Zeitschrift für anorganische und allgemeine Chemie

© Johann Ambrosius Barth 1997

Eigenschaften und Reaktionen von Tris(2,6-difluorphenyl)bismut(III)- und Tris(2,6-difluorphenyl)bismut(V)-Verbindungen

T. Lewe, D. Naumann*, G. Nowicki, H. Schneider und W. Tyrra

Köln, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 3. Juli 1996.

Professor Joseph Grobe zum 65. Geburtstag gewidmet

Inhaltsübersicht. $(2,6-F_2C_6H_3)_3BiF_2$ und $(2,6-F_2C_6H_3)_3BiCl_2$ werden durch Oxidation von $(2,6-F_2C_6H_3)_3Bi$ mit XeF_2 bzw. Cl_2 dargestellt, während die Direktfluorierung zu einer Oxidation des aromatischen Systems führt. $(2,6-F_2C_6H_3)_3BiCl_2$ wird auch durch die Umsetzung von $(2,6-F_2C_6H_3)_3BiF_2$ mit $(CH_3)_3SiCl$ erhalten. Oxidationsversuche von $(2,6-F_2C_6H_3)_3Bi$ mit Br_2 , I_2 und ICl ergeben $(2,6-F_2C_6H_3)X$ und BiX_3' (X=Br, I; X'=Cl, Br, I). Die Umsetzung von $(2,6-F_2C_6H_3)_3Bi$ mit IF_5 führt zur Bildung von IE_5 0 mit IE_5 1 mit IE_5 1 führt zur Bildung von IE_5 1 und IE_5 2 mit IE_5 3 mit IE_5 4 führt zur Bildung von IE_5 5 mit IE_5 6 mit IE_5 6 mit IE_5 6 mit IE_5 6 mit IE_5 7 mit zur Bildung von IE_5 8 mit IE_5 8 mit IE_5 9 mi

 $F_2C_6H_3)IF_4.\ (2,6-F_2C_6H_3)_3Bi(OCOCF_3)_2$ bzw. $(2,6-F_2C_6H_3)_3Bi(OSO_2CF_3)_2$ werden durch Ligandenaustauschreaktionen von $(2,6-F_2C_6H_3)_3BiF_2$ mit $(CH_3)_3SiOR$ oder von $(2,6-F_2C_6H_3)_3BiCl_2$ mit AgOR gebildet $(R=COCF_3,\,SO_2CF_3).$ Die Syntheseverfahren und Eigenschaften der neuen Verbindungen werden beschrieben. Durch Transmetallierungsreaktionen von $(2,6-F_2C_6H_3)_3Bi$ mit Te und Sb werden $(2,6-F_2C_6H_3)_3Sb$ und $(2,6-F_2C_6H_3)_2Te$ dargestellt.

Properties and Reactions of Tris(2,6-difluorophenyl)bismuth(III) and Tris(2,6-difluorophenyl)bismuth(V) Derivatives

Abstract. $(2,6-F_2C_6H_3)_3BiF_2$ and $(2,6-F_2C_6H_3)_3BiCl_2$ are prepared oxidizing $(2,6-F_2C_6H_3)_3Bi$ with XeF₂ or Cl₂, respectively, while direct fluorination effects the oxidation of the aromatic system. The reaction of $(2,6-F_2C_6H_3)_3BiF_2$ with $(CH_3)_3SiCl$ yields $(2,6-F_2C_6H_3)_3BiCl_2$. Attempts to oxidize $(2,6-F_2C_6H_3)_3Bi$ with Br₂, I₂, and ICl give $(2,6-F_2C_6H_3)X$ and BiX'₃ (X = Br, I; X' = Cl, Br, I). The reaction of $(2,6-F_2C_6H_3)_3Bi$ with IF₅ gives BiF₃ and $(2,6-F_2C_6H_3)IF_4$. $(2,6-F_2C_6H_3)_3Bi(OCOCF_3)_2$ and $(2,6-F_2C_6H_3)_3Bi(OSO_2CF_3)_2$ are formed via ligand exchange reactions of $(2,6-F_2C_6H_3)_3BiF_2$

with $(CH_3)_3SiOR$ or of $(2,6-F_2C_6H_3)_3BiCl_2$ with AgOR $(R = COCF_3, SO_2CF_3)$. The preparations and properties of the new compounds are described. $(2,6-F_2C_6H_3)_3Sb$ and $(2,6-F_2C_6H_3)_2$ Te are prepared by the transmetalation reactions of $(2,6-F_2C_6H_3)_3Bi$ with Sb and Te.

Keywords: tris(2,6-difluorophenyl)bismuth dihalides, tris-(2,6-difluorophenyl)bismuth bis(trifluoromethanesulfonate), tris(2,6-difluorophenyl)bismuth bis(trifluoroacetate), 2,6-difluorophenyliodine tetrafluoride, synthesis, NMR

Einleitung

Während Triarylbismut(III)- und -(V)-Derivate mit verschiedenen Substituenten zum Teil bereits vor Be-

Prof. Dr. D. Naumann Institut für Anorganische Chemie Universität Köln Greinstr. 6 D-50939 Köln ginn dieses Jahrhunderts synthetisiert wurden [1, 2], sind Derivate mit per- und polyfluorierten Arylgruppen bisher nur unzureichend untersucht worden. Tris(pentafluorphenyl)bismut, $(C_6F_5)_3$ Bi, wurde durch Metathesereaktionen ausgehend von Bismuthalogeniden und Mg (C_6F_5) Br [3, 4] oder Cd $(C_6F_5)_2 \cdot$ Diglyme [5] dargestellt. Untersuchungen zur Oxidierbarkeit von $(C_6F_5)_3$ Bi ergaben, daß nur XeF $_2$ [6, 7] und [FXe][MF $_6$] (M = As, Sb, Ta) [7] einen selektiven Zugang zu Tris(pentafluorphenyl)bismut(V)-Derivaten erlauben. Umsetzungen von $(C_6F_5)_3$ Bi mit den Halo-

^{*} Korrespondenzadresse:

genen Chlor, Brom und Iod sowie den Interhalogenverbindungen ICl [7] und IF₅ [7, 8] führen zu Halogenpentafluorbenzolen beziehungsweise $C_6F_5IF_4$ sowie den entsprechenden Bismuthalogeniden. Dies steht im Kontrast zu den Ergebnissen zur einfachen Oxidierbarkeit von $(R-C_6H_4)_3Bi$ [1] und den leichteren Homologen, $(C_6F_5)_3As$ und $(C_6F_5)_3Sb$ [9–12].

Basierend auf unseren Ergebnissen zur Darstellung von Fluorphenylbismut(III)-Derivaten [13] wird hier das Reaktionsverhalten von (2,6-F₂C₆H₃)₃Bi an einigen Beispielen beschrieben.

Ergebnisse

Transmetallierungsreaktionen mit $(2,6-F_2C_6H_3)_3Bi$

(C₆H₅)₃Bi und (C₆F₅)₃Bi reagieren mit einer Reihe von Metallen und Nichtmetallen zu den jeweiligen Phenyl- bzw. Pentafluorphenyl-Verbindungen und elementarem Bismut [4, 14–17]. (CF₃)₃Bi überträgt in Abhängigkeit von den Donatoreigenschaften des Lösungsmittels den Trifluormethylliganden mit hohem Umsatz auf Zink, Cadmium, Gallium, Indium, Zinn und Tellur unter Bildung der jeweiligen Trifluormethylelement-Verbindungen und elementaren Bismuts [18].

Die Möglichkeit, auch (2,6-F₂C₆H₃)₃Bi als Transmetallierungsreagenz einzusetzen, wird exemplarisch an Umsetzungen mit elementarem Antimon und Telund demonstriert. $(2,6-F_2C_6H_3)_2$ Te F₂C₆H₃)₃Sb werden durch Erhitzen der Elemente mit $(2,6-F_2C_6H_3)_3$ Bi bei 150°C nach 4 Tagen (Sb) bzw. 160 °C nach 11 Tagen (Te) erhalten. Die Verbindungen werden isoliert und durch Zumischen der reinen Verbindungen ¹⁹F-NMR-spektroskopisch identifiziert. Neben den Signalen der F2,6-Atome des Edukts ((2,6-F₂C₆H₃)₃Bi) und der Produkte ((2,6-F₂C₆H₃)₂Te; (2,6-F₂C₆H₃)₃Sb) werden in den ¹⁹F-NMR-Spektren Signale geringer Intensität (<1%) beobachtet, die nicht zugeordnet werden können. Das Auftreten von 2,2',6,6'-Tetrafluorbiphenyl und fluorierter Polyphenyl-Verbindungen wird nicht beobachtet.

$$(2,6-F_2C_6H_3)_3Bi + Sb \xrightarrow{\Delta} (2,6-F_2C_6H_3)_3Sb + Bi$$

 $2(2,6-F_2C_6H_3)_3Bi + 3 Te \xrightarrow{\Delta} 3(2,6-F_2C_6H_3)_2Te + 2 Bi$

Oxidationsreaktionen von $(2,6-F_2C_6H_3)_3Bi$

Verbindungen des Typs $(C_6H_5)_3BiX_2$ (mit X=F, Cl, Br) lassen sich durch Oxidation von $(C_6H_5)_3Bi$ mit den Halogenen darstellen [1]. Dagegen wird $(C_6F_5)_3Bi$ von den Halogenen Cl_2 , Br_2 , I_2 oder von Interhalogen-Verbindungen nicht oxidiert [7]. Stattdessen wird in einer polaren Reaktion der Pentafluorphenylligand bevorzugt auf das positivierte Halogenatom übertragen. Erst bei Einsatz eines starken Fluorierungsmittels wie XeF_2 oder $[FXe][MF_6]$ (M=As, Sb, Ta) wird $(C_6F_5)_3BiF_2$ gebildet [6, 7]. Eine direkte Oxidation

von $(C_6F_5)_3$ Bi zu $(C_6F_5)_3$ BiF₂ mit elementarem Fluor, wie sie für $(C_6F_5)_3$ As und $(C_6F_5)_3$ Sb beschrieben wird [12], gelingt unter vergleichbaren Bedingungen nicht, sondern führt zu einer Oxidation des aromatischen Systems [19]. $(C_6F_5)_3$ BiCl₂ wird durch die Reaktion von $(C_6F_5)_3$ BiF₂ mit $(CH_3)_3$ SiCl dargestellt [20].

(2,6-F₂C₆H₃)₃Bi zeigt bei Umsetzungen mit verschiedenen Oxidationsmitteln ein ähnliches Reaktionsverhalten wie (C₆F₅)₃Bi [7, 8]. Die Reaktionen mit Halogenen und Interhalogen-Verbindungen, wie Br₂, I₂ oder ICl, führen in Abhängigkeit von dem Verhältnis der eingesetzten Edukte zur Bildung der jeweiligen 1-Halogen-2,6-Difluorbenzole und der entsprechenden Bismut(III)-halogenide. Werden die Halogene bzw. Interhalogen-Verbindungen im Unterschuß zugesetzt, werden spektroskopische Hinweise auf die Bildung gemischter Fluorphenylbismut(III)-halogenide gefunden.

Die Umsetzung mit elementarem Fluor $(F_2/N_2\text{-Verhältnis}\ 1:20, -78\,^\circ\text{C}, \text{CCl}_3\text{F})$ führt nicht zu einer selektiven Bildung des Triarylbismutdifluorids. Bei der Fluorierung kommt es neben der Oxidation von $(2,6-F_2C_6H_3)_3\text{Bi}\ z$ u $(2,6-F_2C_6H_3)_3\text{Bi}F_2$ zu einer Fluorierung des Phenylringes und zur Aufhebung des aromatischen Charakters. In den $^{19}\text{F-NMR-Spektren}$ sind im Bereich um -80,0 ppm und von -107,0 ppm bis -112,0 ppm mehrere Multipletts zu erkennen, die auf teilfluorierte Cyclohexadienyl- und Cyclohexyl-Derivate hindeuten. Auch im Bereich der Resonanzen der F2,6-Atome von $(2,6-F_2C_6H_3)_3\text{Bi}$ und $(2,6-F_2C_6H_3)_3\text{Bi}F_2$ treten mehrere Signale auf. Dies weist auf Bi-C-Bindungsspaltungen unter Bildung von $(2,6-F_2C_6H_3)_{3-x}\text{Bi}F_x$ hin.

Die selektive Oxidation von $(2,6-F_2C_6H_3)_3$ Bi gelingt dagegen bei der Fluorierung mit Xenondifluorid bzw. bei der Chlorierung mit elementarem Chlor $(Cl_2/N_2-Verhältnis 1:5, -40 °C, CCl_3F)$.

(2,6-F₂C₆H₃)₃BiF₂ entsteht bei der Umsetzung von (2,6-F₂C₆H₃)₃Bi in CH₃CN oder CH₂Cl₂ mit einem Überschuß an XeF₂ als licht-, luft- und hydrolyseunempfindlicher Feststoff in 78,6%iger Ausbeute. Die Reaktion ist innerhalb von 10 Tagen bei Raumtemperatur beendet. Tris(2,6-difluorphenyl)bismutdifluorid löst sich gut in CHCl₃, CH₂Cl₂, CH₃CN, DMF, Toluol, CH₃NO₂ und THF. In n-Hexan und anderen längerkettigen Alkanen liegt die Löslichkeit unterhalb der

¹⁹F-NMR-spektroskopischen Erfassungsgrenze. Bei der thermischen Zersetzung oberhalb 207 °C entstehen BiF₃, (2,6-F₂C₆H₃)₃Bi, (F₂C₆H₃)₂, C₆H₃F₃ und Bi. Im Massenspektrum wird der Molpeak beobachtet.

(2,6-F₂C₆H₃)₃BiCl₂ entsteht bei der Chlorierung von (2,6-F₂C₆H₃)₃Bi mit elementarem Chlor bei -40 °C in CCl₃F in 4 Stunden in nahezu quantitativer Ausbeute (94,2%). Tris(2,6-difluorphenyl)bismutdichlorid löst sich gut in aromatischen Lösungsmitteln wie Toluol, Nitrobenzol und Benzol, hingegen nur mä-Big in Solventien wie CHCl3, CH2Cl2, CH3CN und THF. In DMSO wird eine Zersetzung zu (2,6-F₂C₆H₃)₃Bi und Chlor beobachtet. Als Feststoff zersetzt sich (2,6-F₂C₆H₃)₃BiCl₂ oberhalb von 131 °C in BiCl₃, (2,6-F₂C₆H₃)₃Bi, (F₂C₆H₃)₂ und Bi. Im Massenspektrum wird als Peak größter Masse der von [(F₂C₆H₃)₃BiCl]⁺ gefunden. Die Verbindung ist extrem hydrolyseempfindlich. Bei Zugabe einer äquimolaren Menge an H₂O erfolgt schnelle und quantitative Hydrolyse zu (2,6-F₂C₆H₃)₃BiO und HCl.

Eine alternative Darstellungsmethode für $(2,6-F_2C_6H_3)_3$ BiCl₂ ist die Umsetzung von $(2,6-F_2C_6H_3)_3$ BiF₂ mit $(CH_3)_3$ SiCl in CH_2 Cl₂:

 $(2,6-F_2C_6H_3)_3BiF_2 + 2(CH_3)_3SiCl$

$$\xrightarrow{\text{CH}_2\text{Cl}_2}$$
 (2,6-F₂C₆H₃)₃BiCl₂ + 2(CH₃)₃SiF

Im 19 F-NMR-Spektrum von $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{BiF}_2$ in CD₃CN wird ortho-Fluor bei -98,0 ppm, Fluorid bei -75,5 ppm detektiert. Die Resonanz der ortho-Fluor-Atome von $(C_6\text{F}_5)_3\text{BiF}_2$ $(\delta(\text{F2},6)$ -126,9 ppm, CH₃CN [7]) ist um ca. 10 ppm gegenüber der von $(C_6\text{F}_5)_3\text{Bi}$ $(\delta(\text{F2},6)$ -117,5 ppm, CH₃CN [5, 8]) zu höherem Feld verschoben. Ein vergleichbarer Shifteffekt wird auch für die Resonanzen der F2,6-Atome von $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{BiF}_2$ $(\delta(\text{F2},6)$ -98,0 ppm, CD₃CN) und $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{Bi}$ $(\delta(\text{F2},6)$ -89,9 ppm, CD₃CN [13]) gefunden. Hier ist die Resonanz der F2,6-Atome des $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{BiF}_2$ verglichen mit der des $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{Bi}$ um ca. 8 ppm zu hohem Feld verschoben.

Die ¹⁹F-NMR-Verschiebungen von (C₆F₅)₃BiF₂ zeigen in Abhängigkeit von der Donatorstärke des Lösungsmittels signifikante Änderungen. Mit zunehmender Donatorzahl wird die BiF2-Resonanz von -64.1 ppm (CDCl₃, DN = 0 [21]) über -59.0 ppm $(CH_3CN, DN = 14,1 [21])$ zu -51,1 ppm $(DMF-d_7,$ DN(DMF) = 24,0 [21]) zu tiefem Feld verschoben. Gleichzeitig wird eine Hochfeldverschiebung der F2,6-Resonanzen mit zunehmender Donatorstärke des Lösungsmittels beobachtet. Dieser Effekt wird ebenfalls bei (2,6-F₂C₆H₃)₃BiF₂ in abgeschwächter Form beobachtet (s. Tabelle 1) und kann als Hinweis auf die geringere Lewis-Acidität von (2,6-F₂C₆H₃)₃BiF₂ verglichen mit (C₆F₅)₃BiF₂ gewertet werden. Die ¹⁹F-NMR-Verschiebung der beiden ortho-Fluor-Atome von Tris(2,6-difluorphenyl)bismut-dichlorid wird mit δ – 98,7 ppm (CD₃CN) in demselben Bereich beobachtet. Eine signifikante Abhängigkeit der chemischen Verschiebung von der Art des Lösungsmittels wird für das Dichlorid nicht beobachtet (s. Tabelle 1).

Im 13 C{ 1 H}-NMR-Spektrum von $(2,6\text{-}F_{2}\text{C}_{6}\text{H}_{3})_{3}\text{BiF}_{2}$ wird das ipso-Kohlenstoff-Atom bei 129,5 ppm (DMF-d₇) detektiert. Es erscheint damit etwa 4 ppm zu tieferem Feld verschoben als das C1-Atom von $(2,6\text{-}F_{2}\text{C}_{6}\text{H}_{3})_{3}\text{Bi}$ ($\delta(\text{C1})$ 125,3 ppm, THF-d₈). Die Resonanz des C1-Atoms von $(2,6\text{-}F_{2}\text{C}_{6}\text{H}_{3})_{3}\text{Bi}\text{Cl}_{2}$ wird vermutlich aufgrund des hohen Quadrupolmomentes des Bi-Atoms (Q = $-0.4 \cdot 10^{-28}$ m 2 [22]) und der geringen Löslichkeit der Verbindung in CDCl₃ nicht beobachtet.

Darstellung und Charakterisierung von $(2,6-F_2C_6H_3)IF_4$

Pentavalente Aryliod-Verbindungen sind seit Ende des vergangenen Jahrhunderts bekannt und auf unterschiedlichen Wegen synthetisiert worden [23]. Für die Synthese von Aryliodtetrafluoriden wurden drei prinzipielle Wege beschrieben:

- 1. die Fluorierung eines Iodbenzols mit ClF₃ oder XeF₂;
- 2. die Fluorierung von Iodylbenzolen mit SF₄;
- 3. die Substitutionsreaktionen an IF₅ mit Arylsilicium-Verbindungen [24].

Tabelle 1 Vergleich der ¹⁹F-NMR-chemischen Verschiebungen einiger Bismut(V)-Verbindungen

Verbindung	δ (F2,6)/ppm	$\delta({\rm BiF_2})/{\rm ppm}$	Lsgm.	Lit.
$(C_6H_5)_3BiF_2$		-158,7	CH ₂ Cl ₂	[8]
$(C_6F_5)_3BiF_2$	-129,9	-51,1	DMF-d ₇	[7]
(0 3/3 2	-126,9	-59,0	CH ₃ CN	[7]
	-125,8	-64,1	$CDCl_3$	[7]
$(2,6-F_2C_6H_3)_3BiF_2$	-99,4	-74,1	DMF-d ₇	
() 2 0 0,0 1	-98,0	-75,5	CD_3CN	
	-97,9	-81,3	$CDCl_3$	
$(2,6-F_2C_6H_3)_3BiCl_2$	-99,1		DMF-d ₇	
2 3 6/2	-98,7		CD_3CN	
	-98,4		$CDCl_3$	
$(2,6-F_2C_6H_3)_3Bi(OCOCF_3)_2^a)$	-96,8		$CDCl_3$	
$(2,6-F_2C_6H_3)_3Bi(OSO_2CF_3)_2^{b})$	-98,8		$THF-d_8$	

a) $\delta(CF_3)$ -75,7 ppm; b) (CF_3) -78,7 ppm

Eine weitere Möglichkeit der Darstellung von Fluoraryliodtetrafluoriden bildet die nukleophile Fluor-Aryl-Substitution an IF₅ durch Arylbismut-Derivate. 1986 und 1989 wurde bereits über die Bildung von $C_6F_5IF_4$ durch die Umsetzung von $(C_6F_5)_3Bi$ mit Iodpentafluorid berichtet [5, 7]. Die Kristallstruktur von $C_6F_5IF_4$ wurde von *Frohn* et al. bestimmt [25].

Analog zu den Umsetzungen von $(CF_3)_3Bi$ und $(C_6F_5)_3Bi$ mit IF_5 zu CF_3IF_4 bzw. $C_6F_5IF_4$ und BiF_3 [5, 7] reagiert $(2,6-F_2C_6H_3)_3Bi$ in siedendem Acetonitril innerhalb von 8 Stunden mit IF_5 quantitativ zu $(2,6-F_2C_6H_3)IF_4$ und BiF_3 . In den ¹⁹F-NMR-Spektren der Reaktionsmischung werden keine Fluorphenylbismutfluoride vom Typ R_nBiF_{3-n} (mit n=1 oder 2) detektiert. Die Ausbeute an $(2,6-F_2C_6H_3)IF_4$ beträgt nach Reinigung und Umkristallisation aus CH_2Cl_2 88,3%.

$$3\, IF_5 + (2,\!6\text{-}F_2C_6H_3)_3Bi \xrightarrow[82^{\circ}C]{CH_3CN} 3(2,\!6\text{-}F_2C_6H_3)IF_4 + BiF_3$$

(2,6-F₂C₆H₃)IF₄ zersetzt sich bei 113 °C spontan in elementares Iod, 1-Iod-2,6-difluorbenzol und weitere Zersetzungsprodukte, die nicht eindeutig identifiziert werden können. Differentialthermoanalyse/Thermogravimetrie-Messungen von 2,6-Difluorphenyliodtetrafluorid zeigen bei dieser Temperatur ein exothermes Maximum.

Im ¹⁹F-NMR-Spektrum sind die Signale der F2,6-Atome bei $\delta - 10\overline{7}$,2 ppm (CDCl₃, 21 °C) als Dublett eines Multipletts $({}^{4}J({}^{19}F-{}^{19}F) = 24 \text{ Hz}, {}^{3}J({}^{19}F-{}^{1}H) =$ 5 Hz) zu erkennen. Verglichen mit den beiden ortho-Fluor-Atomen des Pentafluorphenyl-iodtetrafluorids $(\delta(F2,6) -130,1 \text{ ppm}, CD_2Cl_2, 21 ^{\circ}C [8, 25])$ kommt es wie erwartet zu einem Tieffeldshift der Signale. Direkt an Iod gebundenes Fluor wird bei δ –18,5 ppm als Triplett $({}^{4}J({}^{19}F_{-}{}^{19}F) = 24 \text{ Hz})$ gefunden (vgl. $C_{6}F_{5}IF_{4}$ $\delta(IF_4)$ –9,0 ppm). Im EI-Massenspektrum (20 eV, 150 °C) wird bei m/z = 316 (2%) der Molpeak von (2,6-F₂C₆H₃)IF₄ beobachtet. Aufgrund der Hydrolyseempfindlichkeit von (2,6-F₂C₆H₃)IF₄ erscheinen im Massenspektrum neben den charakteristischen Fragmenten für (2,6-F₂C₆H₃)IF₄ auch die Ionen (2,6- $F_2C_6H_3)IOF_2^+$ und $(2,6-F_2C_6H_3)IOF^+$.

Tabelle 2 ¹³C-NMR-Daten von Triarylbismut-Verbindungen

Verbindung	C1	C2,6	C3,5	C4	CF ₃	Lsgm.
$(C_6H_5)_3Bi^a), b$	156,6	138,2	131,2	128,4		CD ₃ CN
$(C_6H_5)_3BiCl_2^a$, b)	157,4	135,1	132,9	132,8		CD ₃ CN
$(2,6-F_2C_6H_3)_3Bi^b),^c)$	125,3	166,9	111,4	132,5		THF-d ₈
$(2,6-F_2C_6H_3)_3BiF_2^b)$	129,5	162,0	113,4	137,0		DMF-d ₇
$(2,6-F_2C_6H_3)_3BiCl_2^{\ b})$	g)	161,0	113,2	135,0		CDCl ₃
$(2,6-F_2C_6H_3)_3Bi(OCOCF_3)_2^b)$	131,2	161,9	113,4	136,2	114,8 ^h)	CDCl ₃
$(2,6-F_2C_6H_3)_3Bi(OSO_2CF_3)_2^b)$	130,8	161,0	113,3	137,0	120.6	DMF-d ₇
$(C_6F_5)_3Bi^d), e)$	119,8	138,8	148,1	142,9	-,-	CH ₃ CN
$(C_6F_5)_3BiF_2^e, f$	126,5	139,8	146,8	146,2		CH ₃ CN
$(C_6F_5)_3BiCl_2^i), j$	132,2	138,2	145,6	145,1		CDCl ₃

a) siehe [42]; b) $^{13}C\{^{1}H\}$ -NMR-Spektrum; c) siehe [13]; d) siehe [8]; e) ^{13}C -NMR-Spektrum; f) siehe [7]; g) wird nicht detektiert; h) $\delta(CO_2)$ 160,2 ppm; h) $^{13}C\{^{19}F\}$ -NMR-Spektrum; j) siehe [20]

Ligandenaustauschreaktionen an $(2,6-F_2C_6H_3)_3BiX_2$

Verschiedene Wege zur Darstellung von Triphenylbismutdiacetaten wurden bereits beschrieben [26, 27]. Die Darstellung erfolgt zum Beispiel durch Umsetzung von Triphenylbismutdichloriden mit Silberacetaten [27]. Für die Darstellung von Triarylbismutdiorganosulfonaten wurde die Umsetzung von Triarylbismutcarbonaten mit Aryl- bzw. Alkylsulfonsäuren beschrieben. So stellten Rüther et al. 1986 u.a. $(C_6H_5)_3$ Bi $(OSO_2CF_3)_2$ dar [28]. Alternative Synthesewege wurden in jüngster Zeit von Niyogi et al. [29] und Jiang et al. [30] veröffentlicht.

Tris(2,6-difluorphenyl)bismutbis(trifluoracetat) und -bis(trifluormethansulfonat) werden durch die Reaktionen von $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{BiF}_2$ mit $(\text{CH}_3)_3\text{SiOR}$ oder $(2,6\text{-}F_2\text{C}_6\text{H}_3)_3\text{BiCl}_2$ mit AgOR $(R = \text{COCF}_3, \text{SO}_2\text{CF}_3)$ dargestellt.

$$(2,6-F_{2}C_{6}H_{3})_{3}BiF_{2} + \frac{2 (CH_{3})_{3}SiOR}{2 (CH_{3})_{3}SiF} + 20 °C$$

$$(2,6-F_{2}C_{6}H_{3})_{3}BiCI_{2} + \frac{2 AgOR}{2 AgCI}$$
RT
$$(2,6-F_{2}C_{6}H_{3})_{3}BiCI_{2} + \frac{2 AgOR}{2 AgCI}$$

Die Umsetzungen verlaufen bei –20 °C (Silylester) bzw. bei Raumtemperatur (Silbersalze) quantitativ. Die Reinigung und die Isolierung der Reaktionsprodukte gelingt problemlos durch Abkondensation des Lösungsmittels und (CH₃)₃SiF im Hochvakuum bei Raumtemperatur bzw. nach Filtration des AgCl und Abkondensation des Solvens.

(2,6-F₂C₆H₃)₃Bi(OCOCF₃)₂ ist ein farbloser, lichtstabiler Feststoff. Bei Zusatz äquimolarer Mengen Wasser stellt sich ein Gleichgewicht zwischen dem Trifluoracetat sowie (2,6-F₂C₆H₃)₃BiO und HOCOCF₃ ein. Die Verbindung löst sich gut in polaren organischen Lösungsmitteln. In unpolaren Lösungsmitteln wird nur eine geringe Löslichkeit beobachtet. Tris(2,6-difluorphenyl)bismutbis(trifluoracetat) zersetzt sich ab 151 °C in (2,6-F₂C₆H₃)₃Bi, (2,6-F₂C₆H₃)₃BiO, (CF₃CO)₂O, Bi und weitere Zersetzungsprodukte, die nicht eindeutig identifiziert werden können.

2,6- $F_2C_6H_3$)₃Bi(OSO₂CF₃)₂ wird als farbloser, luft-stabiler, aber feuchtigkeitsempfindlicher Feststoff erhalten. Eine gute Löslichkeit wird in vielen gebräuchlichen organischen Lösungsmitteln, wie CH₂Cl₂, CH₃CN, Toluol, CH₃NO₂ und THF, beobachtet. Tris(2,6-difluorphenyl)bismutbis(trifluormethansulfonat) zersetzt sich ab 119 °C in $(2,6-F_2C_6H_3)_3$ BiO, $(CF_3SO_2)_2O$, Bi und weitere Zersetzungsprodukte, die nicht eindeutig identifiziert werden können.

Im 19F-NMR-Spektrum werden die Signale der bei δ –96,8 ppm F2.6-Atome (CDCl₃, $F_2C_6H_3$)₃Bi(OCOCF₃)₂) bzw. $\delta - 98.8$ ppm (THF-d₈, (2,6-F₂C₆H₃)₃Bi(OSO₂CF₃)₂) detektiert. Die Resonanz der Trifluoracetat-Gruppe wird bei $\delta(CF_3)$ – 75,7 ppm, die der Trifluormethansulfonat-Gruppe bei $\delta(CF_3)$ -78,7 ppm detektiert (s. Tabelle 1). Das ipso-Kohlenstoff-Atom des $(2,6-F_2C_6H_3)_3Bi(OCOCF_3)_2$ wird 131,2 ppm und das des bei $F_2C_6H_3)_3Bi(OSO_2CF_3)_2$ bei 130,8 ppm in den $^{13}C(^1H)$ -NMR-Spektren beobachtet.

Experimentelles

Alle Arbeiten werden unter Luft- und Feuchtigkeitsausschluß in einer trockenen Stickstoffatmosphäre durchgeführt. Die eingesetzten Lösungsmittel werden nach bekannten Methoden getrocknet [31]. Folgende Verbindungen werden nach Literaturvorschriften dargestellt: $(2,6-F_2C_6H_3)_3$ Sb (für Zumischversuche) und $(2,6-F_2C_6H_3)_3$ Bi [13], $(2,6-F_2C_6H_3)_2$ Te (für Zumischversuche) [32], XeF₂ [33] und AgOSO₂CF₃ [34]. IF₅ [35] wurde aus den Elementen dargestellt. (CH₃)₃SiOCOCF₃ (Aldrich), $(CH_3)_3$ SiOSO₂CF₃ und $(CH_3)_3$ SiOCOCF₃ (Aldrich), 1,3-F₂C₆H₄, 2,6-F₂C₆H₃Br und 2,6-F₂C₆H₃I (ABCR) werden vor dem Einsatz frisch destilliert. Alle anderen Chemikalien werden ohne weitere Reinigung eingesetzt.

NMR-Spektren. Die NMR-Spektren wurden mit den Spektrometern AMX 300 und AC 200 der Firma Bruker, Karlsruhe, registriert. Meßfrequenzen und externe Standardsubstanzen: ¹H: 300,1 MHz bzw. 200,1 MHz (TMS), ¹³C: 75,5 MHz bzw. 50,3 MHz (TMS) und ¹⁹F: 282,4 MHz bzw. 188,3 MHz (CCl₃F). Die chemische Verschiebungen sind in ppm angegeben. Negative Vorzeichen bedeuten eine Verschiebung zu hohem Feld bzw. niedriger Frequenz.

Massenspektren. Die Massenspektren wurden mit einem modifizierten Massenspektrometer CH5 der Firma Varian MAT, Bremen, aufgenommen. In den Spektren ist für jede Signalgruppe der Peak mit der größten Intensität aufgeführt.

IR-Spektren. Die Schwingungsspektren wurden mit einem Infrarot-Gitterspektrographen 580 B der Firma Perkin-Elmer, Überlingen, angefertigt. Die Aufnahme erfolgte durch Vermessen der Substanz als KBr-Preßling bzw. zwischen Nujol-Platten.

Elementaranalysen. Die Analysen wurden nach folgenden Literaturvorschriften durchgeführt: Sb [36], Bi [37], S [38], I [39], F [40] und Cl [41].

Molmassenbestimmungen. Die Molmassenbestimmungen erfolgten mit Hilfe eines Dampfdruck-Osmometers der Firma Knauer, Bad Homburg.

DTA/TG-Messungen. Die DTA/TG-Messungen erfolgten mit einem Thermoanalyser TA1 der Firma Mettler.

F₂C₆H₃)₃Sb (A) und (2,6-**F₂C₆H₃)₂Te** (B). (2,6-**F₂C₆H₃)₃Bi** (0,5 g, 0,91 mmol) wird mit 0,1 g (0,82 mmol) Sb (A) bzw. 0,1 g (0,78 mmol) Te (B) in einem Bombenrohr eingeschmolzen und 4 d bei 150 °C (A) bzw. 11 d (160 °C) (B) in einem

Transmetallierungsreaktionen - Darstellung von (2,6-

0,1 g (0,78 mmol) Te (B) in einem Bombenrohr eingeschmolzen und 4 d bei 150 °C (A) bzw. 11 d (160 °C) (B) in einem Röhrenofen erhitzt. Nach Ende der Reaktion wird die Reaktionsmischung in CH₃CN aufgenommen, der metallische, unlösliche Rückstand abfiltriert und mit HNO₃ aufgeschlossen. (A) bzw. (B) werden NMR-spektroskopisch durch Zumischen der reinen Verbindungen [13, 32] identifiziert.

¹⁹F-NMR-spektroskopische Daten (CH₃CN, 21 °C): δ (F2,6) –93,0 ppm (s, (2,6-F₂C₆H₃)₃Sb); δ (F2,6) –89,5 ppm (s, (2,6-F₂C₆H₃)₂Te).

Darstellung von (2,6-F₂C₆H₃)₃BiF₂. Eine Suspension von 0,3 g (1,8 mmol) XeF₂ in 5 ml CH₃CN wird bei $-40\,^{\circ}$ C mit einer Lösung von 0,7 g (1,3 mmol) (2,6-F₂C₆H₃)₃Bi in 30 ml CH₃CN versetzt, auf Raumtemperatur erwärmt und 10 d gerührt. Danach wird das Lösungsmittel im Ölpumpenvakuum abdestilliert. 0,6 g (78,6% Ausbeute, bezogen auf (2,6-F₂C₆H₃)₃Bi) (2,6-F₂C₆H₃)₃BiF₂ werden als weißer, lichtluft- und feuchtigkeitsunempfindlicher Feststoff isoliert, der sich oberhalb von 207 °C in Bi, (F₂C₆H₃)₂, BiF₃, C₆H₃F₃ und (2,6-F₂C₆H₃)₃Bi zersetzt. Weitere Zersetzungsprodukte können nicht eindeutig identifiziert werden.

Spektroskopische Daten und Analysendaten von (2,6-F₂C₆H₃)₃BiF₂ (in Klammern sind die berechneten Werte angegeben, die ¹⁹F-NMR-Daten wurden in verschiedenen Lösungsmitteln gemessen (s. Tabelle 1)): DTA/TG: 207°C (Zers.). Molmassenbestimmung C₁₈H₉F₈Bi (CHCl₃): 492,0 g/ mol (586,2 g/mol). Elementaranalyse: Bi, 35,6% (35,7%); F, 25,6% (25,9%). ¹H-NMR (CDCl₃, 21 °C): δ(H4) 7,8 ppm (m, 3 H), δ (H3,5) 7,5 ppm (m, 6 H). ¹⁹F-NMR (CD₃CN, 21 °C): (BiF_2) -75,5 ppm (m, 2F), (F2,6) -98,0 ppm (m, 6F). ¹³C{¹H}-NMR (DMF-d₇, 21 °C): δ (C2,6) 162,0 ppm (dd, $^{1}J(^{19}F^{-13}C) = 249 \text{ Hz}, ^{3}J(^{19}F^{-13}C) = 8 \text{ Hz}), <math>\delta$ (C4) 137,0 ppm (t, ${}^{3}J({}^{19}F_{-}^{-13}C) = 8 \text{ Hz})$, $\delta(C1)$ 129,5 ppm (s, $\Delta_{1/2} = 23 \text{ Hz})$, $\delta(C3,5)$ 113,4 ppm (d, ${}^{2}J({}^{19}F_{-}^{-13}C) = 27 \text{ Hz})$. MS (EI, 20 eV, 190 °C, m/z, nur ²⁰⁹Bi-haltige Fragmente): 586 (<1%, $[(F_2C_6H_3)_3BiF_2]^+)$, 567 (<1%, $[(F_2C_6H_3)_3BiF]^+)$, 548 (2%, $[(F_2C_6H_3)_3Bi]^+)$, 435 (17%, $[(F_2C_6H_3)_2Bi]^+)$, 341 (8%, $[(F_2C_6H_3)BiF]^+)$, 322 (100%, $[(F_2C_6H_3)Bi]^+)$, 209 (66%, [Bi]⁺). IR (KBr, cm⁻¹): 3250 m, 3041 m, 3010 w, 1660 w, 1624 m, 1590 s, 1578 sh, 1529 w, 1411 s, 1270 w (br), 1236 s, 1229 s, 1161 w, 1151 m, 1080 w, 1029 w, 1017 w, 991 s, 984 s, 972 w, 889 vw, 778 s, 748 m, 689 m, 496 w, 449 s, 441 sh.

Darstellung von (2,6- $F_2C_6H_3$)₃BiCl₂. Methode A: Durch eine Suspension von (2,6- $F_2C_6H_3$)₃Bi (2,0 g, 3,7 mmol) in 70 ml CCl₃F wird bei –40 °C 4 h ein Cl₂/N₂-Strom (Verhältnis 1:5) geleitet; danach wird überschüssiges Cl₂ mit N₂ ausgetrieben und das Lösungsmittel und Cl₂-Reste im Ölpumpenvakuum bei 0 °C abdestilliert. (2,6- $F_2C_6H_3$)₃BiCl₂ wird als weißer, lichtunempfindlicher Feststoff in 94,2%iger Ausbeute (2,2 g) bezogen auf (2,6- $F_2C_6H_3$)₃Bi erhalten. Oberhalb 131 °C zersetzt sich die Verbindung in Bi, BiCl₃, ($F_2C_6H_3$)₂ und (2,6- $F_2C_6H_3$)₃Bi. Weitere Zersetzungsprodukte können nicht eindeutig identifiziert werden. Bei der Reaktion mit äquimolaren Mengen H_2O erfolgt Zersetzung zu (2,6- $F_2C_6H_3$)₃BiO und HCl.

Methode B: $(2,6-F_2C_6H_3)_3BiF_2$ (0,1 g, 0,2 mmol) wird in 30 ml CH₂Cl₂ gelöst und bei -30 °C mit 0,1 g (0,12 ml, 0,9 mmol) (CH₃)₃SiCl versetzt. Nach zweistündigem Rühren

wird auf Raumtemperatur erwärmt und das Lösungsmittel und Fluortrimethylsilan im Ölpumpenvakuum abdestilliert. Die Gesamtausbeute beträgt $0,09 \, \mathrm{g} \, (72,6\%)$ (bezogen auf $(2,6-F_2C_6H_3)_3\mathrm{BiF}_2$).

Spektroskopische Daten und Analysendaten von (2,6-F₂C₆H₃)₃BiCl₂ (in Klammern sind die berechneten Werte angegeben, die 19F-NMR-Daten wurden in verschiedenen Lösungsmitteln gemessen (s. Tabelle 1)): DTA/TG: 131 °C Molmassenbestimmung $C_{18}H_9F_6Cl_2Bi$ 639,2 g/mol (619,2 g/mol). Elementaranalyse: Bi, 33,8% (33,7%); Cl, 11,5% (11,5%); F, 18,1% (18,4%). ¹H-NMR (CD₃CN, 21 °C): δ (H4) 7,7 ppm (m, 3 H), δ (H3,5) 7,4 ppm (m, 6H). ¹⁹F-NMR (CD₃CN, 21 °C): (F2,6) –98,7 ppm (m). $^{13}\text{C}[^{1}\text{H}]$ -NMR (CDCl₃, 21 °C): δ (C2,6) 161,0 ppm (dd, $^{1}\text{J}(^{19}\text{F}-^{13}\text{C}) = 251 \text{ Hz}, ^{3}\text{J}(^{19}\text{F}-^{13}\text{C}) = 7 \text{ Hz}), <math>\delta$ (C4) 135,0 ppm $(t, ^3J(^{19}F_{-}^{13}C) = 8 \text{ Hz}), \ \delta(C3.5) \ 113.2 \text{ ppm} \ (d, ^2J(^{19}F_{-}^{13}C) =$ 24 Hz). Die C1-Resonanz wird nicht detektiert. MS (EI, 15 eV, 135 °C, m/z, nur ²⁰⁹Bi-haltige Fragmente): 583 (<1%, $[(F_2C_6H_3)_3BiCl]^+)$, 548 (2%, $[(F_2C_6H_3)_3Bi]^+)$, 435 (24%, $[(F_2C_6H_3)_2Bi]^+)$, 357 (9%, $[(F_2C_6H_3)BiCl]^+)$, 322 (100%, $[(F_2C_6H_3)Bi]^+)$, 279 (4%, $[BiCl_2]^+)$, 244 (71%, $[BiCl]^+)$, 209 (64%, [Bi]⁺). IR (Nujol, cm⁻¹): 1660 vw, 1595 s, 1575 m, 1240 s, 1235 s, 1030 w, 995 s, 985 m, 800 m, 795 m, 780 m, 690 w, 555 w, 505 w.

Umsetzung von (2,6- $F_2C_6H_3$)₃Bi mit F_2 . Durch eine Suspension von (2,6- $F_2C_6H_3$)₃Bi (0,5 g, 0,9 mmol) in 10 ml trockenem CCl₃F wird bei -78 °C 2 h ein F_2/N_2 -Strom (Verhältnis 1:20) geleitet. Anschließend wird überschüssiges F_2 mit einem N_2 -Strom ausgetrieben und das Lösungsmittel sowie F_2 -Reste im Ölpumpenvakuum bei 0 °C abdestilliert. In den 19 F-NMR-Spektren (CH₃CN, 21 °C) werden neben den Signalen von (2,6- $F_2C_6H_3$)₃Bi (δ (F_2 ,6) – 90,3 ppm) mehrere Multipletts von Fluorierungsprodukten im Bereich um -80,0 ppm und von -107,0 ppm bis -112,0 ppm detektiert. Das anhand des 19 F-NMR-Spektrums bestimmte Verhältnis von (2,6- $F_2C_6H_3$)₃BiF₂ zu (2,6- $F_2C_6H_3$)₃Bi beträgt 15:1. Versuche, durch Variation von F_2/N_2 -Verhältnis, Temperatur und/oder Lösungsmittel selektiv zu (2,6- $F_2C_6H_3$)₃BiF₂ zu gelangen, scheiterten.

Umsetzungen von (2,6-F₂C₆H₃)₃Bi mit Br₂ (A), I₂ (B) und ICI (C). Eine Suspension von $0.5 \,\mathrm{g}$ (0.9 mmol) (2.6- $F_2C_6H_3$)₃Bi in 20 ml trockenem $(C_2H_5)_2O$ wird bei -78 °C mit 0,5 g (3,1 mmol) Br₂ (A), 0,7 g (2,8 mmol) I₂ (B) bzw. 0,5 g (3,1 mmol) ICl (C) versetzt. Während die Reaktionen mit Br₂ und I₂ bereits bei -78°C quantitativ ablaufen, muß für einen quantitativen Umsatz mit ICl auf -40°C erwärmt werden. Die Reaktionsgemische werden 2 h gerührt, dann die überstehenden Lösungen abdestilliert, wobei ein gelber (A), roter (B) bzw. weißer (C) Feststoff erhalten werden. Die Feststoffe aus den Umsetzungen (A) bis (C) werden aufgrund der Elementaranalyse als BiBr₃ (A), BiI₃ (B) und BiCl₃ (C) identifiziert. Die bei den Reaktionen gebildeten 1-Halogen-2,6-difluorbenzole werden durch Zumischen der jeweiligen Reinsubstanzen ¹⁹F-NMR-spektroskopisch identifiziert. Die Ausbeuten an den jeweiligen 1-Halogen-2,6-Difluorbenzolen betragen 0,3 g (74,3%) C₆H₃F₂I (A), 0,4 g (75,3%) C₆H₃F₂Br (B) bzw. 0,2 g (70,4%) C₆H₃F₂I (C) (jeweils bezogen auf (2,6-F₂C₆H₃)₃Bi).

Darstellung von (2,6-F₂C₆H₃)IF₄. (2,6-F₂C₆H₃)₃Bi (2,0 g, 3,6 mmol) werden in 40 ml CH₃CN gelöst, mit 2,4 g (0,7 ml, 10,8 mmol) IF₅ versetzt und unter Rühren auf 82 °C

(Ölbadtemperatur) erhitzt. Nach 8 h wird die Suspension auf Raumtemperatur gekühlt, zentrifugiert und die Mutterlauge im Vakuum bis zur Trockene eingeengt. $(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{IF}_4$ wird als beiger, lichtunempfindlicher Feststoff erhalten, der aus CH_2Cl_2 umkristallisiert wird. Die Ausbeute beträgt 88,3% (3,0 g) bezogen auf IF_5 . Bei Zugabe äquimolarer Mengen von H_2O zerfällt die Verbindung in HF, $1,3\text{-}F_2\text{C}_6\text{H}_4$ und $(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{IO}_2$. Unter Druck zersetzt sich $(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{IF}_4$ unter Bildung von elementarem Iod und verschiedenen Fluorarylderivaten. Die Verbindung zersetzt sich oberhalb von $113\,^{\circ}\text{C}$ in I_2 , $1\text{-}I\text{-}2,6\text{-}F_2\text{C}_6\text{H}_3$ und weitere Zersetzungsprodukte, die nicht eindeutig identifiziert werden können.

Spektroskopische Daten und Analysendaten von (2,6- $F_2C_6H_3)IF_4$ (in Klammern sind die berechneten Werte angegeben): DTA/TG: 113 °C (Zers.). Oxidationsstufe: 4,9 (5,0); Molmassenbestimmung $C_6H_3F_6I$ (CH₃CN): 395,5 g/mol (316,0 g/mol). Elementaranalyse: I, 39,7% (40,2%); F, 36,3% (36,1%); 1H -NMR (CDCl₃, 21 °C): $\delta(H4)$ 7,4 ppm (m, 1 H), $\delta(H3,5)$ 7,0 ppm (m, 2 H). ^{19}F -NMR (CDCl₃, 21 °C): $\delta(IF_4)$ $^{-18,5}$ ppm (t, $^4I(^{19}F_-^{19}F)$ = 24 Hz, $^4I(^{19}F_-^{19}F)$ = 24 Hz, $^4I(^{19}F_-^{19}F)$ = 5 Hz, 2 F). Masse (EI, 20 eV, 150 °C, m/z, nur ^{127}I -haltige Fragmente): 316 (2%, [(F₂C₆H₃)IF₄]⁺), 297 (1%, [(F₂C₆H₃)IF₃]⁺), 294 (21%, [(F₂C₆H₃)IOF₂]⁺), 278 (2%, [(F₂C₆H₃)IF₂]⁺), 275 (19%, [(F₂C₆H₃)IOF]⁺), 259 (8%, [(F₂C₆H₃)IF]⁺), 240 (100%, [(F₂C₆H₃)II]⁺), 203 (10%, [IF₄]⁺), 181 (6%, [IOF₂]⁺), 162 (12%, [IOF]⁺), 127 (16%, [I]⁺). IR (KBr, cm⁻¹): 3084 w, 2115 vw, 1710 w (br), 1600 m, 1591 m, 1588 m, 1529 m, 1472 s, 1465 m, 1270 m, 1239 m, 1170 vw, 1165 vvw, 1082 w, 1035 vw, 1000 s, 860 m, 835 m, 795 m, 789 sh, 752 m, 749 sh, 530 sh, 505 w (br), 495 w.

Darstellung von $(2,6-F_2C_6H_3)_3Bi(OR)_2$ (R = COCF₃ (A) und **SO₂CF₃** (B)). Methode I: Eine Suspension von 0,6 g (1,0 mmol) $(2,6-F_2C_6H_3)_3BiF_2$ in 15 ml CH_2Cl_2 wird bei -20 °C mit 0,5 g (0,4 ml, 2,7 mmol) (CH₃)₃Si(OCOCF₃) (A) bzw. 0.5 g (0.4 ml, 2.4 mmol) (CH₃)₃Si(OSO₂CF₃) (B) versetzt und 5 d bei -20 °C gerührt. Danach wird auf Raumtemperatur erwärmt und das Lösungsmittel sowie alle flüchtigen Bestandteile im Ölpumpenvakuum abdestilliert. Die weißen Feststoffe werden aus CHCl₃ umkristallisiert. (2,6-F₂C₆H₃)₃Bi(OCOCF₃)₂ (A) wird als weißer, lichtunempfindlicher Feststoff in 84,2%iger Ausbeute (0,6 g) erhalten, der sich unter Einwirkung von Luft und Feuchtigkeit in und $(2,6-F_2C_6H_3)_3BiO$ CF₃COOH zersetzt. F₂C₆H₃)₃Bi(OSO₂CF₃)₂ (B) wird als weißer licht-, luft- und feuchtigkeitsunempfindlicher Feststoff in 82,7%iger Ausbeute (0,7 g) isoliert. Die Ausbeuten sind auf (2,6-F₂C₆H₃)₃BiF₂ bezogen.

Methode II: (2,6-F₂C₆H₃)₃BiCl₂ (0,6 g, 1,0 mmol) wird in 70 ml Toluol gelöst und bei Raumtemperatur unter Rühren langsam mit einer Lösung von 0,4 g (1,8 mmol) AgOCOCF₃ (A) bzw. 0,5 g (2,0 mmol) AgOSO₂CF₃ (B) in 50 ml Toluol versetzt. Die Lösung wird 1 h bei Raumtemperatur gerührt, ausgefallenes AgCl unter Schutzgas abfiltriert und das Lösungsmittel im Ölpumpenvakuum abdestilliert. Reinigung und Charakterisierung erfolgt wie für Methode I beschrieben. Die Ausbeuten betragen 0,7 g (98,2%) (A) und 0,6 g (70,9%) (B) bezogen auf (2,6-F₂C₆H₃)₃BiCl₂.

Spektroskopische Daten und Analysendaten von (A) (in Klammern sind die berechneten Werte angegeben): DTA/TG: $151\,^{\circ}$ C (Zers.). Molmassenbestimmung $C_{22}H_9O_4F_{12}Bi$

(CHCl₃): 764,0 g/mol (774,3 g/mol). Elementaranalyse: Bi, 25,9% (27,0%); F, 30,2% (29,5%). ¹H-NMR (CDCl₃, 21 °C): δ (H4) 7,6 ppm (m, 3 H), δ (H3,5) 7,3 ppm (m, 6 H). ¹⁹F-NMR (CDCl₃, 21 °C): δ (CF₃) -75,7 ppm (m, 6F), δ (F2,6) -96.8 ppm (m, 6 F). $^{13}\text{C}[^{1}\text{H}]$ -NMR (CDCl₃, 21 °C): δ (C2,6) 161,9 ppm (d, ${}^{1}J({}^{19}F^{-13}C) = 254 \text{ Hz}$), $\delta(CO_2)$ 160,2 ppm (q, $^{2}J(^{19}F^{-13}C) = 39 \text{ Hz}, \quad \delta(C4) \quad 136.2 \text{ ppm} \quad (t, \quad ^{3}J(^{19}F^{-13}C) =$ 9 Hz), δ (C1) 131,2 ppm (t, ${}^2J_1^{19}F_1^{-13}C$) = 38 Hz, $\Delta_{1/2}$ = 18 Hz), δ (CF₃) 114,8 ppm (q, ${}^1J_1^{19}F_1^{-13}C$) = 290 Hz), δ (C3,5) 113,4 ppm (m). MS (EI, 20 eV, 210 °C, m/z, nur 209 Bi-haltige Fragmente): $660 (<1\%, [(F_2C_6H_3)_3Bi(OCOCF_3)]^+), 548$ $(5\%, [(F_2C_6H_3)_3Bi]^+), 435 (53\%, [(F_2C_6H_3)_2Bi]^+), 322 (86\%,$ $[(F_2C_6H_3)Bi]^+)$, 209 (30%, $[Bi]^+$). IR (KBr, cm⁻¹): 3045 m, 2980 m, 1718 m, 1680 s, 1595 m, 1570 m, 1470 w, 1449 m, 1382 w, 1261 m, 1240 m, 1218 s, 1209 s, 1179 m, 1140 m, 1100 sh, 1021 m, 998 m, 973 m, 913 m, 840 m, 803 s, 787 m, 779 m, 749 w, 722 m, 691 w, 669 vw, 660 vvw, 605 vvw, 579 vvw, 542 vvw, 518 vvw, 500 vw, 385 w (br).

Spektroskopische Daten und Analysendaten von (B) (in Klammern sind die berechneten Werte angegeben): DTA/ TG: 119 °C (Zers.). Molmassenbestimmung C₂₀H₉O₆F₁₂S₂Bi (CHCl₃): 868,6 g/mol (846,4 g/mol). Elementaranalyse: Bi, 24,0% (24,7%); S, 7,5% (7,6%); F, 27,4% (26,9%). ¹H-NMR (CDCl₃, 21 °C): δ (H4) 7,8 ppm (m, 3 H), δ (H3,5) 7,5 ppm (m, 6H). ¹⁹F-NMR (THF-d₈, 21 °C): δ (CF₃) –78,7 ppm (m, 6F), 6H). F-NMR (1HF-d₈, 21 °C): δ (CF₃) -/8, ppin (m, 6F), δ (F2,6) -98,8 ppm (m, 6F). $^{13}C[^{1}H]$ -NMR (DMF-d₇, 21 °C): δ (C2,6) 161,0 ppm (dd, $^{1}J(^{19}F^{-13}C) = 248$ Hz, $^{3}J(^{19}F^{-13}C) = 8$ Hz), δ (C4) 137,0 ppm (t, $^{3}J(^{19}F^{-13}C) = 8$ Hz), δ (C1) 130,8 ppm (t, $^{2}J(^{19}F^{-13}C) = 22$ Hz, $\Delta_{1/2} = 15$ Hz), δ (CF₃) 120,6 ppm (q, $^{1}J(^{19}F^{-13}C) = 323$ Hz), δ (C3,5) 113,3 ppm (d, $^{2}J(^{19}F^{-13}C) = 323$ Hz), δ (C9,6) $^{2}J(^{19}F_{-}^{13}C) = 27 \text{ Hz}$). MS (EI, 16 eV, 210 °C, m/z, nur ^{209}Bi haltige Fragmente): 697 (8%, $[(F_2C_6H_3)_3Bi(OSO_2CF_3)]^+)$, $[(F_2C_6H_3)Bi(OSO_2CF_3)_2]^+),$ $[(F_2C_6H_3)_2Bi(OSO_2CF_3)]^+)$, 548 (2%, $[(F_2C_6H_3)_3Bi]^+)$, 471 $(4\%, [(F_2C_6H_3)Bi(OSO_2CF_3)]^+), 435 (23\%, [(F_2C_6H_3)_2Bi]^+),$ 358 (26%, [Bi(OSO₂CF₃)]⁺), 322 (86%, [(F₂C₆H₃)Bi]⁺), 209 (26%, [Bi]⁺). IR (KBr, cm⁻¹): 3550 vw (br), 2980 vvw, 1600 m, 1585 m, 1570 m, 1565 sh, 1469 m, 1449 s, 1288 sh, 1260 s (br), 1218 m, 1208 m, 1178 m, 1035 s, 1033 sh, 997 m, 975 m, 962 m, 801 m (br), 786 m, 777 m, 745 vw, 691 vw, 690 sh, 651 m, 640 m, 580 vw, 520 w.

Diese Arbeit wurde vom Fonds der Chemischen Industrie gefördert. *T. Lewe* dankt der Konrad-Adenauer-Stiftung für ein Stipendium.

Literatur

- [1] Gmelin, Handbuch der Anorganischen Chemie, Ergänzungswerk zur 8. Auflage, Bd. 47, Bismut-Organische Verbindungen, Springer Verlag, Berlin, Heidelberg, New York (1977) und dort zitierte Literatur.
- [2] A. Michaelis, A. Polis, Ber. Deut. Chem. Ges. 1887, 20, 54.
- [3] a) P. Royo, R. Usón, Rev. Acad. Cienc. Exactas, Fis.-Quim. Natur, Zaragoza, 1969, 24, 119, C. A. 1972, 77, 101 807p; b) A. Schmuck, K. Seppelt, Chem. Ber. 1989, 122, 803.
- [4] G. B. Deacon, I. K. Johnson, *Inorg. Nucl. Chem. Letters* 1972, 8, 271, 927.
- [5] D. Naumann, W. Tyrra, J. Organomet. Chem. 1987, 334, 323
- [6] A. Schmuck, D. Leopold, S. Wallenhauer, K. Seppelt, Chem. Ber. 1990, 123, 761.
- [7] W. Tyrra, D. Naumann, Can. J. Chem. 1989, 67, 1949.
- [8] H. J. Frohn, H. Maurer, J. Fluorine Chem. 1986, 34, 129.

- [9] B. A. Nevett, A. Perry, Spectrochim. Acta 1975, 31 A, 101.
- [10] A. Otero, P. Royo, J. Organomet. Chem. 1978, 154, 13.
- [11] G. S. Harris, A. Khan, I. Lennon, *J. Fluorine Chem.* **1987**, *37*, 247.
- [12] R. Kasemann, D. Naumann, J. Fluorine Chem. **1988**, 41, 321
- [13] T. Lewe, D. Naumann, G. Nowicki, H. Schneider, W. Tyrra, T. Gilles, K.-F. Tebbe, Z. Anorg. Allg. Chem. 1996, 622, 2009.
- [14] W. J. Considine, J. J. Ventura, J. Organomet. Chem. 1965, 3, 420.
- [15] F. Kh. Solomakhina, Trudy. Tashkent. Farm. Inst. 1957, 1 321, C. A. 1961, 55, 15389.
- [16] S. Hilpert, G. Grüttner, Ber. Dtsch. Chem. Ges. 1913, 46, 1675.
- [17] R. A. G. Marshall, D. R. Pollard, J. Organomet. Chem. 1971, 27, 149.
- [18] R. Schlengermann, *Dissertation*, Universität zu Köln 1994.
- [19] W. Tyrra, unveröffentlichte Ergebnisse.
- [20] T. Lewe, unveröffentlichte Ergebnisse.
- [21] a) V. Gutmann, Chimia 1977, 31, 1; b) V. Gutmann, Angew. Chem. 1970, 82, 858.
- [22] J. Emsley, The Elements, 2nd Ed., Clarendron Press, Oxford 1991.
- [23] a) A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH New York, Weinheim, Cambridge 1992, S. 379 ff; b) G. F. Koser, Hypervalent Halogen Compounds, in S. Patai, Z. Rappoport (Eds.), The Chemistry of Functional Groups, Supplement D, J. Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore 1983, S. 721 ff.
- [24] I. I. Maletina, V. V. Orda, L. M. Yagupolskii, Russ. Chem. Rev. 1989, 58, 544 und dort zitierte Literatur.
- [25] H. J. Frohn, S. Görg, G. Henkel, M. Läge, Z. Anorg. Allg. Chem. 1995, 621, 1251.
- [26] H. Gilman, H. L. Yale, J. Am. Chem. Soc. 1951, 73, 4470.
- [27] R. G. Goel, H. S. Prasad, Can. J. Chem. 1970, 48, 2488.
- [28] R. Rüther, F. Huber, H. Preut, Z. Anorg. Allg. Chem. 1986, 539, 110.
- [29] D. G. Niyogi, S. Singh, R. D. Verma, J. Fluorine Chem. 1995, 70, 237.
- [30] L.-M. Jiang, Z.-Z. Huang, X. Huang, J. Chem. Eng. Data 1995, 27, 579.
- [31] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd Ed., Pergamon Press Oxford, New York, Seoul, Tokyo 1988.
- [32] L. Ehmanns, Dissertation, Universität zu Köln 1993.
- [33] L. V. Streng, A. G. Streng, *Inorg. Chem.* **1965**, *4*, 1370.
- [34] T. Gramstad, R. N. Haszeldine, J. Chem. Soc. 1956, 173.
- [35] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 1975, I, F. Enke Verlag, Stuttgart, S. 174.
- [36] G. Jander, K. F. Jahr, H. Knoll, Maβanalyse, Walter de Gruyter Verlag, Berlin, 1973, S. 315.
- [37] R. Pribil, Komplexone in der chemischen Analyse, VEB Deutscher Verlag der Wissenschaften, Berlin 1961.
- [38] G. Jander, E. Blasius, Einführung in das anorganischchemische Praktikum, 10. Aufl., S. Hirzel Verlag, Stuttgart, 1977, S. 284.
- [39] W. Schöniger, Mikrochim. Acta 1955, 123.
- [40] A. D. Campbell, P. A. Dawson, *Mikrochim. Acta* 1983, 489.
- [41] G. Jander, K. F. Jahr, H. Knoll, Maβanalyse, Walter de Gruyter Verlag, Berlin, 1973, S. 300.
- [42] N. V. Kirij, S. V. Pasenok, Y. L. Yagupolskii, D. Naumann, W. Tyrra, J. Fluorine Chem. 1994, 66, 75.