Synthesis of Chiral γ -Amino- β -hydroxyphosphonate Derivatives from Unsaturated Phosphonates

Takehiro Yamagishi, Keiichi Fujii, Shiroshi Shibuya, Tsutomu Yokomatsu*

School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan Fax +81(426)763239; E-mail: yokomatu@ps.toyaku.ac.jp

Received 31 July 2004

Abstract: γ -Amino- β -hydroxyphosphonates, useful intermediates for the synthesis of phosphonic acid analogues of carnitine, were prepared as their protected derivatives in an enantioselective manner from β , γ -unsaturated phosphonates through asymmetric dihydroxylation and subsequent regioselective amination via the cyclic sulfates.

Key words: phosphorus, asymmetric synthesis, dihydoxylations, sulfates, regioselectivity

Hyperglycemia of type II diabetes is considered to be primarily due to excess long-chain fatty acid oxidation, which is crucial to drive gluconeogenesis at higher rates.¹ Carnitine palmitoyltransferase I (CPT I) located on the outer mitochondrial membrane plays an important role in β -oxidation of long-chain free fatty acids, which catalyzes a formation of acylcarnitine from carnitine and long-chain fatty acids, then a translocase transports the fatty acids carnitine esters across the inner mitochondrial membrane.² CPT I inhibitors indirectly reduce gluconeogenesis by inhibiting the β -oxidation and are hence helpful in the treatment of type II diabetes as hypoglycemic agents.³ Recent studies demonstrated that modification of the functional groups of carnitine was one way to access potent CPT I inhibitors. It was found that aminocarnitine derivatives (where the hydroxy group of carnitine was replaced with an amino group) were good inhibitors.⁴ However, to the best of our knowledge, little investigation has been carried out on modifying the carboxylic moiety of carnitine.⁴ The fact that phosphonic acids have been utilized as one of the bioisosteric groups of carboxylic acids prompted us to investigate a synthesis of a phosphonic acid analogue of carnitine (Figure 1). For obtaining the targeted molecules, a protected form of chiral γ -amino- β hydroxyphosphonates would be required as synthetic intermediates. Inspection of the literature revealed that the key reactions used in this synthesis involved optical resolution, ^{5a} enzymatic resolution of γ -chloro- β -hydroxyphosphonates,^{5b} hydrolytic kinetic resolution of epoxyphosphonates with an asymmetric catalyst,^{5c} ring-opening silylphosphites,5d of epichlorohydrin with and diastereoselective reduction of γ -amino- β -ketophosphonates.5e Although catalytic asymmetric aminohydroxylation of β , γ -unsaturated phosphonates is known for the synthesis of γ -amino- β -hydroxyphosphonates, the chemical yields are reported to be low.^{5f} We investigated a new synthesis of γ -amino- β -hydroxyphosphonate derivatives by our own approach, which involved osmium-catalyzed asymmetric dihydroxylation (AD)⁶ of β , γ -unsaturated phosphonates, followed by selective amination of the hydroxy group at the γ -position (Scheme 1). In this paper, we describe the preliminary results of this approach.

OX);

We have previously reported AD reaction of α , β -unsaturated phosphonates with AD-mix reagents, which could provide a variety of chiral α , β -dihydroxyphosphonates.^{7,8} Although β , γ -dihydroxyphosphonate having a phenyl group at the γ -position could be also prepared in high enantiomeric excess (98% ee) through AD reaction of β , γ unsaturated phosphonate,⁹ similar reactions using other substrates have not been investigated. For both expanding the scope of this protocol and obtaining various carnitine analogues, AD reactions of β , γ -unsaturated phosphonates were examined. The requisite starting materials **2a–d** were readily prepared by Arbuzov reactions of the corresponding allyl bromides **1a–d** with triethylphosphite (Scheme 2).

a: $R^1 = R^2 = H$; **b**: $R^1 = Me$, $R^2 = H$; **c**: $R^1 = 4$ -MeOC₆H₄CO₂CH₂, $R^2 = H$ **d**: $R^1 = H$, $R^2 = Ph$

Scheme 2

(OX)

ÖTES

SYNLETT 2004, No. 14, pp 2505–2508 Advanced online publication: 20.10.2004 DOI: 10.1055/s-2004-834792; Art ID: U21704ST © Georg Thieme Verlag Stuttgart · New York

Reactions of 2a-d were performed with AD-mix-a in the presence of MeSO₂NH₂ and additional K₂OsO₄·2H₂O (0.8 mol%) in the *t*-BuOH–H₂O solvent system (1:1) at room temperature according to our previous protocol.^{7,10} The results are summarized in Table 1.

Table 1AD of β , γ -Unsaturated Phosphonates 2a-d with AD-mix- α

^a Determined by ³¹P NMR (121 MHz, CDCl₃) analysis of the corresponding *bis*-MTPA esters.

^b Determined by HPLC analysis on a chiral phase (DAICEL

CHIRALPAK AS column).

AD reactions of 2a-c proceeded to give diols 3a-c in 40-60% yield (entries 1–3), albeit with decrease in the chemical vield of **3d** possessing a phenyl group at the β -position (entry 4). Low enantioselectivity was observed in reactions of 2a and 2b having a proton and a methyl group in the R¹ moiety, respectively (entries 1 and 2). AD reaction of **2c** having a 4-methoxybenzoyloxy group at the δ position proceeded with excellent enantioselectivity (97% ee) to give **3c** (entry 3).¹¹ It is worthy of note that β , γ -dihydroxyphosphonate 3d with a quarternary chiral center could be obtained in good enantiomeric excess (81% ee) by AD of 2d (entry 4). Considering Corey's working model of the chemical architecture provided by the ligand of AD-mix- α , in which the ligand–osmium complex preferred the U-shaped conformation, the high enantiomeric excess of 3c may be accounted for by the 4-methoxybenzoyl group participating in π -stacking interactions with the methoxyquinoline ring of the catalyst.¹²

The absolute configuration of **3b** and **3c** was determined after conversion to 4-methoxybenzoate derivatives **4b** and **4c** (Figure 2). The CD spectrum of **4b** showed a positive Cotton effect at 289 nm and a negative Cotton effect at 282 nm, which were analogous to that of methoxybenzoate **5** prepared from known β , γ -dihydroxyphosphonates,⁹ showing positive and negative Cotton effects at longer (286 nm) and shorter wavelengths (275 nm), respectively. The CD curve of **4c** was also similar to that of **5**. Accordingly, **4b** and **4c** have the same absolute stereochemistry with **5**, indicating the stereochemistry of **3b** and **3c** to be 2*S*,3*S*-configuration. The stereochemistry of **3d** was estimated as depicted on the basis of the empirical rule for AD with AD-mix- α .⁶ OMe

4b: R = Me; **4c**: $R = 4-MeOC_6H_4CO_2CH_2$; **5**: R = Ph

Figure 2

In general, AD reaction of hydrophobic compounds is prone to afford good enantioselectivity due to those being easily trapped into the lipophilic cavity of the ligand–osmium complex.⁶ We envisioned that enhancing the hydrophobicity of **2a,b** by tuning the phosphonate moiety would lead to improvement of the enantioselectivity. In this context, β , γ -unsaturated dibenzyl phosphonates were next chosen as substrates for the AD reaction.¹³ The required starting materials **6a,b** were prepared from **2a,b** through sequential deesterification, chlorination of the acid moiety, followed by treatment with benzyl alcohol and pyridine (Scheme 3).

Scheme 3

A reaction of **6a** with AD-mix- α furnished diol **7a** in 71% yield, however, the enantioselectivity was not improved (Scheme 4). On the other hand, employing **6b** improved the selectivity giving **7b** in 48% ee in comparison to **3b** (35% ee). The product **7b** was isolated as a crystal, therefore, optically pure **7b** could be obtained through one recrystallization from EtOAc (38% recovery).¹⁴

Scheme 4

The absolute configuration of **7b** was verified after conversion to the corresponding phosphonic acid **8** through hydrogenolysis of the dibenzyl phosphonate moiety (Scheme 5). The sign of the optical rotation of **8** was identical with that of a sample derived from **3b**.

Scheme 5

Having achieved the preparation of chiral β , γ -dihydroxyphosphonates, we next focused on their transformation into γ -amino- β -hydroxyphosphonate derivatives via cyclic sulfates (Scheme 6).¹⁵ Treatment of **7b** with SOCl₂, followed by oxidation with RuCl₃-NaIO₄¹⁶ afforded cyclic sulfate 9 in 89% yield. Ring-opening of 9 with NaN₃ in acetone-H₂O and subsequent treatment with 20% H_2SO_4 gave a mixture of γ -azide 10 and β -azide 11 in a ratio of 5:1 (42% yield). Although the exact reason for the γ -selectivity has remained unclear, it might be associated with the steric congestion at the β -position by the bulky dibenzyl phosphonate moiety. After the mixture of 10 and 11 was converted into the TES ether, Staudinger reaction with PPh₃ and subsequent hydrolysis were performed. At this stage, γ -amino- β -siloxyphosphonate 12 in pure form was provided in 61% yield after column chromatography on silica gel.^{17,18} Compound 12 would be a useful intermediate for transforming phosphonic acid analogues of carnitine.

Scheme 6

In conclusion, we have developed a new method for preparing a protected form of chiral γ -amino- β -hydroxyphosphonates through AD reactions of β , γ -unsaturated phosphonates. A study on transforming optically active γ amino- β -siloxyphosphonates into phosphonic acid analogues of carnitine is under progress and will be the subject of future reports.

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

- Golay, A.; Swislocki, A. L. M.; Chen, Y. D.; Reaven, G. M. *Metabolism* 1987, 36, 692.
- (2) McGarry, J. D.; Brown, N. F. Eur. J. Biochem. 1997, 244, 1.
- (3) For a review, see: Giannessi, F. Drugs Future 2003, 28, 371.
- (4) (a) Giannessi, F.; Chiodi, P.; Marzi, M.; Minetti, P.; Pessotto, P.; De Angelis, F.; Tassoni, E.; Conti, R.; Giorgi, F.; Mabilia, M.; Dell'Uomo, N.; Muck, S.; Tinti, M. O.; Carminati, P.; Arduini, A. J. Med. Chem. 2001, 44, 2383.
 (b) Giannessi, F.; Pessotto, P.; Tassoni, E.; Chiodi, P.; Conti, R.; De Angelis, F.; Dell'Uomo, N.; Catini, R.; Deias, R.; Tinti, M. A.; Carminati, P.; Arduini, A. J. Med. Chem. 2003, 46, 303.
- (5) (a) Ordóñez, M.; González-Morales, A.; Ruiz, C.; De la Cruz-Cordero, R.; Fernández-Zertuche, M. *Tetrahedron: Asymmetry* 2003, *14*, 1775. (b) Mikolajczyk, M.; Luczak, J.; Kielbasinski, P. J. Org. Chem. 2002, 67, 7872.
 (c) Wróblewski, A. E.; Halajewska-Wosik, A. Eur. J. Org. Chem. 2002, 2758. (d) Tadeusiak, E.; Krawiecka, B.; Michalski, J. *Tetrahedron Lett.* 1999, *40*, 1791.
 (e) Ordóñez, M.; De la Cruz, R.; Fernández-Zertuche, M.; Muñoz-Hernández, M.-A. *Tetrahedron: Asymmetry* 2002, *13*, 559. (f) Thomas, A. A.; Sharpless, K. B. J. Org. Chem. 1999, *64*, 8379.
- (6) For a review, see: Kolb, H. C.; van Nieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483.
- (7) (a) Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi, T.; Shibuya, S. *Tetrahedron: Asymmetry* **1995**, *6*, 365.
 (b) Yokomatsu, T.; Yamagishi, T.; Suemune, K.; Yoshida, Y.; Shibuya, S. *Tetrahedron* **1998**, *54*, 767.
- (8) Lohray and co-workers reported similar AD reactions independently. See: Lohray, B. B.; Maji, D. K.; Nandanan, E. Indian J. Chem., Sect. B 1995, 34, 1023.
- (9) Yokomatsu, T.; Yamagishi, T.; Sada, T.; Suemune, K.; Shibuya, S. *Tetrahedron* **1998**, *54*, 781.
- (10) The 1.4 g of AD-mix- α , purchased from Aldrich, was used for conversion of 1.0 mmol of the olefin, which contained 0.2 mol% of K₂OsO₄·2H₂O and 1.0 mol% of chiral ligand (DHQ)₂PHAL. However, an additional K₂OsO₄·2H₂O (0.8 mol%) was critical for AD reactions of β , γ -unsaturated phosphonates since the AD reaction of **2b** in the absence of the osmium salt resulted in slow reaction rates (20 h at 25 °C) and slight decrease in enantioselectivity (54% yield, 30% ee).
- (11) Compound **3c**: oil; $[\alpha]_D^{26} 2.14$ (*c* 1.03, MeOH). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (2 H, d, J = 8.8 Hz), 6.87 (2 H, d, J = 8.8 Hz), 4.38 (2 H, d, J = 5.8 Hz), 4.09 (4 H, q, J = 6.9Hz), 4.05–4.00 (1 H, m), 3.87–3.85 (1 H, m), 3.82 (3 H, s), 2.22–1.96 (2 H, m), 1.29 (6 H, t, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.4$, 163.5, 131.7, 122.2, 113.6, 72.4 (d, $J_{PC} = 14.9$ Hz), 66.8 (d, $J_{PC} = 4.5$ Hz), 65.5, 62.1 (d, $J_{PC} = 5.9$ Hz). ³¹P NMR (162 MHz, CDCl₃): $\delta = 29.36$. IR (neat): 3356, 1713, 1258, 1168 cm⁻¹. ESI-MS: m/z = 399[MNa⁺]. HRMS: m/z calcd for C₁₆H₂₅O₈NaP [MNa⁺]: 399.1185. Found: 399.1185.
- (12) (a) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805. (b) Corey, E. J.; Noe, M. C.; Guzman-Perez, A. J. Am. Chem. Soc. 1995, 117, 10817.

Synlett 2004, No. 14, 2505-2508 © Thieme Stuttgart · New York

- (13) Kobayashi and co-workers observed that a related AD of α-olefins with dibenzyl phosphonate showed higher enantioselectivity than the corresponding diethyl phosphonate. See: Kobayashi, Y.; William, A. D.; Tokoro, Y. J. Org. Chem. 2001, 66, 7903.
- (14) Compound **7b** (for a sample of 100% ee): mp 93–95 °C; $[\alpha]_D^{22}$ –7.92 (*c* 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.32 (10 H, m), 5.12–4.96 (4 H, m), 3.70 (1 H, qd, *J* = 4.2, 14.9 Hz), 3.59 (1 H, td, *J* = 5.6, 11.3 Hz), 2.04–1.96 (2 H, m), 1.13 (3 H, d, *J* = 6.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 136.0 (d, *J*_{PC} = 5.5 Hz), 135.9 (d, *J*_{PC} = 5.0 Hz), 128.7, 128.6, 128.6, 128.1, 128.0, 70.7 (d, *J*_{PC} = 17.4 Hz), 70.4 (d, *J*_{PC} = 5.6 Hz), 67.6 (d, *J*_{PC} = 6.4 Hz), 30.5 (d, *J*_{PC} = 139.6 Hz), 18.9. ³¹P NMR (162 MHz, CDCl₃): δ = 31.91. IR (KBr): 3359, 2968, 1214 cm⁻¹. ESI-MS: *m/z* = 351 [MH⁺]. HRMS: *m/z* calcd for C₁₈H₂₄O₅P [MH⁺]: 351.1361. Found: 351.1352.
- (15) (a) Lohray, B. B. Synthesis 1992, 1035. (b) Bittman, R.;
 Byun, H.-S.; He, L. Tetrahedron 2000, 56, 7051.
- (16) Gao, Y.; Sharpless, K. B. J. Org. Chem. 1988, 110, 7538.
- (17) Compound 12: oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.28 (10 H, m), 5.03 (2 H, dd, J = 9.1, 11.8 Hz), 4.95 (2 H, dd, J = 8.2, 11.8 Hz), 4.02–3.87 (1 H, m), 3.15–3.11 (1 H, m), 2.06–1.97 (2 H, m), 1.00 (3 H, d, J = 6.6 Hz), 0.91 (9 H,

t, J = 7.9 Hz), 0.58 (6 H, q, J = 7.9 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.2$ (d, $J_{PC} = 5.4$ Hz), 128.5–127.7 (aromatic), 71.6, 67.2 (d, $J_{PC} = 6.6$ Hz), 67.1 (d, $J_{PC} = 6.5$ Hz), 51.3 (d, $J_{PC} = 7.6$ Hz), 30.1 (d, $J_{PC} = 138.0$ Hz), 17.0, 6.8, 4.9. ³¹P NMR (162 MHz, CDCl₃): $\delta = 30.81$. ESI-MS: m/z = 464[MH⁺]. HRMS: m/z calcd for C₂₄H₃₉NO₄SiP [MH⁺]: 464.2386. Found: 464.2382.

(18) The chemical structure of **12** was determined after the conversion into γ -amino- β -ketophosphonate **13** through tosylation, desilylation, and oxidation with PDC. In ¹H the NMR spectrum (400 MHz, CDCl₃) of **13**, a signal ascribed to the Me group at the γ -position was observed at $\delta = 1.18$ ppm as a doublet (J = 7.1 Hz) but not as a singlet corresponding to regioisomeric β -amino- γ -ketophosphonate (Scheme 7).

Scheme 7