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REACTIONS OF HO, WITH NO, OH AND HO, STUDIED BY EPR/LMR SPECTROSCOPY 
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A combined EPR/LWR spectrometer and fast-flow system has been used to investigate the reactions HO, + NG(k,). 
110, + GH(k,). HGz + HOZ(k3) at room temperature. The rate constants have been measured: X-, = (7.0 f 0.6) X 10-r’ 
~1113 s-’ (P = 7-13 Torr);k, = (5.2 f 1.2) X lo-” cm3 5-l (P = S-lOTorr);k, = (1.65 +_ 0.3) X lo-” cm3 s-l (P= 

2.1-24.9 Torr). The conclusion is drawn from analysis of the literature and the present work that A-, and k, do not dc- 
pend on pressure up to I stm. 

I_ Introduction 

The reactions of “odd hydrogen” (H, OH, HO,) 
play a central role in combustion [1,2] and in at- 

mospheric chemistry [3] _ Therefore studies of the 
reactions which convert one of these radicals to an- 
other, e.g. 

HO2 + NOk’. NO2 + OH, (1) 

and the reactions between these radicals, 

H02+OH~H20+02, (2) 

HO, + HO, k HzO, + 02, (3 

are of considerable interest. 
Reaction (1) has been studied very well. Fair agree- 

ment in the values of k 1 at room temperature has 
been obtained in recent works ((7-10) X 1O-1” cm3 
s-l) [4-9]_ Reactions (2) and (3) have been studied 
much less successfully. The rate constants have an un- 

certainty of about one order of magnitude. Further- 
more a pressure dependence of k2 and k3 has been 
assumed in some papers. 

Reactions (l)-(3) were investigated here at room 
temperature using a combined electron paramagnetic 
resonance/laser magnetic resonance (EPR/LMR) spec- 
trometer [ lo,1 l] . Recently this apparatus was used 
to study NF, reactions with 0 and N atoms [12]. 

2. Experimental 

The EPR/LMR spectrometer was used in combina- 
tion with a fast-flow system. The apparatus is shown 
in fig. 1. The detection section was placed in the EPR 
cavity and in the optical cavity of a CO, laser. The 
absorption of infrared and 3 cm radiation occurred 
along a 3 cm zone where the modulation rods were 

set. The EPR cavity hole was 1.6 cm diameter to reg- 
ister an electric dipole EPR absorption (OH,NO). The 

reactor was a quartz tube 45 cm long and 2.5 cm inner 

diameter. The walls were coated with teflon. The radi- 
cals were produced in a movable source [ 13]_ 

The hydroperoxyl radicals were obtained at 2-3 

Torr in the reaction 

F+H,O, +HF+HO, (4) _ - 
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Fig. 1. Espcrhnental apparatus. 
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and at 8-25 Torr in the reaction 

H+O,+M+HO,+M. (5) 

II and F atoms were generated in a microwave dis- 
charge from H, and CF, respectively in the presence 
of a large excess of He (more than one hundredfold)_ 
The absolute atom concentrations were measured by 
means of EPR [ 141. A small amount of oxygen mole- 
cules (==lOis cm-3) was admitted into the detection 
zone to reduce the relaxation times of the magnetic 
sublevels of H atoms. Under these conditions atomic 
hydrogen could be detected at a concentration of 
10’ 1 cn~-~. The radical injector inner tube was made 
from teflon for H atoms and from duralumin for F 
ilIOlllS. 

Calibration plots of LMR signal versus initial atom 

concentration [H] o and [F] o were made for every 
run (fixed values of pressure, [02] or [H202])_ All 
these plots have linear initial parts. Thus complete 
atom consumption occurred and secondary reactions 

H + HO, + OH + OH, 

+Hz+02, (6) 

or 

F+HO,-+HF+O,, (7) 

were absent in these cases. In all our experiments com- 
plete atom consumption took place when [HO,] 
< 10r7- cni-z. 

The OH radicals were obtained in reactions (5) and 
(G), when the calibration plots showed appreciable 
curvature. The absolute OH concentration was mea- 
sured by means of EPR [ 141. At the radical injector 
entrance we observed HO2 and OH only, and with an 
uncertainty of 10% the relation [H]” = [HO,] + 
[OH] was fulfilled. 

The purities of gases used were 99.99% (He), 
99.9S% (0,) 99.5% (CFG) and 99.98% (H,). The 
concentration of H307 in solution was 99%. The de- _ _ 
scription of additional purification of the gases, mea- 
surements of atom and radical concentrations, etc.. 
is given elsewliere [ 131 _ 

The kinetics were obtained by varying the distance 
between the radical injector and the detection zone. 
The flow velocity was in the range 100-2200 cm s-r _ 
The experiments at low HO, concentration (<lOI? 
cm-3) showed that HO, wall decay occurred with 
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Fig. 2. (a) Plot of LhlR sipal JHO~ versus contact time for 
the reaction HO2 + NO. (I) INO] = 0; (2) [NO] = 1.23 
x lOI3 c1nm3;(3) [NO] = 3.7 X lOI cm-3;(2’.3’) account- 
ing 11~ duct velocity (Poiseuik) profile [ 161. (b) Plots of 

lHO2 ] (1) and [OH] (2) ver.ws contact time (P = 9.6 Torr, 
1021 = 1.1 x 10’7 cm-3). 

a rate constant kfioz = 24 s-r (see also ref. ]15])_ 
Reaction (1) was investigated at pressures 7-10 

Torr. Reaction (5) was used as the HO? source, and 
[H0210 < lOI2 cm-3_ Some kinetic curves are shown 
in lig. ?a. The influence of secondary process (3) was 
negligible because k, [NO /k’, [OH] 3 1 and the OH 
wall decay was large (kz* 1 = 60 f 10 s-r). The OH 
wall decay was measured when the reaction H + NO, 
-+ OH + NO was used as the OH source. A series of 
seven runs gave an average value of 

k 1 = (7.0 + 0.6) X lo-” cm3 s-r_ 

Reaction (2) was studied at pressures S-10 Torr. 
The measurements were carried out at [HO21 o = (5-9) 
X 1012 cm-3 and [OH] o = (3_-7) X 101? cm--s_ Exam- 
ples of plots of HO, concentration (curve 1) and OH con- 
centration(curve 25 versus contact time are given in 
fig_ 2b1 The OH and HO, concentrations were compara- 
ble and therefore the reactions HO, +-HP-, and OH + 
OH can be neglected because reaction (2) is much faster. 
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Fig. 3. Second-order dcc>y plot for the reaction HO? + Ii02 
(f’= 22.5 Torr. [HOz]o = 1.1 x lOI cmm3, u = 194 cm s-l)_ 

Eight pairs of plots (see fig. 2b) were considered. On- 
ly reaction (2) and heterogeneous OH decay with I;:” 
= 60 s-l were taken into account, giving the average 
value 

k, = (5.2 -t 1-2)X lo-” cm’ s-* _ 

Reaction (3) was investigated when the initial HO, 
concentration, [H0210, was equal to the concentra- 
tions of H or F atoms consumed_ The typical second- 
order decay plot for HO, is shown in fig. 3. The ex- 
periments were carried out at pressures 2.1-24.9 Torr 

Table 1 

hlessurcments of rate constant of the reaction HO1 + 1102 

and at [H0210 = 4 X 1012-6.8 X 1013 cm-s_ At 
the lowest HO-, concentrations HO? wall decay was 
taken into acc&nt. The results are gven in table 1. 
One can see from this table that within the error lim- 
its the value of the reaction (3) rate coefticient is con- 
tant in the pressure range 2.1-24.9 Torr: 

k, = (1.65 + 0.3) X lo-” cm3 s-l _ 

3. Discussion 

The value of k 1 obtained in this work is in agree- 

ment with the results of recent studies [4-g]. This 
fact confirms the reliability of information obtained 
by means of the technique used. 

The value of k2 has been measured earlier at room 
temperature in many places [7,9,16-32]_ The experi- 
ments carried out at about 1 atm gave a high value of k2 
= (l-2) X lo-lo cm3 s-l [16-18,22-24,28,30,32] _ 
At low pressure (l-3 Torr) a low value was obtained, 
k3 = (2-7) X IO-” cm3 s-l [19-21,27,29] _ There- 
f&e some authors came to the conclusion that kz de- 
pended on pressure [22,23]. In only one case was a 
method for measurement of k3 at different pressures 
used; Temps and Wagner obt&ed k2 = (6.7 i 2.3) 

P (Torr) HO2 source lo-” [HO2 lo (cm3) 10’2k3 (cm3 s-1) 

2.1 P + H202 10 2.1 
2.15 I: + H202 68 1.65 
2.7 F + H20z 7.5 l-6 
8.5 H + O2 + M 4 1.8 
9.3 H+02+M 6 1.5 
9.8 H+02+hl 30 a) 2.0 

12 -H+02+hl 7 1.2 
125 H+02+hl 7.5 2.0 
13.8 H+02+M 16 1.2 
15 H+02+hl 11.5 1.85 
19.6 H+02+hl 9 1.45 
21.1 H+02+hl 175 1.9 
20.5 H+02+M 15 1.2 
22.5 H+O?+hhl 11 1.9 
24.9 H+02’hi 13 1.7 

k3;JV = (1.65 + 0.3) x lo- I2 cm3 s-l 

a) HO? was measured by means of cornparis& with tbc LhlR spectrum of NF2 radicals [ 13 J. 
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X IO-11 cm3 s-1 at P = !_6,5,10 Torr [31] _ Our 

value of k-, (8-I 0 Torr) is in good agreement with 
this result: 

In previous studies relative measurements were 
made with respect to reference reactions, or computer 
simulations were used. For example De More [30] 
has used the value kj = 3.8 X lo-” cm3 s-l to ob- 
tain k, = 1.2 X lo-10 cm3 s-l (P = 1 aim). If we 
assume the more reliable value k3 = (1.6-l-8) X lo-l2 
cm3 s-l then the value from ref. [30] becomes k2 

= 7.7 X 10-l 1 cm3 s-l. Another example is the low- 
pressure study of Burrows et al. [7]. The authbrs of 
ref. [7] used the value 8 X lo-l3 cm3 s-l for the 
rate konstant of the reference OH + H30Y reaction. 
The value accepted now is (1.7-l -8) 2 l&12 cm3 
s-l [33,34] _ Therefore thevalue5.1 X 1O-il cm3 s-l 
obtained in ref. [7] becomeskq = 1 X 10WIO cm3 s-l. 
Thus the revision of previous data mixes up the low- 
pressure and high-pressure results. 

The pressure dependence of the rate constant of 
reaction (2) is doubtful_ 

The experimental values of k3 obtained in different 
studies are given in fig. 4. The data in fig. 4a are re- 
lated to the low-pressure range (2-Z Torr). The re- 
sults Gbtained in this work (0, and He as diluent 

gases) are in good agreement with a recent diode la- 
scr study of Thrush and Tyndall(7-20 Torr, 0, as 
diluent gas) [3_6] _ Satisfactory agreement is obtained 
with results of refs. [37,38] . Bur the value of k3 ob- 

tained in the present work at pressures 2-3 Torr is 
in substantial disagreement with the results of the 
early LMR study of Thrush and Wilkinson (24 Torr, 
He and Ar as diluent gases) [39] _ 

The data for the high-pressure range (25-1500 
Torr) are given in fig. 4b. All these values have been 
obtained by means of the ultraviolet absorption tech- 
niquc. The ratio of kg and the optical absorption cross 
section u near 230 nm has been measured in these 
works. It seems that the large difference in the values 
obtained (1 A-4.7) X 1O-12 cm3 s-l is connected 
with uncertainty provoked by the difficulty of the 
determination of u_ In this pressure ran@* emphasis 
on the effect of pressure on X-3 was placed in four 
works [37,38,40,453. The weak but evident pressure 
dependence ofk, was found in the study of Sander 
et al. 011ly [40]. 

We are of the opinion that the combined results 
given in fig. 4 show that it is likely that the pressure 
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Fig. 4. Esperinlental vslucs of the rate constant of the reac- 
tion HO2 + HOz_ (a) Low pressure (2-25 TOIT): open sres, 

this work (02 and He 3s diiucnt gases); counter-hatched area, 

ref. [36] (02); -_ ref. [?7] (02); *, ref. [38] (N2); o, ref. 

1391 (Hekfi+ refs. [7,39] ; 0, ref. 1351. (b) High pressure 
(25-1500 Tom): 0, ref. (401 (SF&; -. ref. [40] (He): hatch- 
cd area and 4. ref. (381 (Nz);+, ref. [38] (He); GI. ref. 1411 
(Nz); *. ref. [??I (02 + Hz),v, ret [42] (N2);wr ref. 1431 
(N2); 8, ref. (441 (Hz); counter-hntched area, ref. [45] (Hz); 

X. ref. [461 (Hz); open area, ref. [37] (0,); *, ref. [47] (He). 

dependence of the rate constant of the HO7 self- 
reaction in the range l-l 500 Torr is absent. 

Nevertheless reaction (3) probably proceeds via 
an H-,0, intermediate_ The observed negative tem- 
perature dependence of k3 [37,43,48,49] confirms 
this assumption. If we assume that k3 does not de- 
pend on pressure until 15Ob Torr the lifetime of an 
intermediate is shorter than the time between cOlli- 
sions, e.g. 7 < lo-lo s. FTIR experiments [50] and 
Nangia and BenSon’s calculations [5 l] show that the 
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hydrogen-bonded cyclic dimer (HO?), is the only _- 
possible iritermediate. 

R&tion (3) can proceed along two channels: 

HO,@ ‘A”) + HO?@ ‘A”) 
k3 

1 

H202 + 02C3x,) 

+ 37.6 kcal/mole, 

(3’) 

H,Oi -I- O&) 

+ 15.1 kcal/mole. 

(3”) 

We believe the (3”) channel is dominant. If HO, radi- 
cals approach on the triplet potential surface, a po- 

tential barrier of some kcal/mole must exist, but a 
negative temperature dependence of k3 has been ob- 
served. If true, it is necessary to take into account 
the secondary reactions: 

HO,(%‘A”)+ 01(1+H01(~2A’) -I- O#C-), g 

k = 1 7 X 10-12 cm3 s-1 - 
8 - El21 ? 

k, = 3.3 X lo-” cm3 s-l [53] ; 

HO@A’) -I- M2 HO,(?A”) + M, 

kg = 2.2 X IO-‘” ~111~ S-I (M = He) [54] ; 

HO@ ‘A’) + 02(1~g) 
x-,p 

H + 20,(%;), 

k 10 = 1.7 x 10-10 cm3 s-1 [52] ; 

HO,(?A”)+HkOH+OH, 

k,, = 3.2 x 10-l’ 0113 s-l [55] ; 

HO,@ ‘A”) -I- OH% Hz0 + 0, , 

k,, = 5.2 X IO-” cm3 s-l (this work). 

w 

(9) 

(10) 

(11) 

(12) 

Calculations assuming the scheme (3”), (8)-(12) 
show that the contribution from processes (S&(12) 
is negligible in our experiments due to the fact that 

W021/Wl -e 1: 
O,(l4,) EPR detection was impossible because 

of the relatively low sensitivity (zz5 X 1013 cm-s). 
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