4405

First Kinetic Measurements on SiD₂: Absolute Rate Constant for the **Reaction SiD**₂ + H₂

Ben P. Mason, H. Monty Frey and Robin Walsh

Department of Chemistry, University of Reading, Whiteknights, P.O. Box 224, Reading, UK RG6 2AD

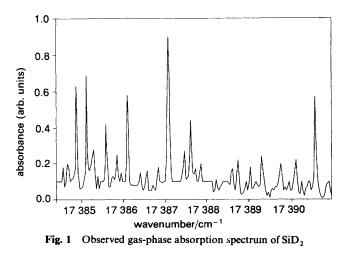
SiD₂, generated via the laser flash photolysis of phenyl[²H₃]silane, has been detected via a ro-vibrational transition in its $\tilde{A}(^1B_1) \leftarrow \tilde{X}(^1A_1)$ absorption band. It has been monitored for the first time in time-resolved studies to give an absolute rate constant of $(3.8 \pm 0.2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ for the reaction SiD₂ + H₂. Product SiH₂ from this reaction was also observed.

Silylene, SiH₂, is a key intermediate in the photolytic and thermal decompositions of silanes and plays an important role in the process for chemical vapour deposition of thin films of amorphous silicon. In 1985 Inoue and Suzuki¹ reported the first directly measured rate constants for reactions of SiH₂. Since then the rate constants for several other reactions have been obtained by time-resolved methods.

Kinetic studies of SiD₂ have not previously been carried out although they are of particular interest in two respects, viz. (i) a comparison with SiH₂ data will help elucidate reaction mechanisms and (ii) many SiH₂ reactions exhibit pressure dependences often making it problematical to obtain high-pressure limiting rate constants. Isotopic scrambling effects make it possible to circumvent this problem with SiD₂ studies. For example the reaction $SiH_2 + H_2$ can be conveniently described by three elementary steps:

$$\mathrm{SiH}_2 + \mathrm{H}_2 \to \mathrm{SiH}_4^* \tag{1}$$

$$\mathrm{SiH}_4^* \to \mathrm{SiH}_2 + \mathrm{H}_2 \tag{-1}$$


$$\operatorname{SiH}_{4}^{*} + \mathbf{M} \to \operatorname{SiH}_{4} + \mathbf{M} \tag{2}$$

Pressure dependence of this reaction arises from the behaviour of the vibrationally excited molecular product, SiH^{*}₄, which can either revert back to reactants or be stabilized by a third body. For the analogous SiD₂ reaction the vibrationally excited product is SiD₂H^{*} which can redissociate to SiHD + HD or $SiH_2 + D_2$ as well as reverting to the reactants. Since SiD₂ will only be reformed once in every six times on a statistical basis, following the argument of Jasinski,² there should be virtually no pressure effect on its rate of disappearance which will therefore closely approximate the rate of the true insertion reaction.

S

SiD₂ kinetic studies were carried out using the laser flashlaser absorption technique previously used to study SiH₂ kinetics.^{3,4} Transient concentrations of SiD₂ were produced by 193 nm laser flash photolysis of PhSiD₃ (synthesized by LiAlD₄ deuteriation of PhSiCl₃, and of isotopic purity >92.6%). The concentration of SiD_2 was monitored by highresolution absorption spectroscopy with light from a singlefrequency ring-dye laser (linewidth 3×10^{-5} cm⁻¹). Prior to this a high-resolution spectrum of SiD₂ was recorded in order to find a strong characteristic transition for probing. Previously recorded spectra,⁵⁻⁷ although not sufficiently resolved to reveal a suitable transition, indicated that the ${}^{P}Q_{1}$ bandhead of SiD_2 occurred at 17385 cm⁻¹ for the $\tilde{A}^{1}B_{1}(0,3,0) \leftarrow \tilde{X}^{1}A_{1}(0,0,0)$ transitions. Based on this a spectral search was made over the wavenumber range 17384-17 391 cm⁻¹ at intervals of 0.03 cm⁻¹, using a series of oneshot photolysis experiments with gas mixtures consisting of 10 mTorr PhSiD₃ in 5 Torr SF₆. The resulting spectrum is shown in Fig. 1, although we have not yet been able to assign the observed transitions. Preliminary calculations of the SiD₂ spectrum confirm the existence of a number of strong rovibrational lines in this wavenumber region.⁸ A check at 17 259.50 cm⁻¹ (the location of a strong SiH₂ transition) suggested a small photolytic yield of SiH₂ from PhSiD₃ of ca. 10% of the intensity for the equivalent photolysis of PhSiH₃. In the latter photolysis we found a weak absorption due to SiH_2 on probing at 17387.07 cm⁻¹ (the location of the strongest SiD₂ transition observed) which was ca. 16% of that from PhSiD₃ under identical conditions. However these results indicate a less than 2% contribution to the signal at 17387.07 cm⁻¹ from SiH₂ formed from impurity (or by photolytic scrambling) from PhSiD₃ and ensure that SiD₂ can be monitored at 17 387.07 cm^{-1} quantitatively to a good approximation.

For kinetic studies SiD₂ was monitored at both 17387.07 and 17 385.18 cm⁻¹. No detectable difference was observed between results at the two wavelengths. Reaction mixtures generally contained 4 mTorr of PhSiD₃, 0-3.2 Torr of hydrogen and added SF₆ buffer gas (total pressure 5 Torr). The temperature was 294 K. First-order decays were averaged for four to ten laser shots at 50 to 140 mJ pulse⁻¹. All decays were good-quality single exponentials. The results shown in Fig. 2, confirm that second-order kinetics were obeyed. The slope of this plot yielded a rate constant of $(3.8 \pm 0.2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, where the quoted error represents two standard deviations. Variation of the total pressure by a factor of 50 between 2 and 100 Torr indicated that the observed rate was independent of pressure

4406

Fig. 2 Second-order plot for reaction of SiD₂ with H₂ at 294 K (total pressure = 5 Torr), SiD₂ detection wavenumber: (\bigcirc) 17 387.07, (×) 17 385.18 cm⁻¹.

(within $\pm 20\%$). A comparison of the rate constant reported here for SiD₂ + H₂ with the high-pressure limiting rate constant of 3.2×10^{-12} cm³ molecule⁻¹ s⁻¹ reported for SiH₂ + H₂ by Jasinski and Chu⁹ and the rate constants of $(2.6 \pm 0.7) \times 10^{-12}$ and $(1.9 \pm 0.2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ for SiH₂ + D₂ reported by Jasinski² and Baggott *et al.*⁴

Fig. 3 Time evolution of trace for SiH₂ from the reaction of SiD₂ + H₂. [H₂] = 1 Torr. Smooth curve is biexponential best fit.

Table 1 Second-order rate constants found for reaction of SiH_2 with H_2

total pressure/Torr	$k/10^{-13}$ cm ³ molecule ⁻¹ s ⁻¹	
	this paper ^a	Jasinski and Chu ^b
3	1.5 ± 0.3	2.7
5	3.4 ± 0.5	3.9
7	4.5 ± 0.3	5.0
10	4.8 ± 0.5	6.5

^a Total pressures in H₂. ^b Ref. 9. Total pressures in He.

respectively, show it to be of a reasonable magnitude. They also indicate the magnitude of the true insertion process isotope effects.

In addition to monitoring SiD₂ concentration decay curves we have carried out additional experiments where the generation of SiH₂ from isotopic scrambling and its subsequent disappearance by reaction with H₂ were observed. Reaction mixtures containing 2 mTorr of PhSiD₃ and made up to total pressures in hydrogen of 1-10 Torr were photolysed and SiH₂ absorption was monitored at 17259.50 cm⁻¹. Averaged absorption growth-decay traces were obtained by summation of five traces using an excimer laser photolysis energy of 100 mJ pulse⁻¹. An example of such a trace is shown in Fig. 3. Although the noise level in these traces was not excessive, the short rise-time (slightly perturbed by the laser pulse) made analysis of the growth part of the curves difficult. Despite this the results obtained from experiments with 1, 3 and 5 Torr of H₂ gave an average growth rate constant of $(4 \pm 2) \times 10^{-12}$ cm^3 molecule⁻¹ s⁻¹. Although the error limit is large this is the same as the value found by monitoring SiD_2 . By contrast there was no time-resolution difficulty in fitting the decay part of the SiH₂ traces and so a set of reasonably precise rate constants for reaction of SiH₂ and H₂ were obtained. These are shown in Table 1 and demonstrate the expected pressure dependence of this reaction. Comparison with the values of Jasinski and Chu⁹ for the same reaction in He buffer gas shows reasonable agreement.

The rate constant obtained here for $SiD_2 + H_2$ may be compared with that⁹ for $SiH_2 + H_2$, viz. 3.2×10^{-12} cm³ molecule⁻¹ s⁻¹ (high-pressure limit). There is thus an inverse isotope effect of ca. 0.84. This can be accounted for by transition-state theory.¹⁰ In future publications we will present: (i) a temperature-dependent study of the reaction of SiD₂ with H₂ and (ii) a full experimental and theoretical study of the isotope effects in the SiH₂-SiD₂ + H₂-D₂ reaction systems.

We thank Prof. G. Duxbury for helpful information about the SiD_2 spectrum.

References

- 1 G. Inoue and M. Suzuki, Chem. Phys. Lett., 1985, 122, 361.
- 2 J. M. Jasinski, J. Phys. Chem., 1986, 90, 555.
- 3 J. E. Baggott, H. M. Frey, P. D. Lightfoot, R. Walsh and I. M. Watts, J. Chem. Soc., Faraday Trans., 1990, 86, 27.
- 4 J. E. Baggott, H. M. Frey, K. D. King, P. D. Lightfoot, R. Walsh and I. M. Watts, J. Phys. Chem., 1988, 92, 4025.
- 5 I. Dubois, G. Herzberg and R. D. Verma, J. Chem. Phys., 1967, 47, 4262.
- 6 L. Fredin, R. H. Hauge, Z. H. Kafafi and J. L. Margrave, J. Chem. Phys., 1985, 82, 3542.
- 7 M. Fukushima, S. Mayama and K. Obi, J. Chem. Phys., 1992, 96, 44.
- 8 G. Duxbury, personal communication.
- 9 J. M. Jasinski and J. O. Chu, J. Chem. Phys., 1988, 88, 1678.
- 10 N. Al-Rubaiey, H. M. Frey, B. P. Mason and R. Walsh, to be published.

Communication 3/06269D; Received 20th October, 1993