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T H E  I N F L U E N C E  OF I S O L A T E D  L A R G E S T  E I G E N V A L U E S  O N  T H E  
N U M E R I C A L  C O N V E R G E N C E  OF T H E  CG M E T H O D  

A. Yu. Yeremin  and I. E. Kaporin UDC 512.643.5 

This paper considers the dependence of the converyence history of the CG method on th.e largest eigenvalues 
of a symmetric positive-definite matrix. It is demonstrated that, in solving ill-conditioned linear systems, the 
reproduction of largest eigenvalues can be so intensive that they cannot be treated as isolated. On the other 
hand, frorn the moment  the smallest isolated eigenvalues start  to g o v e r n  the numerical convergence of the CG 
method, the convergence is mainly influenced by the smallest Ritz values. Bibliography: 2 titles. 

1. S ta tement  o f  the  problem 

Consider the application of the CG method to a very large (preconditioned) system 

M x  = b, ( I . I )  

where  the matrix AI is symmetric and positive definite (SPD), i.e., 

A[  = ~ I  T > O. 

Theoretically, the CG metho(l takes advantage of the occurrence of isolated eigenwdues on bo th  sides of 
the  spectrmn o f / l / .  Therefore, in exact arithlnctic, it needs consi(lerably fewer iterations to converge than 
predicted t)y the following stan(lard estimate of the (:onvergence rate in terms of the smallest and largest 
eigenvahtes of :lI: 

< (1.2) 
- -  A,, +Al  ) " l l " . l ln,- ,  T~,( ~,7_~ 

Here, n is the order of the matrix M, and 

0 < s  _<"'_<A,~ 

are the nondecre~usingly ordered eigenwllues of AI. 
However, in floating-point arithnmtic, tile isolated largest eigenvalues of Al are typically responsible for 

a considerable increase in the number of CG iterations (as coinpared to the "exact" counterpart  of the CG 
lnethod).  This increase can be so drmnatic that the fact that the largest eigenvalues of Al are isolated 
must  be considered a drawback of the preconditioning used. The present paper provides some numerical 
evidence to suppor t  this claim. 

2. T h e  uuder ly ing  Lanczos process and Ritz values 

A comparison of the exact eigenvalues of' M with the sequence of its Ritz values (which are the eigen- 
values of the tridiagonal matrix T~ obtained at the kth iteration of the CG method) leads to the following 
conclusions. 

The eigenwtlues of 21I can tyl)ically be divided into the following three groups: 
(a) isolated smallest eigenvalucs; 
(b) clustere(l cigenvalues; 
((') isolated largest eigenvalues. 
The negative effect of the presence of isolated largest eigenwdues in the spectrum of k i  when solving 

very large problems by the PCG method can be explained ~us follows. 

Translated from Zapiski Nauchnykh, Seminarov POMI, 17ol. 248, 1998, pp. 5-16. Original article submitted April 
24, 1998. 

1072-3374/00/1014-3231 $25.00 @2000 Kluwer Academic/Plenum Publishers 3231 



At the  kth CG iteration, the corresponding Ritz values, i.e., the k eigenvalues of the matr ix  Tk, can 
similarly be divided into the following three groups: 

(a) the Ritz values that  accurately approximate the smallest eigenvalues of M; 
(b) the Ritz values that  lie within the interval of the clustered eigenvalues of M but approximate  no 

eigenvalue of M sufficiently accurately; 
(c) the Ritz values that  accurately approximate the isolated largest eigenvalues of M but, possibly, occur 

with redundant  nmltiplicities. 
Usually, the larger an eigenvalue in the group (c), the greater its nmltipticity. Also, this multiplicity 

grows linearly with the number of iterations. Furthermore, this multiplicity also grows as the precision of 
the computer  arithmetic decreases (e.g., when passing from the double-precision version of the rout ine  to 
the single-precision one). 

Finally, the number of largest eigenvalues that  can be regarded ms "isolated" grows with the i terat ion 
number  k because the i th  eigenvalue must be treated as isolated whenever 

IAi - Ai+ll _ O(k_2), [Ai - A':-'I = O ( k - ~  (2.1) 
�9 '~i /~i 

The total number of all of the redundant  multiplicities of the largest Ritz values corresponds ra ther  
exactly to the number of e x t r a  CG iterations performed i n  the presence of floating-point errors (c.f. [2]). 

Therefore, if the preconditioning used is "unstable" (i.e., M has many isolated largest eigenvalues, which 
are responsible for the loss of orthogonality in the PCG recurrence relations), then many (50% or more) of 
the required iterations are actually performed as a consequence of floating-point errors. 

3. M a i n  r e su l t s  

In the present paper, we consider some numerical examples that  confirm the following claims. 
(a) In solving large ill-conditioned problems, the copying of the l a r g e s t  eigenvalues can be so intensive 

that  the gaps t)etween them become ahnost negligible. 
(b) As long as the copying of the s m a l l e s t  isolated eigenvalues does not affect the convergence of the 

CG method,  the actual convergence rate is properly described by the following estimate, which takes into 
account only the smallest eigenvalues of the preconditioned matrix (of. [1, 2]): 

I]'kllM-~ < rain xti=l ,  ,x~, c =exp(1) .  (3.1) 
I I r0 l lM-  - 0__y<<k ~ ' ~ , , + ~ "  t ~ k - J k  A , , - A t  ) 

(c) As soon as the isolated s m a l l e s t  eigenvalues start to reproduce themselves and this reproduct ion 
starts to affect convergence, the actual convergence rate is properly described by the estimate 

V l  j ( epq ,~ 
I r k [ l M - '  < min , l i= t  ~ ,  e = exp(1), (3.2) 
IrollM-* - 0 _ < j < ( k  T, . r ~ '  to--  3 , ,  i t n - - p !  ] 

which involves the smallest Ritz values 
0 < ~ 1  __-~ . - -  ---~ ILk, 

of the underlying Lanczos process with account of their multiplicities. In (3.1) and (3.2), the symbol "<<" 
means tha t  one takes the first local nfininmm found for j = 0, 1 , . . . .  

4. T h e  d e s c r i p t i o n  o f  t e s t  m a t r i c e s  

Ill our  imlnerical tests, we used a family of matrices parametrized by skx parameters that specify three 
segments eontailfing the spectrmn of the lnatrix and the nuint)ers of eigenvahtes helonging to each of them. 
Within (',very segment, the eigenvalues are uniformly distributed, i.e.. 

ki = 70 + (71 - 7o) i  - 1, 
, n t  L 

i - m L  - 1 
Ai  = "yl + (7':  - " / t )  

'I/, - -  7 r t L  - -  n I ,  R - -  1 '  

Ai = "72 + (73 - "72) i - n + m , n ,  
'Ill, R 

i = 1 ,  . . . .  I I I L ;  

i = "HIL "~ 1 . . . .  , n - -  m R  - -  1; 

i = n - -  m R - 4 - 1 , . . .  ,'n, 
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where we always set 70_ = 1. Thus, 

whereas m L  and ' m R  are the numbers of the isolated smallest and largest eigenvahms, respectively. We 
introduce the diagonal matrix 

A = Diag(Xt,. . .  , ~ )  

and  consider test matrices of tile form 

. i l l =  ( I - - 2  v v T ' ~ A ( I - - 9 v v r ' ~ ,  
77v) t, 

where, in general, v is an arbitrary nonzero vector. However, in our experiments, we always used the 
simplest choice 

v = [ 1 , 1 , . . .  ,1] T. 

Obviously, the eigenvalues of 11,[ are just ~1,.-- , ~n because, for any v, the transformation matr ix  is an 
elementary reflection matrix. The latter matrix can be stored using O(n) memory locations and multiplied 
by a vector in O(n) operations. Thus, using this family of matrices, one can run nontrivial numerical 
experinlents with the CG method, which require nearly minimuul computat ional  resources and, at tile 
same time, involve matrices with completely predetermined distributions of eigenwdues. 

In tile test problenls of the tbrm (1.1) described below, we used the right-hand sides 

b = M.r.,  

where tile salne exact solution :c. was chosen as follows: 

:r. = in,  n / 2 .  , , / 3 , . . .  , 1] T. 

In the CG algorithm, tile zero initial guess was used. 

5. H o w  m a n y  e x t r a  i t e r a t i ons  can  be  r e q u i r e d  d u e  to  t h e  o c c u r r e n c e  o f  i s o l a t e d  la rges t  
e i genva lues?  

In order to destroy the orthogonality properties of tile "exact" CG recurrence relations; it is unnecessary 
to take, say, k,,. = 10 ~ ~,~-t = 10 s, A,,._~ = 103, and A~ E (0, 1), i = 1 , . . .  , n - - 3 ,  as was done in [2] and 
other  papers. In accordance with (2.1), in solving ill-conditioned systems (which may require thousands 
of iterations to converge) it is desirable that  the eigenvahms of the matr ix  be distributed quite densely 
to the left of An. Otherwise, after several tens (or hundreds) of iterations, orthogonality will be lost as a 
consequence of tile reproductiou of tile largest Ritz values. 

Consider tile following test problems. 

P r o b l e m  1. P r o b l e m  2. P r o b l e m  3. 

n = 1 0 0 0 0 0 ,  n = 1 0 0 0 0 0 ,  n, = 100000, 

l l tL = 200, I#Z L = 200. Ill L ~-- 99.00, 

ms~ = 20, ,m~ = 50, 'm.~ = n - 200, 

7o = 0.001. 70 = 0.001. % = 0.001, 

^/l = 0 . 5 ,  "/t = 0 . 5 ,  "It = 1 . 0 ,  

72 = 1.0, 72 = 1.0, 72 = 1.0, 

7a = 10.0. 3'a = 10.0. 7a = 10.0. 

Tile gaps between neighboring largest eigenvalues in Problenls 1 and 2 are only 5% and 2% of ,~,~, 
respectively. Tlmse problems are conlpared with Problenl 3, whictl has the same condition number  10 t, but 
its eigenvahles are distributed very densely to tile left of A,~. 
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FIc .  1. Magnitudes of Ritz wflues vs. their nmnbers for Probleins 1-3. 

Upon  convergence with relative accuracy ~" = 1 0  - 7  (since we used single-precision floating-point arith- 
metic, there was no sense in taking smaller c), we c()mputed all of the eigenvalues of the tridiagonal inatrix 
obta ined at the last iteration. From the results of [1] and [2], it follows that  the "theoretical" mlmber  of 
i terations can be est imated as the nmnber of (nunmrically) distinct Ritz values. For this reason, the total 
number  of extra Ritz copies for all of the eigenwflues was accepted as tile number  of "redundant" iterations, 
which were caused by fioating-point errors. 

In Fig. 1, for the three test problems described above, the plots of the inagnitudcs of tile Ri tz  values 
#i versus their mmlbers i are presented. For the first two problems, the reproduction of tile largest Ritz 
values obviously results in "staircase" shapes of the curves. Each "footstep" corresponds to an eigenvalue 
of M,  while its length corresponds to tile nuinber of its Ritz copies. For Problem 1, convergence was 
achieved in 355 iterations, 219 of which were redundant. For Problem 2, tile corresponding numbers  were 
401 and 241, respectively. On the other hand, for Problem 3, the CG Inethod converged in 425 iterations, 
no Ritz value was copied, and tile actual number  of iterations was close to tile theoretically predicted one. 
The corresponding curve in Fig. 1 is smooth and very similar to a properly scaled and shifted plot of the 
fimction 1 - cosCr ). (The latter fimction arises when the Ritz values are tile roots of a translated Chebyshev 
polynomial.) 

These observations imply tile following conclusions. First, in order to improve the standard es t imate  
(1.2) of the conw~rgence rate of the CG method,  one should take into account  in some nontrivial way 
(see, e.g., (3.1)) only the smallest isolated eigenvalues but  not the largest ones. Second, in considering 
large ill-conditioned t)roblems, tile effi~ct of a good preconditioning must be twofbld. On the one hand,  the 
smallest eigenwflues nmst be "st)arsified," and, on the other hand, the largest eigenwflues must be made 
more "densely" distributed. 

6. N u m e r i c a l  t e s t i n g  o f  s o m e  C G - c o n v e r g e n c e  e s t i m a t e s  a c c o u n t i n g  for  t h e  i s o l a t i o n  o f  -the 
smallest eigenvalues 

As follows from the above discussion, any practical CG-convergenee es t imate  nmst ignore tile fact that  
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the largest eigenvalues are well separated.  Indeed, the "theoretical" gain of taking into account the fact 
that  the largest eigenvalues are isolated almost  vanishes as a consequence of the intensive copying of the 
corresponding Ritz values in the presence of  floating-point errors. This conclusion leads us to the estimate 
(3.1), which stems from the results of [1] and [2]. However, as conjectured in [2] and confirmed by extensive 
numerical testing, this estimate is only valid until the smallest Ritz values start to be reproduced. Otherwise, 
only the est imate (3.2) proposed in the present paper describes the actual behavior of the error measure 
that the CG method at tempts to minimize. Furthermore, this estimate involves the quantities #~, # 2 , . . . ,  
which are readily available at each of the  CG iterations (in contrast to the exact eigenvalues, which are 
unknown until they finally converge). Thus,  (3.2) is a realistic upper bound for the quantity IIrA.I]M-,, 
which cannot be measured directly in real-life computations. Nevertheless, the estimate (a.1) is useful in 
developing practical criteria of preconditioning quality. 

In order to demonstrate  the relevance of  the estimates (1.2), (a.1), and (3.2) to the actual convergence 
history of the CO iteration, we consider the  following test  problem. 

P r o b l e m  4. 

n = 100000, .nt L = 200, r n R  = 100, 70 = 0.001, 71 = 0.5, 72 = 1.0, 73 = 10.0. 

The right-hand side and initial guess for this problem were chosen as described above. Once again this 
is a problem whose largest eigenvatues are well separated. However, despite disregarding the potential 
convergence acceleration due to the isolation of these eigenvalues, both estimates (3.1) (partially) and (3.2) 
(completely) predict  the CG convergence behavior correctly. 
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FIG. 2. CG error es t imates  for Problem 4; ~: actual error; +: estimate 
in terms of the condition number; C]: estimate involving tile smallest 
eigenvalues; x: est imate involving the Ritz values. 
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In Fig. 2, we present the plots of the decimal logarithm of I]rlr and of the right-hand sides of 
inequalities (1.2), (3.1), and (3.2). Up to the  130th iteration, estimates (1.2) and (3.1) simply coincide and 
considerably overestimate the actual error. At the same time., the new estimate (3.2) is much more accurate 
than the previous ones. This can easily be explained by the fact that, at the beginning of the CG iteration, 
the smallest Ritz values are much larger t h a n  the corresponding exact smallest eigenvalues of M. 

At iterations between the 130th and 180th, the three estimates give practically the stone bounds because 
the smallest Ritz values nearly coincide with the smallest eigenvalues of M, but the number  of iterations is 
not large enough to reveal the superiority of estimates (3.1) and (3.2). 

At iterations between the 180th and 310th, estimates (3.1) and (3.2) still ahnost coincide (though (3.2) 
is slightly more accurate) and follow the actual  convergence curve quite closely. However, the standard 
estimate proves to be an overestimate, and its plot is much more flat. In this range, both estimates (3.1) 
and (3.2) take full advantage of accounting for the isolation of the smallest eigenvalues. 

However, s tar t ing from the 310-320th iterations, the situation changes. In this stage, the smallest Ritz 
values start  to be reproduced, which slows down the convergence rate considerably. Therefore, the estimate 
(3.1) becomes too optimistic and actually fails. On the contrary, the estimate (3.2) is still valid and reveals 
all the details of the convergence history. At this stage, the estimate (3.2) is still much more accurate 
than the s tandard estimate (1.2), but the (average) slopes of these curves become more similar to each 
other. Such behavior is typical for the cases where the required relative accuracy e approaches the machine 
precision (which is approximately equal to 10 .7  in our case). 

7. C o n c l u d i n g  remarks  
The results presented in this paper deinonstrate  that, in solving very large ill-conditioned systems of 

linear equations by the CG method, the preconditioners nsed must result in the largest eigenvalues being 
distributed sufficiently densely. An exmnple of a good preconditioning strategy satisfying this requirement 
is provided by the block SSOR (or a similar) method. 

Formally, if the matr ix M is of the fbrm M = L - t  AL -T,  i.e., it results from preconditioning the original 
matrix A with a matr ix  B = LL T such tha t  

B ~ A, trace (B - I  A) ~ n, 

then B must be a "stable" at)proximation of A, i.e., the inequality 

B -~ < (1 +-~)A -1 

must be satisfied with a sufficiently small ~, > 0. 
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