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ABSTRACT: The reductive coupling of alcohols using vanadium pyridonate catalysts is reported. This attractive approach for
C(sp3)−C(sp3) bond formation uses an oxophilic, earth-abundant metal for a catalytic deoxygenation reaction. Several pyridonate
complexes of vanadium were synthesized, giving insight into the coordination chemistry of this understudied class of compounds.
Isolated intermediates provide experimental mechanistic evidence that complements reported computational mechanistic proposals
for the reductive coupling of alcohols. In contrast to previous mononuclear vanadium(V)/vanadium(III)/vanadium(IV) cycles, this
pyridonate catalyst system is proposed to proceed by a vanadium(III)/vanadium(IV) cycle involving bimetallic intermediates.

The conversion of oxygen-rich, biomass-derived feedstocks
to alternatively functionalized chemicals has gained

growing interest because of its potential as a renewable source
of fuels and chemicals.1−3 Numerous strategies have been
developed to this end, including polyol dehydration,4−6

deoxygenation,7−16 and deoxydehydration.1,17−19 Each of
these methods effects C−O bond cleavage to produce valuable
chemical feedstocks for further functionalization.
While the majority of deoxygenation reactions require the

use of noble-metal catalysts, the use of earth-abundant and
inexpensive 3d metal catalysts is desirable. Recently, Nicholas
and co-workers have reported promising advances in the
catalytic reductive coupling of alcohols using oxorhenium and
oxovanadium catalysts.20−23 This allows for both C−O bond
cleavage and subsequent C−C bond formation using readily
available monoalcohols as the carbon source.23 While a
reductant for O-atom transfer is required in the rhenium
system,20,22 the alcohol itself acts as the reductant in the
vanadium system, producing the corresponding ketone and
water as the byproducts.21,23 Avoiding the use of an external
reductant makes the vanadium-catalyzed reaction attractive,
although a recent report has shown that hydrazine can be used
as a terminal reductant for the reaction.24 Using earth-
abundant vanadium as a catalyst for deoxygenation reactions is
both appealing and counterintuitive; oxygen is often
deleterious to early-transition-metal catalysts because of their
oxophilic nature.
Given our understanding of 1,3-N,O-chelated early-

transition-metal catalysts for the functionalization of abundant
feedstocks,25−27 we anticipated that such complexes would be
well suited for the reductive coupling of alcohols, taking
advantage of the established metal−ligand cooperativity of
pyridonates for E−H bond activations.28−31 Moreover,
vanadium pyridonate complexes are rare,32 and their
fundamental coordination chemistry is unexplored. Herein
we demonstrate that vanadium(III) pyridonate complex 1 can
mediate the catalytic and stepwise stoichiometric reductive
coupling of benzyl alcohol derivatives. The stoichiometric

reactivity allowed for the isolation of relevant catalytic
intermediates to furnish key insights into the mechanism of
this transformation.
Tris(pyridonate)vanadium(III) complex 1 was synthesized

from trimesityl complex 233 and pyridone 3 (Scheme 1).

Complex 2 is a reliable precursor to vanadium(III)
complexes34−36 and allows direct access to the reactive
vanadium(III) species needed for the reductive coupling of
alcohols. Overall, complex 1 was produced in 87% yield and
fully characterized including by X-ray crystallography, NMR,
mass spectrometry (MS), and elemental analysis. Although
assignment of the 1H NMR chemical shifts is ambiguous for
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Scheme 1. Synthesis of Vanadium Pyridonate Complexes
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this paramagnetic complex (Figure S1), the identity of 1 was
confirmed using X-ray crystallography.
Crystals of 1 obtained from a saturated tetrahydrofuran

(THF) solution were suitable for X-ray diffraction, and the
solid-state molecular structure is depicted (Scheme 1).
Dimeric complex 1 is C2-symmetric, with each V being
seven-coordinate and having distorted pentagonal-bipyramidal
geometry. All six pyridonates are κ2-bound, with the two
central ligands also bridging through the O to the adjacent V
center (μ2-O), exhibiting a κ

2:κ1 bridging mode.37−39 The μ2-O
interaction is unsymmetrical [V2−O3, 2.184(3) Å; V1−O3,
2.078(3) Å]. The oxidation state of V in 1 can be definitively
assigned as VIII, as verified using Evan’s method,40−42 where
paramagnetic 1 gives μeff = 2.89 μB (C6D6 solution, 25 °C),
consistent with two unpaired d electrons (μspin‑only = 2.83 μB).
Thus, complex 1 is primed for the reductive coupling of
alcohols.
Next, the reductive coupling of benzhydrol was attempted

using 1 as the catalyst. Reaction conditions similar to those
employed by Nicholas and co-workers were used.21 Gratify-
ingly, heating a C6D6 solution of benzhydrol with 5 mol % of
dimer 1 provides full conversion to the desired product with
concomitant formation of benzophenone (Table 1, entry 1).

This is confirmed by the 1H NMR spectrum after the reaction
(Figure S4), in which a singlet is observed at 4.68 ppm and a
doublet is observed at 7.71 ppm; these signals are diagnostic
for the methine H atoms of 1,1,2,2-tetraphenylethane and the
o-H atoms of benzophenone, respectively.21 Observation of the
ketone byproduct suggests that the reaction proceeds through
the previously reported mechanism in which the alcohol acts as
a reductant. This reaction can be successfully extended to
other benzyl alcohol derivatives (Table 1, entries 2 and 3, and
Figures S5 and S6), an attractive class of substrates that can be
derived from lignin biomass.43,44 In the case of 1-phenyl-
ethanol, a 1:1 mixture of a racemic/meso product is observed.
No ether byproducts were observed by gas chromatography
(GC)−MS.
Previous work has shown that 1,3-N,O chelating ligands can

be used to promote the isolation and characterization of
reactive intermediates in catalysis.45−49 Reported mechanistic
studies of vanadium-catalyzed reductive coupling have used
density functional theory to predict intermediates in the
catalytic cycle.23 Here we can use the vanadium pyridonate
complex to our advantage to complete stoichiometric studies
and gain complementary mechanistic information.23

First, the interaction of bimetallic complex 1 with 2 equiv of
benzhydrol was investigated. Within 21 h at room temperature,
the reaction in THF or toluene produced a green solution,
which upon removal of volatiles afforded the alkoxide complex

4 as a green powder in near-quantitative yield (Scheme 1). The
solid-state molecular structure of 4 (Figure 1, left) was

obtained by X-ray crystallography using dark-green crystals
grown from a saturated toluene solution. This structure shows
that the hemilability of the pyridonate ligand is advantageous
to promote coordination of the alcohol substrate and facilitate
deprotonation of the alcohol. A short hydrogen-bonding
interaction with the alkoxide [O4−H3, 1.914 Å (calcd)] is
present, giving a six-membered vanadacycle within the
distorted octahedral complex. Paramagnetic complex 4 has
C1 symmetry, consistent with the observation that the 1H
NMR spectrum of 4 (Figure S2) shows an increased number
of signals compared to that of the more symmetric complex 1.
Most importantly, 4 provides experimental evidence for the
analogous species predicted computationally.23 Notably,
deprotonation of an alcohol by a pyridonate ligand is the
first step in iridium-catalyzed acceptorless alcohol dehydrogen-
ation,29 and here we show that similar metal−ligand
cooperativity is relevant to early-transition-metal reactivity.
Evan’s method of 4 confirms a d2 metal (μeff = 2.62 μB; C6D6
solution, 25 °C), as expected for this redox-neutral reaction.
Complex 4 was then heated in toluene to achieve reductive

coupling of the bound alcohol (Scheme 1). After 4 h, the dark-
green solution turned turquoise. Following removal of the
volatiles and subsequent recrystallization from toluene, blue
crystals of 5 suitable for X-ray diffraction studies (Figure 1,
right) and some colorless crystals (vide infra) were obtained.
Dimeric terminal oxo complex 5 is C2-symmetric, with each V
atom being six-coordinate and having distorted octahedral
geometry. Similar to 1, all pyridonates bind κ2, with two having
the κ2:κ1 bridging mode through a μ2-O to the other V center.
The μ2-O−V interaction is more unsymmetrical in 5 compared
to 1 [V1−O3, 2.4520(14) Å; V2−O3, 2.0039(15) Å] due to
the strong trans influence of the oxo ligand. Additionally, the
V−O distances [V1−O1, 1.5931(14) Å; V2−O4, 1.5954(15)
Å] are in good agreement with a reported pyridine-2-thiolate
oxovanadium complex [V−Ooxo, 1.583(6) Å].

50 The 1H NMR
spectrum of 5 (Figure S3) gives a diagnostic signal at 13.91
ppm, consistent with increased symmetry relative to 4.
Paramagnetic 5 contains two VIV d1 metal centers, as

predicted from the solid-state molecular structure. Thus, each
V atom is oxidized by one electron upon going from 4 to 5,
consistent with reductive coupling. Indeed, 1,1,2,2-tetraphenyl-
ethane was observed by 1H NMR spectroscopy when the

Table 1. Catalytic Reductive Coupling of Alcohols

entry R time (h) product yield (%)a carbonyl yield (%)a

1 Ph 24 >99 88
2 Me 48 65b 66
3 H 48 34 31

aYields determined by 1H NMR using 1,3,5-trimethoxybenzene as an
internal standard. bA 1:1 mixture of meso/racemic diastereomers was
observed.

Figure 1. ORTEP representations of complexes 4 (left) and 5 (right)
with ellipsoids shown at 50% probability and H atoms omitted for
clarity. Selected bond lengths for 4 (Å): O4−H3, 1.914 (calcd).
Selected bond lengths for 5 (Å): V1−O1, 1.5931(14); V1−O3,
2.4520(14); V2−O3, 2.0039(15); V2−O4, 1.5954(15).
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reaction was performed in toluene-d8 (Figure S11). Fur-
thermore, the colorless crystals isolated from the reaction were
confirmed to be 1,1,2,2-tetraphenylethane.51 Homolysis of the
C−O bond to give the benzhydryl radical (which would
dimerize to form the reductively coupled product) and a
vanadium(IV) complex was predicted to occur computation-
ally; thus, the isolation of 5 is consistent with the computa-
tionally predicted mechanistic proposal. Notably, the pyridone
released during reductive coupling was observed by 1H NMR
spectroscopy in both the stoichiometric and catalytic reactions.
The only vanadium-based signals observed in the 1H NMR
spectrum of the catalytic reaction were those of 5, suggesting
that 5 is the catalyst resting state. Importantly, when crude 5 is
used as the catalyst, the system achieves catalytic turnover
(46% yield in 24 h; see Figure S9). Thus, 5 is catalytically
relevant, although the lower conversion may suggest that a
third equiv of free pyridone is important for catalysis.
However, adding 10 mol % of pyridone to crude 5 prior to
catalysis shows no improvement (see the Supporting
Information, SI). Alternatively, 5 may be an off-cycle species
that can slowly reenter the cycle.
Given these results, a plausible mechanism for the reductive

coupling of benzhydrol with this system is proposed (Scheme
2). In the presence of benzhydrol, complex 1 is first converted

to 4, as observed within minutes at room temperature by 1H
NMR spectroscopy. Dissociation of pyridone would give the
alkoxide complex A, which would undergo C−O homolysis to
release a benzhydryl radical and 5. The benzhydryl radical
would then dimerize to give the coupled product. Importantly,
no intermediate is observed during the formation of 5 from 4,
and efforts to isolate A have been unsuccessful. Thus, the
nature of A is unknown, and it is proposed to be a bridged
species based on the observed tendency of these complexes to
aggregate. A mechanism in which C−O homolysis occurs at 4
prior to pyridone dissociation cannot be ruled out. After
reductive coupling, complex 5 could undergo reduction with 1
equiv of alcohol to give the benzophenone byproduct and a
putative bridged vanadium(III) hydroxide species B. We

propose a bimetallic pathway. Nicholas and co-workers
propose oxidation of benzhydrol via a monomeric vanadium-
(V) species.23 No vanadium(V) species have been observed in
our system, and NMR studies on the reaction of 1 with 4 equiv
of benzhydrol show that benzophenone is produced (see the
SI). Similar to A, the true nature of B is unknown, and this
species has not been observed. Nevertheless, we propose that
complex B could undergo protonolysis with free pyridone to
produce water as a byproduct and regenerate 1. Alternatively,
complex B could undergo protonolysis with benzhydrol and
proceed directly to complex A.
Evidence for the involvement of radical species has been

obtained. A cyclopropyl-substituted alcohol undergoes ring
opening under catalytic conditions, as evidenced by the
formation of 1,2-dihydronaphthalene (see the SI).21 The
observed mixture of 1:1 meso/racemic diastereomers for the
C−C coupled product using 1-phenylethanol as the substrate
(Table 1, entry 2) also supports a radical mechanism.
However, the radical-trapping agent fluorene does not
intercept the benzhydryl radical during the reaction (see the
SI). Additionally, a crossover experiment between benzhydrol
and fluorenol gave very little heterocoupled product rather
than the anticipated statistical mixture of homo- and
heterocoupled products one would see for free radicals (expect
the SI). These latter two results contrast observations by
Nicholas and co-workers,23 suggesting that C−C coupling of
benzhydryl radicals may occur via a pathway different from
that in their system. For example, the benzhydryl radicals may
combine rapidly within the solvent cage of the proposed
dinuclear intermediate A. Further studies are needed to
elucidate the mechanism of this process.
In summary, the catalytic reductive coupling of alcohols by

vanadium pyridonate complexes is reported. Complex 1 was
found to be catalytically active for the reductive coupling of
benzyl alcohols, showing vanadium(III) to be a viable starting
point for the catalytic cycle. Intermediates 4 and 5 were
isolated, providing experimental evidence for bimetallic
intermediates in this vanadium-catalyzed transformation,
complementary to previous mechanistic studies. On the basis
of these stoichiometric reactions and radical-trap experiments,
a vanadium(III)/vanadium(IV) redox cycle is proposed for
this system. This work proposes a new design strategy for
developing catalysts for this transformation: the involvement of
bimetallic species, coupled with ligand hemilability and metal−
ligand cooperativity. These features enable deoxygenative
transformations of renewable feedstocks with oxophilic 3d
early transition metals. Future directions will focus on related
systems for expansion of the catalyst substrate scope in the
redox disproportionation of alcohols.
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