace{\bigcup_N}$ 82 14 1n R = H 2n 85 ^c	7	$\mathbf{1g} \mathbf{R} = 4 - \mathrm{ClC}_6 \mathrm{H}_4$	2g	72 ^d	
9 1i R = 4-F ₃ CC ₆ H ₄ 2i 80 10 1j R = 1-naphthyl 2j 78 11 1k R = 3-pyridyl 2k 86 12 1l R = Me 2l 79 13 $iftharpoints - 100 -$	8	$\mathbf{1h} \mathbf{R} = 4\text{-}\mathrm{Br}\mathrm{C}_{6}\mathrm{H}_{4}$	2h	70 ^d	
101j R = 1-naphthyl2j78111k R = 3-pyridyl2k86121l R = Me2l7913 $\overbrace{\bigcup_{NO_2}}^{O}$ $\overbrace{\bigcup_{N}}^{O}$ 82141n R = H2n85°	9	$\mathbf{1i} \mathbf{R} = 4 - F_3 \mathbf{C} \mathbf{C}_6 \mathbf{H}_4$	2i	80	
111k R = 3-pyridyl2k86121l R = Me2l7913 $\overbrace{\bigcup_{NO_2}}^{\circ}$ $\overbrace{\bigcup_{N}}^{\circ}$ 82141n R = H2n85°	10	1j R = 1-naphthyl	2j	78	
12 $1IR = Me$ 21 79 13 $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow \downarrow$ 82 14 $1nR = H$ 2n 85°	11	1k R = 3-pyridyl	2k	86	
13 $intropy = 1$	12	11 R = Me	21	79	
$14 1n R = H 2n 85^{\circ}$	13		2m	82	
	14	1m $1n R = H$	2n	85 ^e	

^a Reaction conditions: 1 (1.0 mmol), HEH (3.6 mmol), 10% Pd/C (2 wt% of HEH), AcOH (20 mL), 120 °C, 15 h.

^b All products are known compounds and were characterized by EI-MS spectrometry, and IR, ¹H NMR and ¹³C NMR spectroscopy. ^c Isolated yields.

^d HEH (3.2 mmol) was used.

^e Analysis by GC-MS.

1a	2a		
Entry	Conditions ^a	Yield (%)	
1	10% Pd/C (2 wt% of HEH), HEH (3.6 equiv), EtOH, r.t., 15 h	0	
2	10% Pd/C (2 wt% of HEH), HEH (3.6 equiv), EtOH, reflux, 15 h	49	
3	10% Pd/C (2 wt% of HEH), HEH (3.6 equiv), AcOH, r.t., 15 h	0	
4	10% Pd/C (2 wt% of HEH), HEH (3.6 equiv), AcOH, reflux, 15 h	95	
5	HEH (3.6 equiv), AcOH, reflux, 15 h	0	
6	10% Pd/C (18 mg), AcOH, reflux, 15 h	0	

NO/

^a Reactions were performed with 1a (1.0 mmol) and solvent (0.05 M/[starting material]).

tion works well with an electron-donating group (R =4-Tol, 2-Tol, 4-MeOC₆H₄, 3-MeOC₆H₄, 2-MeOC₆H₄; Table 2, entries 2-6) or an electron-withdrawing group $(R = 4-F_3CC_6H_4; Table 2, entry 9)$ located on the benzoyl ring of the o-nitrocinnamoyl compounds. When the para position of the benzoyl ring was substituted by chlorine or bromine, a small amount of dehalogenated product was produced. To avoid overhydrogenation, the amount of HEH was decreased from 3.6 to 3.2 equivalents. The corresponding 2-(4-halophenyl)quinoline yields were 72% and 70%, respectively (Table 2, entries 7 and 8). Good results were obtained using 1-(naphthalen-1-yl)-3-(2nitrophenyl)prop-2-en-1-one (1j; Table 2, entry 10) and 3-(2-nitrophenyl)-1-(pyridin-3-yl)prop-2-en-1-one (1k; Table 2, entry 11) as the starting materials. Aliphatic ketones were also suitable for the reductive cyclization procedure (Table 2, entries 12 and 13). In particular, 2nitrocinnamaldehyde (1n) was converted into quinoline (Table 2, entry 14) in 85% yield, which indicates that this biomimetic reduction is tolerant to aldehydes and the present reductive cyclization is highly chemoselective.

To further broaden the scope of application, the synthesis of 2,3-disubstituted quinolines was carried out by employing a range of functionalized 2-(2-nitrobenzylidene)-1,3dicarbonyl compounds **3** as reactants (Table 3). These starting materials have a highly electron-deficient double bond which can be easily reduced by HEH.¹⁸ Again, good functional group tolerance was observed for the reductive cyclization reaction and the corresponding 2,3-disubstituted quinolines were obtained in moderate to excellent yields (Table 3, entries 1–5).

We also observed hydrogen gas evolution during refluxing in acetic acid containing HEH and catalytic Pd/C. The generation of hydrogen gas from HEH is supported by DFT calculations.^{15c} These facts indicate that palladium hydride is generated during the aromatization of HEH cat-

^a Reaction conditions: **3** (1.0 mmol), HEH (3.6 mmol), 10% Pd/C (2 wt% of HEH), AcOH (20 mL), 120 °C, 15 h.

^b All products are known compounds and were characterized by EI-MS spectrometry, and IR, ¹H NMR and ¹³C NMR spectroscopy. ^c Isolated yields.

alyzed by Pd/C. As shown in Scheme 2, the high chemoselectivities of the hydrogenation may arise from the strong absorption of HEH on the palladium surface. Thus, HEH is not only the reductant of the reaction but also the modifier for the palladium surface. The preferential absorption of HEH hinders absorption and the selective hydrogenation of the less-reactive moiety, thereby leading to the predominant hydrogenation of the nitro group.

Scheme 2

Synthesis 2011, No. 13, 2066-2072 © Thieme Stuttgart · New York

In summary, we have demonstrated that the Hantzsch 1,4dihydropyridine HEH, a model compound of coenzyme NAD(P)H, is a mild and efficient reductant for the reductive cyclization of *o*-nitrocinnamoyl compounds. The high chemoselectivities and good yields make this a promising method for the synthesis of substituted quinolines from simple and readily available nitroarenes. The chemical behavior of HEH in the presence of Pd/C is different from that reported in homogeneous systems. In comparison to the boom of research for HEH in homogeneous catalytic systems during the past few decades, more elegant applications of HEH in heterogeneous catalytic systems are expected.

¹H and ¹³C NMR spectra were recorded on a Varian Mercury Plus instrument (at 400 MHz and 100 MHz, respectively) and internally referenced to the tetramethylsilane signal or residual protic solvent signals. ¹H NMR data are given as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet or unresolved), coupling constant(s) in Hz, integration. ¹³C NMR data are reported in terms of chemical shift (δ , ppm). Mass spectra were recorded by EI methods on a TRACE DSQ mass spectrometer. IR spectra were recorded on a Nicolet NEXUS 670 FT-IR spectrometer. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on silica gel F₂₅₄ plates. Silica gel (200–300 mesh) was used for column chromatography. The employed solvents were dried using standard procedures. Commercially obtained reagents were used without further purification.

o-Nitrocinnamoyl Compounds 1a-k; General Procedure^{6b}

Starting materials **1a–k** were easily obtained via a modified Claisen–Schmidt reaction using *o*-nitrobenzaldehyde (5 mmol), the appropriate ketone (5 mmol), K₂CO₃ (3.5 g) and NaOH (200 mg); these compounds were placed into a triturator and ground for about 10 min. After completion of the reaction, the mixture was extracted with EtOAc (3×25 mL) and the extracts were washed with H₂O (3×25 mL) and concentrated. The product **1a–k** was purified using column chromatography (PE–acetone).

2-(2-Nitrobenzylidene)cyclopentanone (1m)¹⁹

A soln of cyclopentanone (100 mmol) and morpholine (9 mL, 100 mmol) in toluene (100 mL) was heated under reflux in a Dean–Stark apparatus until no further H_2O was collected. *o*-Nitrobenzaldehyde (100 mmol) was then added to the cooled solution and the mixture was heated under reflux until no further H_2O was collected. A 1:1 mixture of H_2O and concd HCl (50 mL) was added dropwise to the stirred, cooled solution which was left for a further hour. The solution was then washed with 10% aq Na₂CO₃ (100 mL), dried (MgSO₄), filtered and concentrated; the product was purified using column chromatography (PE–acetone, 10:1).

2-(2-Nitrobenzylidene)-1,3-dicarbonyl Compounds 3a-e; General Procedure²⁰

A soln of *o*-nitrobenzaldehyde (1.0 mmol), the appropriate 1,3-dicarbonyl compound (1.1 mmol), piperidine (0.1 mmol) and glacial AcOH (0.5 mmol) in reagent grade benzene (0.2 M) was heated to reflux using a Dean–Stark apparatus for 5 h or until the reaction went to completion. The reaction mixture was cooled to r.t. and diluted with EtOAc (80 mL). This mixture was washed with 1 M aq HCl (2×15 mL), 1 M aq NaOH (2×15 mL) and brine (2×15 mL). The organic layer was dried (Na₂SO₄), filtered and concentrated under reduced pressure. The crude residue was purified by silica gel flash chromatography (PE–acetone) to afford the product **3a–e**.

Quinolines 2 and 4; General Procedure

To a soln of the *o*-nitrocinnamoyl compound **1** or **3** (1.0 mmol) in AcOH (20 mL) were added HEH (3.6 mmol) and 10% Pd/C (2 wt% of HEH), and the mixture was refluxed under stirring and argon atmosphere for 15 h. After completion of the reaction, as monitored by TLC, the mixture was filtered and the filtrate was concentrated under reduced pressure. The corresponding quinoline **2** or **4** was isolated by silica gel column chromatography (PE–acetone) and identified by comparing its EI-MS and ¹H NMR, ¹³C NMR and IR spectroscopic data with those reported in the literature.

2-Phenylquinoline (2a)

Yield: 195 mg (95%); white solid; mp 83-85 °C.

IR (KBr): 3421, 3053, 1596, 1553, 1447, 1318, 1074, 829, 766 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.57 (m, 4 H), 7.74 (dt, J = 7.4, 1.2 Hz, 1 H), 7.82 (d, J = 8.0 Hz, 1 H), 7.87 (d, J = 8.8 Hz, 1 H), 8.19–8.23 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ = 118.9, 126.2, 127.1, 127.4, 127.5, 128.8, 129.3, 129.6, 129.7, 136.7, 139.6, 148.3, 157.3.

EI-MS: m/z (%) = 205 (100.0) [M⁺], 176 (8.4), 102 (21.5), 88 (7.5), 76 (5.4), 51 (2.4).

2-(4-Tolyl)quinoline (2b)

Yield: 186 mg (85%); white solid; mp 79-81 °C.

IR (KBr): 3420, 3058, 1927, 1702, 1595, 1575, 1498, 815, 788 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 2.43 (s, 3 H), 7.33 (d, *J* = 8.0 Hz, 2 H), 7.50 (t, *J* = 7.2 Hz, 1 H), 7.71 (dt, *J* = 7.2, 1.2 Hz, 1 H), 7.79 (dd, *J* = 8.0, 0.8 Hz, 1 H), 7.85 (d, *J* = 8.8 Hz, 1 H), 8.07 (d, *J* = 8.0 Hz, 2 H), 8.17 (t, *J* = 8.4 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 21.4, 118.9, 126.1, 126.9, 127.1, 127.5, 129.2, 129.6, 129.7, 136.7, 136.9, 139.4, 148.3, 157.3.

EI-MS: m/z (%) = 219 (100.0) [M⁺], 204 (23.6), 128 (3.7), 109 (13.8), 95 (6.1), 84 (4.7).

2-(2-Tolyl)quinoline (2c)

Yield: 182 mg (83%); white solid; mp 70–71 °C. IR (KBr): 3423, 3057, 2958, 1952, 1726, 1598, 1456, 837, 760 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3 H), 7.29–7.36 (m, 3 H), 7.49–7.58 (m, 3 H), 7.74 (dt, *J* = 8.4, 1.2 Hz, 1 H), 7.85 (d, *J* = 7.6 Hz, 1 H), 8.18 (d, *J* = 8.8 Hz, 1 H), 8.20 (d, *J* = 8.8 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 20.3, 122.3, 126.0, 126.4, 126.7, 127.5, 128.5, 129.5, 129.6, 129.7, 130.8, 136.0, 136.1, 140.6, 147.8, 160.2.

EI-MS: m/z (%) = 219 (38.1) [M⁺], 218 (100) [M - 1]⁺, 109 (33.0), 75 (11.4), 63 (15.5), 51 (17.4), 39 (23.1).

2-(4-Methoxyphenyl)quinoline (2d)

Yield: 226 mg (96%); white solid; mp 123–125 °C.

IR (KBr): 3412, 2960, 1718, 1598, 1498, 1430, 1251, 818, 750 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 3.88 (s, 3 H), 7.04 (d, *J* = 8.8 Hz, 2 H), 7.49 (dt, *J* = 7.6, 0.8 Hz, 1 H), 7.70 (dt, *J* = 7.8, 1.2 Hz, 1 H), 7.78–7.83 (m, 2 H), 8.12–8.17 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ = 55.4, 114.2, 118.5, 125.9, 126.9, 127.4, 128.9, 129.5, 129.6, 132.2, 136.6, 148.2, 156.9, 160.8.

EI-MS: m/z (%) = 235 (100.0) [M⁺], 220 (39.6), 192 (37.6), 149 (18.0), 95 (7.0), 44 (6.1).

2-(3-Methoxyphenyl)quinoline (2e)

Yield: 193 mg (82%); colorless oil.

IR (KBr): 3059, 2929, 1724, 1599, 1557, 1289, 1041, 830, 781 cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): $\delta = 3.92$ (s, 3 H), 7.01 (dd, J = 8.2, 2.4 Hz, 1 H), 7.42 (t, J = 8.0 Hz, 1 H), 7.51 (t, J = 8.0 Hz, 1 H), 7.69–7.73 (m, 2 H), 7.77–7.85 (m, 3 H), 8.18 (d, J = 8.4 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 55.4, 112.7, 115.4, 119.0, 120.0, 126.3, 127.2, 127.4, 129.6, 129.7, 129.8, 136.7, 141.1, 148.2, 157.1, 160.1.

EI-MS: *m*/*z* (%) = 235 (83.5) [M⁺], 204 (100.0), 130 (97.1), 102 (53.5), 75 (38.1), 39 (49.0).

2-(2-Methoxyphenyl)quinoline (2f)

Yield: 204 mg (87%); colorless oil.

IR (KBr): 3059, 2933, 1714, 1599, 1497, 1253, 1023, 833, 757 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3 H), 7.04 (d, *J* = 8.4 Hz, 1 H), 7.13 (dt, *J* = 7.6, 0.8 Hz, 1 H), 7.42 (dt, *J* = 8.4, 2.0 Hz, 1 H), 7.53 (dt, *J* = 8.0, 1.2 Hz, 1 H), 7.70 (dt, *J* = 6.8, 1.6 Hz, 1 H), 7.82–7.90 (m, 3 H), 8.14 (d, *J* = 8.4 Hz, 1 H), 8.17 (d, *J* = 8.4 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 111.3, 121.1, 123.3, 126.0, 126.9, 127.3, 129.0, 129.5, 129.6, 130.2, 131.4, 134.9, 148.2, 157.0, 157.1.

EI-MS: m/z (%) = 235 (84.8) [M⁺], 204 (100.0), 191 (13.3), 130 (98.8), 102 (53.4), 89 (20.5), 75 (37.4), 63 (41.8), 51 (43.6), 39 (47.8).

2-(4-Chlorophenyl)quinoline (2g)

Yield: 172 mg (72%); light yellow crystals; mp 108–110 °C.

IR (KBr): 3394, 3061, 1938, 1710, 1594, 1428, 1286, 816, 786 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.55 (m, 3 H), 7.73 (t, J = 8.0 Hz, 1 H), 7.82 (d, J = 8.4 Hz, 2 H), 8.10–8.22 (m, 4 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 118.5, 126.5, 127.2, 127.5, 128.8, 129.0, 129.7, 129.8, 135.5, 137.0, 138.0, 148.2, 156.0.

EI-MS: *m*/*z* (%) = 239 (86.4) [M⁺], 204 (100.0), 176 (11.3), 102 (17.4), 88 (11.3), 75 (8.1), 40 (5.2).

2-(4-Bromophenyl)quinoline (2h)

Yield: 198 mg (70%); white solid; mp 119–121 °C.

IR (KBr): 3417, 3059, 1712, 1596, 1552, 1362, 1221, 818, 768 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.54 (dt, *J* = 7.4, 1.2 Hz, 1 H), 7.65 (dd, *J* = 6.8, 2.0 Hz, 2 H), 7.73 (dt, *J* = 6.8, 1.2 Hz, 1 H), 7.83 (dd, *J* = 7.6, 1.2 Hz, 2 H), 8.05 (dd, *J* = 6.8, 2.0 Hz, 2 H), 8.16 (d, *J* = 8.4 Hz, 1 H), 8.22 (d, *J* = 8.4 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 118.5, 123.9, 126.5, 127.2, 127.5, 129.1, 129.7, 129.9, 132.0, 137.0, 138.5, 148.2, 156.0.

EI-MS: m/z (%) = 283 (64.9) [M⁺], 204 (100.0), 176 (20.0), 149 (57.4), 102 (72.4), 75 (45.3), 50 (43.0).

2-[4-(Trifluoromethyl)phenyl]quinoline (2i)

Yield: 218 mg (80%); white solid; mp 141–142 °C.

IR (KBr): 3393, 2923, 1720, 1592, 1324, 1119, 1071, 816, 789 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.57 (t, *J* = 8.0 Hz, 1 H), 7.74–7.79 (m, 3 H), 7.84–7.90 (m, 2 H), 8.18 (d, *J* = 8.4 Hz, 1 H), 8.25–8.29 (m, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 118.6, 124.2 (q, *J* = 271.0 Hz), 125.6 (q, *J* = 4.0 Hz), 126.8, 127.4, 127.5, 127.7, 129.8, 129.9, 131.0 (q, *J* = 30.0 Hz), 137.0, 142.8, 148.2, 155.5.

EI-MS: m/z (%) = 273 (100.0) [M⁺], 204 (60.0), 101 (17.5), 76 (22.2), 69 (27.6), 50 (29.1).

2-(Naphthalen-1-yl)quinoline (2j)

Yield: 199 mg (78%); white solid; mp 95-97 °C.

IR (KBr): 3422, 3055, 1709, 1596, 1503, 1423, 1301, 837, 782 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.45–7.53 (m, 2 H), 7.60 (t, *J* = 7.6 Hz, 2 H), 7.70–7.73 (m, 2 H), 7.78 (t, *J* = 7.2 Hz, 1 H), 7.90–7.96 (m, 3 H), 8.12 (d, *J* = 8.0 Hz, 1 H), 8.23 (d, *J* = 8.4 Hz, 1 H), 8.28 (d, *J* = 8.4 Hz, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 123.3, 125.4, 125.7, 126.0, 126.6, 126.6, 127.0, 127.6, 127.8, 128.3, 129.1, 129.7, 129.8, 131.3, 134.0, 136.3, 138.7, 148.1, 159.4.

EI-MS: m/z (%) = 255 (47.9) [M⁺], 254 (100.0) [M - 1]⁺, 127 (36.0), 113 (10.7), 75 (13.0), 63 (10.4), 51 (14.4), 39 (10.6).

2-(Pyridin-3-yl)quinoline (2k)

Yield: 177 mg (86%); yellow solid; mp 69–72 °C.

IR (KBr): 3499, 3004, 1710, 1598, 1507, 1362, 1224, 839, 788 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.46 (ddd, *J* = 8.0, 4.8, 0.4 Hz, 1 H), 7.57 (td, *J* = 8.0, 1.2 Hz, 1 H), 7.76 (dt, *J* = 6.8, 1.6 Hz, 1 H), 7.85 (d, *J* = 8.4 Hz, 1 H), 7.89 (d, *J* = 8.4 Hz, 1 H), 8.18 (d, *J* = 8.4 Hz, 1 H), 8.27 (d, *J* = 8.4 Hz, 1 H), 8.50 (td, *J* = 8.0, 2.0 Hz, 1 H), 8.70 (dd, *J* = 4.8, 1.6 Hz, 1 H), 9.36 (d, *J* = 2.0 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 118.5, 123.7, 126.8, 127.4, 127.5, 129.7, 130.0, 135.0, 135.2, 137.2, 148.4, 148.7, 150.1, 154.6.

EI-MS: m/z (%) = 206 (100.0) [M⁺], 180 (35.5), 154 (10.5), 128 (31.2), 101 (16.8), 89 (24.5), 76 (33.2), 63 (21.9), 51 (62.1), 39 (21.0).

2-Methylquinoline (2l)

Yield: 113 mg (79%); colorless oil.

IR (KBr): 3390, 3055, 1716, 1658, 1602, 1504, 1425, 821, 783 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.74 (s, 3 H), 7.25 (d, *J* = 8.4 Hz, 1 H), 7.46 (t, *J* = 7.4 Hz, 1 H), 7.67 (t, *J* = 7.2 Hz, 1 H), 7.74 (d, *J* = 8.0 Hz, 1 H), 8.00–8.04 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 25.3, 121.9, 125.6, 126.4, 127.4, 128.5, 129.3, 136.1, 147.7, 158.9.

EI-MS: m/z (%) = 143 (100.0) [M⁺], 128 (17.6), 115 (25.7), 101 (10.1), 89 (11.1), 75 (16.5), 63 (16.2), 51 (21.7).

2,3-Dihydro-1*H*-cyclopenta[*b*]quinoline (2m)

Yield: 139 mg (82%); white solid; mp 59-60 °C.

IR (KBr): 3393, 3056, 1724, 1702, 1621, 1497, 1404, 862, 782 $\rm cm^{-1}.$

¹H NMR (400 MHz, $CDCl_3$): $\delta = 2.20$ (quint, J = 7.6 Hz, 2 H), 3.08 (dt, J = 7.6, 1.2 Hz, 2 H), 3.16 (t, J = 7.6 Hz, 2 H), 7.45 (dt, J = 7.6, 0.8 Hz, 1 H), 7.61 (dt, J = 8.4, 1.2 Hz, 1 H), 7.72 (d, J = 7.6 Hz, 1 H), 7.87 (s, 1 H), 8.02 (d, J = 8.4 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 23.6, 30.5, 34.5, 125.5, 127.4, 127.4, 128.3, 128.5, 130.4, 135.6, 147.4, 167.9.

EI-MS: *m*/*z* (%) = 168 (100.0) [M – 1]⁺, 140 (11.2), 115 (13.4), 89 (11.0), 84 (28.2), 63 (26.2), 51 (20.3), 39 (32.3).

1-(2-Methylquinolin-3-yl)ethanone (4a)

Yield: 152 mg (82%); yellow solid; mp 72–74 $^{\circ}$ C.

IR (KBr): 3057, 2965, 1708, 1679, 1562, 1420, 1196, 812, 780 $\rm cm^{-1}.$

Synthesis 2011, No. 13, 2066–2072 © Thieme Stuttgart · New York

¹H NMR (400 MHz, CDCl₃): δ = 2.72 (s, 3 H), 2.92 (s, 3 H), 7.56 (dt, *J* = 7.4, 1.2 Hz, 1 H), 7.79 (dt, *J* = 8.0, 1.2 Hz, 1 H), 7.86 (d, *J* = 8.0 Hz, 1 H), 8.04 (d, *J* = 8.8 Hz, 1 H), 8.48 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 29.2, 125.6, 126.6, 128.3, 128.6, 131.1, 131.7, 138.1, 148.3, 157.6, 199.9.

EI-MS: m/z (%) = 185 (62.2) [M⁺], 170 (91.7), 142 (100), 115 (31.8), 101 (13.1), 75 (10.2), 43 (11.2).

(2-Methylquinolin-3-yl)(phenyl)methanone (4b)

Yield: 183 mg (74%); white solid; mp 60–62 °C.

IR (KBr): 3421, 3059, 1718, 1617, 1591, 1553, 1222, 865, 771 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.16 (s, 3 H), 7.50–7.52 (m, 3 H), 7.60 (m, 1 H), 7.67–7.70 (m, 2 H), 7.79–7.81 (m, 1 H), 7.92 (d, *J* = 8.1 Hz, 1 H), 8.19 (d, *J* = 8.4 Hz, 1 H), 8.38 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 30.4, 126.1, 127.2, 128.4, 128.8, 129.1, 129.3, 129.5, 134.8, 140.2, 140.9, 148.3, 156.8, 203.0.

EI-MS: m/z (%) = 247 (57.9) [M⁺], 232 (100.0), 204 (35.8), 176 (17.6), 101 (17.2), 88 (12.0), 75 (37.6), 51 (44.0), 43 (79.3).

Phenyl(2-phenylquinolin-3-yl)methanone (4c)

Yield: 238 mg (77%); white solid; mp 134–136 °C.

IR (KBr): 3408, 3059, 1718, 1664, 1593, 1554, 1234, 871, 770 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 7.26–7.34 (m, 5 H), 7.47 (t, *J* = 7.4 Hz, 1 H), 7.60–7.64 (m, 3 H), 7.71 (dd, *J* = 8.4, 1.2 Hz, 2 H), 7.84 (dt, *J* = 7.2, 1.2 Hz, 1 H), 7.90 (d, *J* = 8.0 Hz, 1 H), 8.25 (d, *J* = 8.8 Hz, 1 H), 8.34 (s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 125.8, 127.3, 128.1, 128.4, 128.4, 128.8, 129.3, 129.6, 130.0, 131.2, 132.8, 133.3, 137.0, 137.6, 139.6, 148.3, 157.4, 196.9.

EI-MS: m/z (%) = 309 (12.3) [M⁺], 280 (32.1), 232 (17.4), 105 (32.5), 77 (100), 51 (59.7).

Ethyl 2-Methylquinoline-3-carboxylate (4d)

Yield: 211 mg (98%); brown solid; mp 65-66 °C.

IR (KBr): 3407, 3050, 1718, 1620, 1560, 1278, 1064, 870, 782 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 1.45 (t, *J* = 7.2 Hz, 3 H), 3.00 (s, 3 H), 4.44 (q, *J* = 7.2 Hz, 2 H), 7.53 (t, *J* = 7.6 Hz, 1 H), 7.77 (t, *J* = 7.6 Hz, 1 H), 7.85 (d, *J* = 8.0 Hz, 1 H), 8.04 (d, *J* = 8.4 Hz, 1 H), 8.72 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 25.6, 61.3, 123.9, 125.7, 126.4, 128.4, 128.5, 131.6, 139.8, 148.5, 158.4, 166.5.

EI-MS: m/z (%) = 215 (95.9) [M⁺], 187 (16.4), 169 (100.0), 142 (65.3), 115 (29.4), 101 (15.6), 75 (11.0).

Ethyl 2-Oxo-1,2-dihydroquinoline-3-carboxylate (4e) Yield: 161 mg (74%); yellow solid; mp 162–164 °C.

IR (KBr): 3446, 3009, 1729, 1620, 1565, 1483, 1210, 874, 797 $\rm cm^{-1}.$

¹H NMR (400 MHz, DMSO): $\delta = 1.29$ (t, J = 6.8 Hz, 3 H), 4.26 (q, J = 6.8 Hz, 2 H), 7.21 (dt, J = 8.0, 1.2 Hz, 1 H), 7.31 (d, J = 8.4 Hz, 1 H), 7.59 (dt, J = 8.0, 1.2 Hz, 1 H), 7.80 (dd, J = 8.0, 0.8 Hz, 1 H), 8.47 (s, 1 H), 12.02 (s, 1 H).

¹³C NMR (100 MHz, DMSO): δ = 14.1, 60.7, 115.0, 117.7, 122.2, 123.4, 129.4, 132.6, 140.1, 143.5, 158.5, 164.4.

EI-MS: m/z (%) = 217 (37) [M⁺], 172 (36.7), 145 (100.0), 116 (24.2), 89 (23.0), 44 (27.8), 40 (63.9).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

Acknowledgment

We thank the National Natural Science Foundation of China (Grant No. 20702023) and Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (Grant No. YR2010007) for financial support.

References

- Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. *Org. Lett.* 2005, 7, 763; and references cited therein.
- (2) (a) Scott, T. L.; Soderberg, B. C. G. *Tetrahedron* 2003, *59*, 6323. (b) Cenini, S.; Bettettini, E.; Fedele, M.; Tollari, S. *J. Mol. Catal. A: Chem.* 1996, *111*, 37. (c) Akazome, M.; Kondo, T.; Watanabe, Y. *J. Org. Chem.* 1994, *59*, 3375.
- (3) Ma, Y.; Zhang, Y. J. Chem. Res., Synop. 2001, 108.
- (4) Shi, D.; Rong, L.; Wang, J.; Zhuang, Q.; Wang, X.; Tu, S.; Hu, H. J. Chem. Res., Synop. 2003, 342.
- (5) Wang, X.; Zhang, Y. Synth. Commun. 2002, 32, 3627.
- (6) (a) Han, R.; Chen, S.; Lee, S. J.; Qi, F.; Wu, X.; Kim, B. H. *Heterocycles* 2006, 68, 1675. (b) Jiang, H.; Qi, F.; Wu, X.; Han, R. *Huaxue Shiji* 2008, 30, 295.
- (7) (a) Barros, A. I. N. A.; Silva, A. M. S. *Tetrahedron Lett.* **2003**, *44*, 5893. (b) Barros, A. I. N. A.; Dias, A. F. R.; Silva, A. M. S. *Monatsh. Chem.* **2007**, *138*, 585.
- (8) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. *Tetrahedron Lett.* **2007**, *48*, 7870.
- (9) Baik, W.; Kim, D. I.; Lee, H. J.; Chung, W. J.; Kim, B. H.; Lee, S. W. *Tetrahedron Lett.* **1997**, *38*, 4579.
- (10) (a) Yamane, Y.; Liu, X.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunaga, M. *Org. Lett.* **2009**, *11*, 5162.
 (b) Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A. *J. Phys. Chem. C* **2009**, *113*, 17803.
 (c) Liang, M.; Wang, X.; Liu, H.; Liu, H.; Wang, Y. *J. Catal.* **2008**, *255*, 335. (d) Zhao, S.; Liang, H.; Zhou, Y. *Catal. Commun.* **2007**, *8*, 1305; and references cited therein.
- (11) (a) Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M. *J. Med. Chem.* **2003**, *46*, 2436. (b) Bellamy, F. D.; Ou, K. *Tetrahedron Lett.* **1984**, *25*, 839. (c) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. J. Org. Chem. **2007**, *72*, 9857.
- (12) (a) Rahaim, R. J.; Maleczka, R. E. Org. Lett. 2005, 7, 5087.
 (b) Rahaim, R. J.; Maleczka, R. E. Synthesis 2006, 3316.
 (c) Noronha, R. G.; Romao, C. C.; Fernandes, A. C. J. Org. Chem. 2009, 74, 6960; and references cited therein.
- (13) Saha, A.; Ranu, B. J. Org. Chem. 2008, 73, 6867.
- (14) (a) Fukuzumi, S.; Chiba, M.; Tanaka, T. J. Chem. Soc., Chem. Commun. 1989, 941. (b) Fukuzumi, S.; Tokuda, Y. Bull. Chem. Soc. Jpn. 1992, 65, 831.
- (15) (a) Shen, X. X.; Liu, Q.; Xing, R. G.; Zhou, B. Catal. Lett.
 2008, 126, 361. (b) Liu, Q.; Li, J.; Shen, X. X.; Xing, R. G.; Yang, J.; Liu, Z. G.; Zhou, B. Tetrahedron Lett. 2009, 50, 1026. (c) Meng, Q. Y.; Liu, Q.; Li, J.; Xing, R. G.; Shen, X. X.; Zhou, B. Synlett 2009, 3283. (d) Zhao, Y. K.; Liu, Q.; Li, J.; Liu, Z. G.; Zhou, B. Synlett 2010, 1870. (e) Xing, R. G.; Li, Y. N.; Liu, Q.; Meng, Q. Y.; Li, J.; Shen, X. X.; Zhou, B.; Yao, X. J.; Liu, Z. L. Eur. J. Org. Chem. 2010, 6627.

Synthesis 2011, No. 13, 2066-2072 © Thieme Stuttgart · New York

(16) (a) Yang, J. W.; Fonseca, M. T. H.; List, B. Angew. Chem. Int. Ed. 2004, 43, 6660. (b) Yang, J. W.; Fonseca, M. T. H.; Vignola, N.; List, B. Angew. Chem. Int. Ed. 2005, 44, 108.
(c) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32. (d) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193. (e) Tuttle, J. B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 12662. (f) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368. (g) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976. (h) Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.

- (17) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. **2006**, *45*, 3683.
- (18) (a) Liu, Z.; Han, B.; Liu, Q.; Zhang, W.; Yang, L.; Liu, Z. L.; Yu, W. Synlett 2005, 1579. (b) Liu, Z.; Liu, Q.; Zhang, W.; Mu, R.; Yang, L.; Liu, Z. L.; Yu, W. Synthesis 2006, 771.
 (c) Garden, S. J.; Guimaraes, C. R. W.; Correa, M. B.; Oliveira, C. A. F.; Pinto, A. C.; Alencastro, R. B. J. Org. Chem. 2003, 68, 8815.
- (19) Austin, M.; Egan, O. J.; Tully, R.; Pratt, A. C. Org. Biomol. Chem. 2007, 5, 3778.
- (20) Smith, C. D.; Rosocha, G.; Mui, L.; Batey, R. A. J. Org. *Chem.* **2010**, *75*, 4716.