Ruthenium-Catalyzed C–H Bond Functionalizations of 1,2,3-Triazol-4-yl-Substituted Arenes: Dehydrogenative Couplings Versus Direct Arylations

Lutz Ackermann,* Petr Novák, Rubén Vicente, Valentina Pirovano, Harish K. Potukuchi

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany Fax +49(551)396777; E-mail: Lutz.Ackermann@chemie.uni-goettingen.de

Received 18 April 2010

Dedicated to the 90th birthday of Prof. Rolf Huisgen

Abstract: The chemoselectivity of ruthenium-catalyzed C–H bond arylations on triazol-4-yl-substituted arenes was found to depend on the substitution pattern of both substrates. While various aryl chlorides led to products stemming from direct arylations, *ortho*-substituted aryl halides in combination with *ortho*-alkylated arenes preferentially resulted in oxidative homo-couplings.

Key words: arylations, C–H activation, dehydrogenation, ruthenium, triazoles

Huisgen 1,3-dipolar cycloaddition reactions are among the most versatile tools for the synthesis of functionalized heterocycles.¹⁻⁴ Particularly, azide-alkyne [3+2] cycloadditions have recently been widely employed for post-synthetic modifications of biologically active compounds or functional materials, since excellent chemoselectivity and site-selectivity could be accomplished with copper^{5–7} catalysts.8 Thus, considering the increasing practical importance of the resulting 1,4-disubstituted 1,2,3-triazole scaffold for synthetic chemistry,⁸ we became interested in exploiting this N-heteroaromatic moiety as directing group for a subsequent post-synthetic functionalization, ideally via a modular C-H bond functionalization strategy. As a result, we previously disclosed rutheniumcatalyzed^{9,10} direct arylations¹¹ of arenes displaying triazol-1-yl substituents as directing groups.12-15 In continuation of our research program on sustainable C-H bond functionalizations,^{16,17} we probed the use of 4-aryl-substituted 1,2,3-triazoles 1 as substrates for directed arylations, on which we wish to report herein.¹⁸ A notable feature of this approach is represented by its site-selectivity being complementary to copper or palladium-catalyzed¹⁵ C–H bond functionalizations (Figure 1).

Figure 1 Complementary site-selectivities in post-synthetic C–H bond functionalizations of 1,2,3-triazoles 1

SYNTHESIS 2010, No. 13, pp 2245–2253 Advanced online publication: 18.05.2010 DOI: 10.1055/s-0029-1220010; Art ID: C02010SS © Georg Thieme Verlag Stuttgart · New York Moreover, these studies resulted in the development of novel reaction conditions for ruthenium-catalyzed¹⁹ dehydrogenative homo-coupling reactions²⁰ of disubstituted arenes **1**, which involved the use of *ortho*-substituted aryl halides **2** as sacrificial oxidant, and thereby provided access to biaryl derivatives **4** (Scheme 1).

Scheme 1 Chemoselectivity of ruthenium-catalyzed C-H bond functionalization: (a) direct arylation versus (b) oxidative homocoupling

At the outset of our studies, we tested direct arylations of 4-aryl-1,2,3-triazole **1a** ($\mathbb{R}^1 = \operatorname{Oct}$; $\mathbb{R}^2 = 2$ -Me) with aryl bromide **2a** in toluene as solvent (Table 1). Notably, no reaction occurred in the absence of additives (entry 1). On the contrary, carboxylic acid MesCO₂H (**5**) was found to generate an active catalyst (entries 2 and 3), which also proved applicable to aryl iodides, and less expensive aryl chlorides (entries 4 and 5). However, ruthenium complexes derived from representative phosphines **6** or N-heterocyclic carbene precursor **7** only provided unsatisfactory results, under otherwise identical reaction conditions (entries 6–8).

Subsequently, we tested the scope of the catalytic system in direct arylations with differently substituted triazol-4yl-substituted arenes 1 employing economically attractive aryl chlorides 2 (Scheme 2). Here, mono- or *para*-disubstituted arenes 1 as substrates delivered preferentially the diarylated products 3.

However, monoarylated products **3** were obtained with both *ortho*- (entries 1-10) as well as *meta*-substituted arenes **1** (entry 11, Table 2). In the latter case, the direct

^a Reaction conditions: **1a** (1.00 mmol), **2** (1.50 mmol), [RuCl₂(*p*cymene]₂ (2.5 mol%), L (10-30 mol%), K₂CO₃ (2.00 mmol), PhMe (4.0 mL), 120 °C, 20 h; yields of isolated products. ^b HIPr = *N*,*N*'-bis-(2,6-di-isopropylphenyl)imidazolium.

^c GC conversion.

Scheme 2 Ruthenium-catalyzed direct arylations of 1,2,3-triazoles 1 with an excess of aryl chlorides 2

functionalization took selectively place at the less sterically hindered C-H bond. Given the remarkably mild reaction conditions, valuable functional groups, such as ester

Synthesis 2010, No. 13, 2245-2253 © Thieme Stuttgart · New York

(entries 6 and 7) or ketone substituents (entries 8-11), were well tolerated. On the contrary, the use of an orthosubstituted aryl chloride did not allow for a conversion of a meta-substituted arene (entry 12).

 Table 2
 Scope of Direct Arylations of Triazol-4-yl-Substituted
 Arenes 1^a

R

Entry

1

2

7

Table 2Scope of Direct Arylations of Triazol-4-yl-SubstitutedArenes 1ª (continued)

^a Reaction conditions: **1** (1.00 mmol), **2** (1.50 mmol), [RuCl₂(p-cymene]₂ (2.5 mol%), **5** (30 mol%), K₂CO₃ (2.00 mmol), PhMe (4.0 mL), 120 °C, 20 h; yields of isolated products.

Moreover, the chemoselectivity of the C–H bond functionalization altered when *ortho*-alkylated arene **1b** served as substrate (Table 3). Hence, 2-chlorotoluene (**2d**) predominantly led to the formation of product **4a** through an oxidative homo-coupling (entry 1). While more sterically congested aryl chlorides **2e** and **2f** turned out to be inferior (entries 2 and 3), mono-*ortho*-substituted aryl chlorides **2g**, and particularly **2h** enabled efficient dehydrogenative arylations (entries 4 and 5). Notably, the oxidative C–H bond functionalization was not restricted to the use of aryl chlorides, but aryl iodide **2i** or aryl bromide **2j** were successfully employed as well (entries 6 and 7). Whereas reactions did not proceed in polar solvent NMP (entry 8), catalysis occurred conveniently under an atmosphere of air (entry 9). Additionally, more electron-rich aryl bromide **2k** proved to be a viable additive, but *ortho*functionalized bromoarenes **2l** and **2m** gave less satisfactory results (entries 11 and 12).

Table 3 Influence of Aryl Halides 2 on DehydrogenativeArylationsa

^a Reaction conditions: **1b** (1.00 mmol), **2** (1.50 mmol), $[RuCl_2(p-cymene]_2 (2.5 mol%),$ **5** $(30 mol%), K_2CO_3 (2.00 mmol), PhMe (4.0 mL), 120 °C, 20 h; yields of isolated products.$

^b GC conversion.

^c In NMP (4.0 mL).

^d Under an atmosphere of air.

As to the mechanism, acetophenone was isolated as the major by-product in the reaction with 2-chloroacetophenone (**2g**) (entry 4), thus indicating that aryl halides **2** served as formal hydrogen acceptor²¹ in the dehydrogenative coupling.

With aryl chloride 2h as optimal sacrificial oxidant we next explored oxidative homo-couplings of representative arenes 1 bearing various directing groups (Scheme 3). Thus, ortho-alkylated pyrazol-1-yl- or pyridin-2-yl-substituted arenes 1 were homo-coupled in a highly regioselective fashion to yield biaryl derivatives **4b–e**. However, a more electron-deficient arene provided product 4f in significantly diminished yield, while ortho-alkoxy-substituted derivatives were not functionalized. Thus, dehydrogenative homo-coupling reactions with aryl chlorides 2 are restricted to electron-rich ortho-alkyl-substituted arenes, which in turn defines the scope of ruthenium-catalyzed direct arylations.

Scheme 3 Scope of ruthenium-catalyzed oxidative homo-coupling

In summary, we have reported on the chemoselectivity of ruthenium-catalyzed C–H bond functionalizations of triazol-4-yl-substituted arenes with aryl halides. A catalytic system derived from $MesCO_2H$ (5) enabled broadly applicable direct arylations. Contrarily, oxidative homocouplings of electron-rich *ortho*-alkylated arenes preferentially occurred when *ortho*-substituted aryl halides were employed. All catalytic reactions were carried out under N₂ in dry glassware, unless otherwise noted. Toluene was freshly distilled over Na/benzophenone. Yields refer to isolated compounds, estimated to be >95% pure as judged by ¹H NMR and GC analyses. Flash chromatography was conducted on Macherey-Nagel silica gel 60 (70–230 mesh). NMR spectra were recorded on a Varian VXR 300, or a Varian 600 MHz NMR instrument in the solvent indicated; chemical shifts (δ) are given in ppm.

Ruthenium-Catalyzed Direct Monoarylation of Triazoles 1; 3'-Methyl-2'-(1-*n*-octyl-1*H*-1,2,3-triazol-4-yl)biphenyl-4-carboxylic Acid Ethyl Ester (3n); Representative Procedure A (Table 2, Entry 7)

A suspension of $[\text{RuCl}_2(p\text{-cymene})]_2$ (15.4 mg, 0.025 mmol, 2.5 mol%), **5** (49.2 mg, 0.30 mmol, 30 mol%), K_2CO_3 (276 mg, 2.00 mmol), 1-*n*-octyl-4-*o*-tolyl-1,2,3-triazole (271 mg, 1.00 mmol) and 4-chlorobenzoic acid ethyl ester (276 mg, 1.50 mmol) in PhMe (4.0 mL) was stirred at 120 °C for 20 h. EtOAc (50 mL) and H₂O (50 mL) were added to the cold reaction mixture. The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with H₂O (50 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated under vacuum. The remaining residue was purified by column chromatography on silica gel (*n*-hexane–EtOAc, 5:1) to yield **3n** as a colorless oil; yield: 385 mg (92%).

IR (NaCl): 2926, 2858, 1716, 1642, 1274 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.85 (m, 2 H), 7.40–7.29 (m, 2 H), 7.24–7.11 (m, 3 H), 6.82 (s, 1 H), 4.32 (q, *J* = 7.1 Hz, 2 H), 4.18 (t, *J* = 7.0 Hz, 2 H), 2.28 (s, 3 H), 1.71–1.61 (m, 2 H), 1.34 (t, *J* = 7.1 Hz, 3 H), 1.20 (m, 8 H), 1.06 (m, 2 H), 0.84 (t, *J* = 6.9 Hz, 3 H).

 13 C NMR (75 MHz, CDCl₃): δ = 166.4 (C_q), 146.5 (C_q), 145.2 (C_q), 141.8 (C_q), 138.9 (C_q), 129.9 (CH), 129.5 (CH), 129.0 (C_q), 128.9 (CH), 128.5 (C_q), 128.4 (CH), 127.1 (CH), 122.8 (CH), 60.8 (CH₂), 50.0 (CH₂), 31.6 (CH₂), 30.1 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 26.0 (CH₂), 22.5 (CH₂), 20.9 (CH₃), 14.3 (CH₃), 14.0 (CH₃).

MS (EI): *m*/*z* (%) = 419 (92, [M⁺]), 391 (100), 219 (23).

HRMS (ESI): m/z calcd for $C_{26}H_{33}N_3O_2 + H^+$: 420.2649; found: 420.2646.

1-(4'-Methoxy-3-methylbiphenyl-2-yl)-4-*n*-octyl-1*H*-1,2,3-triazole (3a)

Representative procedure A was followed, using 1-*n*-octyl-4-o-tolyl-1,2,3-triazole (136 mg, 0.50 mmol) and 4-chloroanisole (108 mg, 0.75 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 8:1) yielded **3a** (160 mg, 85%) as a colorless oil.

IR (NaCl): 2928, 2855, 1609, 1513, 1463, 1289, 1214, 1178, 1036, 833, 789, 758 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.18 (m, 3 H), 7.00 (d, J = 8.7 Hz, 2 H), 6.82 (s, 1 H), 6.71 (d, J = 8.7 Hz, 2 H), 4.21 (t, J = 7.0 Hz, 2 H), 3.73 (s, 3 H), 2.28 (s, 3 H), 1.70 (q, J = 7.0 Hz, 2 H), 1.30–1.21 (m, 8 H), 1.15–1.08 (m, 2 H), 0.85 (t, J = 6.6 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.3 (C_q), 145.8 (C_q), 142.4 (C_q), 138.7 (C_q), 134.1 (C_q), 130.6 (CH), 129.1 (CH), 129.0 (C_q), 128.4 (CH), 127.4 (CH), 122.8 (CH), 113.1 (CH), 55.1 (CH₃), 50.0 (CH₂), 31.7 (CH₂), 30.2 (CH₂), 29.0 (CH₂), 28.9 (CH₂), 26.2 (CH₂), 22.6 (CH₂), 21.0 (CH₃), 14.1 (CH₃).

MS (EI): m/z (%) = 377 (88, [M⁺]), 348 (100), 249 (30), 233 (21), 221 (10), 209 (65), 195 (16), 178 (14), 165 (12), 152 (7), 140 (4), 71 (25), 57 (37), 43 (42).

HRMS (ESI): m/z calcd for $C_{24}H_{31}N_3O + H^+$: 378.2540; found: 378.2539.

1-n-Hexyl-4-(3-methylbiphenyl-2-yl)-1H-1,2,3-triazole (3h)

Representative procedure A was followed, using 1-*n*-hexyl-4-*o*-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and chlorobenzene (169 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3h** (316 mg, 99%) as a colorless oil.

IR (NaCl): 2928, 1711, 1642, 1456, 1222 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.41–7.25 (m, 2 H), 7.25–7.13 (m, 4 H), 7.07 (m, 2 H), 6.78 (s, 1 H), 4.18 (t, *J* = 6.9 Hz, 2 H), 2.31 (s, 3 H), 1.73–1.57 (m, 2 H), 1.31–1.16 (m, 4 H), 1.15–1.03 (m, 2 H), 0.86 (t, *J* = 6.7 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 145.7 (C_q), 142.8 (C_q), 141.8 (C_q), 138.7 (C_q), 129.5 (CH), 129.4 (CH), 129.1 (C_q), 128.3 (CH), 127.7 (CH), 127.3 (CH), 126.4 (CH), 122.8 (CH), 50.0 (CH₂), 31.1 (CH₂), 30.2 (CH₂), 25.8 (CH₂), 22.4 (CH₂), 21.1 (CH₃), 14.0 (CH₃).

MS (EI): m/z (%) = 319 (100, [M⁺]), 291 (71), 220 (78), 204 (42).

HRMS (ESI): m/z calcd for $C_{21}H_{25}N_3$ + H⁺: 320.2122; found: 320.2121.

1-*n*-Hexyl-4-(3-methoxy-4′-methylbiphenyl-2-yl)-1*H*-1,2,3-triazole (3i)

Representative procedure A was followed, using 4-*o*-anisyl-1-*n*-hexyl-1,2,3-triazole (259 mg, 1.00 mmol) and 1-chloro-4-methylbenzene (190 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3i** (259 mg, 74%) as a colorless oil.

IR (NaCl): 2923, 2855, 1699, 1642, 1459, 1366 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.45–7.32 (m, 1 H), 7.07–6.90 (m, 7 H), 4.22 (t, *J* = 7.0 Hz, 2 H), 3.80 (s, 3 H), 2.27 (s, 3 H), 1.69 (m, 2 H), 1.31–1.07 (m, 6 H), 0.86 (t, *J* = 6.9 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.0 (C_q), 144.0 (C_q), 142.7 (C_q), 138.2 (C_q), 136.1 (C_q), 129.4 (CH), 129.3 (CH), 128.4 (CH), 123.3 (CH), 122.4 (CH), 118.8 (C_q), 109.8 (CH), 56.0 (CH₃), 50.0 (CH₂), 31.1 (CH₂), 30.1 (CH₂), 25.9 (CH₂), 22.4 (CH₂), 21.0 (CH₃), 14.0 (CH₃).

MS (EI): m/z (%) = 349 (100, [M⁺]), 321 (45), 250 (86).

HRMS (ESI): m/z calcd for $C_{22}H_{27}N_3O + H^+$: 350.2222; found: 350.2225.

4-(3,4'-Dimethoxybiphenyl-2-yl)-1-*n*-hexyl-1*H*-1,2,3-triazole (3j)

Representative procedure A was followed, using 4-*o*-anisyl-1-*n*-hexyl-1,2,3-triazole (259 mg, 1.00 mmol) and 1-chloro-4-methoxybenzene (214 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3j** (249 mg, 68%) as a colorless oil.

IR (NaCl): 2933, 1641, 1461, 1248, 1030 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.44–7.31 (m, 1 H), 7.08–6.88 (m, 5 H), 6.80–6.65 (m, 2 H), 4.22 (t, *J* = 7.1 Hz, 2 H), 3.79 (s, 3 H), 3.73 (s, 3 H), 1.84–1.65 (m, 2 H), 1.23 (s, 6 H), 0.86 (t, *J* = 6.7 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.3 (C_q), 158.0 (C_q), 143.7 (C_q), 142.7 (C_q), 133.5 (C_q), 130.5 (CH), 129.4 (CH), 123.3 (CH), 122.3 (CH), 118.7 (C_q), 113.1 (CH), 109.6 (CH), 55.9 (CH₃), 55.0 (CH₃), 49.9 (CH₂), 31.1 (CH₂), 30.1 (CH₂), 25.9 (CH₂), 22.3 (CH₂), 13.9 (CH₃).

MS (EI): m/z (%) = 365 (100, [M⁺]), 337 (63), 266 (69), 226 (71).

HRMS (ESI): m/z calcd for $C_{22}H_{27}N_3O_2$ + H⁺: 366.2176; found: 366.2175.

4-(3-Methyl-4'-(trifluoromethyl)biphenyl-2-yl)-1-*n*-octyl-1*H*-1,2,3-triazole (3k)

Representative procedure A was followed, using 1-*n*-octyl-4-*o*-tolyl-1,2,3-triazole (271 mg, 1.00 mmol) and 1-chloro-4-(trifluo-romethyl)benzene (271 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3k** (278 mg, 67%) as a colorless oil.

IR (NaCl): 2926, 2857, 2226, 1362, 1221 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.52–7.42 (m, 2 H), 7.39–7.29 (m, 2 H), 7.26–7.14 (m, 3 H), 6.89 (s, 1 H), 4.22 (t, *J* = 7.0 Hz, 2 H), 2.26 (s, 3 H), 1.71 (m, 2 H), 1.22 (m, 8 H), 1.09 (s, 2 H), 0.86 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 146.6 (C_q), 144.9 (C_q), 140.9 (C_q), 139.1 (C_q), 131.4 (CH), 130.3 (CH), 130.3 (CH), 128.9 (C_q), 128.7 (CH), 127.0 (CH), 122.6 (CH), 118.7 (C_q), 110.3 (C_q), 50.1 (CH₂), 31.6 (CH₂), 30.1 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 26.1 (CH₂), 22.5 (CH₂), 20.8 (CH₃), 14.0 (CH₃).

MS (EI): *m*/*z* (%) = 372 (64), 344 (56), 245 (71), 44 (100).

4-(4'-Fluoro-3-methylbiphenyl-2-yl)-1-*n*-hexyl-1*H*-1,2,3-triaz-ole (3l)

Representative procedure A was followed, using 1-*n*-hexyl-4-*o*-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and 1-chloro-4-fluorobenzene (196 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **31** (300 mg, 89%) as a colorless oil.

IR (NaCl): 2930, 1641, 1550, 1223 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.21 (m, 2 H), 7.21–7.12 (m, 1 H), 7.08–6.95 (m, 2 H), 6.92–6.73 (m, 3 H), 4.20 (t, *J* = 6.9 Hz, 2 H), 2.25 (s, 3 H), 1.77–1.57 (m, 2 H), 1.32–1.14 (m, 4 H), 1.08 (m, 2 H), 0.84 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 161.5 (${}^{1}J_{C,F}$ = 246 Hz, C_q), 145.4 (C_q), 141.6 (C_q), 138.6 (C_q), 137.6 (${}^{4}J_{C,F}$ = 3 Hz, C_q), 131.0 (${}^{3}J_{C,F}$ = 8 Hz, CH), 129.4 (CH), 129.1 (CH), 128.3 (CH), 127.1 (CH), 122.6 (CH), 114.4 (${}^{2}J_{C,F}$ = 21 Hz, CH), 49.9 (CH₂), 30.9 (CH₂), 30.1 (CH₂), 25.7 (CH₂), 22.2 (CH₂), 20.8 (CH₃), 13.8 (CH₃).

MS (EI): m/z (%) = 337 (100, [M⁺]), 309 (44), 238 (89).

HRMS (ESI): m/z calcd for $C_{21}H_{24}FN_3 + H^+$: 338.2022; found: 338.2025.

2'-(1-*n*-Hexyl-1*H*-1,2,3-triazol-4-yl)-3'-methoxybiphenyl-4-carboxylic Acid Ethyl Ester (3m)

Representative procedure A was followed, using 4-*o*-anisyl-1-*n*-hexyl-1,2,3-triazole (259 mg, 1.00 mmol) and 4-chlorobenzoic acid ethyl ester (277 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3m** (273 mg, 67%) as a colorless oil.

IR (NaCl): 2926, 1711, 1641, 1363, 1270 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.92–7.80 (m, 2 H), 7.40 (t, J = 8.0 Hz, 1 H), 7.23–7.13 (m, 2 H), 7.09 (s, 1 H), 6.99 (d, J = 8.0 Hz, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 4.22 (t, J = 7.0 Hz, 2 H), 3.80 (s, 3 H), 1.81–1.64 (m, 2 H), 1.34 (t, J = 7.1 Hz, 3 H), 1.29–1.02 (m, 6 H), 0.84 (t, J = 6.9 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 166.7 (C_q), 158.2 (C_q), 146.3 (C_q), 143.2 (C_q), 142.3 (C_q), 129.9 (CH), 129.7 (CH), 129.2 (CH), 128.9 (C_q), 123.7 (CH), 122.5 (CH), 119.0 (C_q), 110.7 (CH), 61.1 (CH₂), 56.2 (CH₃), 50.3 (CH₂), 31.3 (CH₂), 30.3 (CH₂), 26.1 (CH₂), 22.6 (CH₂), 14.5 (CH₃), 14.2 (CH₃).

MS (EI): m/z (%) = 407 (95, [M⁺]), 379 (100), 308 (61).

HRMS (ESI): m/z calcd for $C_{24}H_{29}N_3O_3 + H^+$: 408.2282; found: 408.2281.

{2'-(1-*n*-Hexyl-1*H*-1,2,3-triazol-4-yl)-3'-methylbiphenyl-4-yl}(phenyl)methanone (30)

Representative procedure A was followed, using 1-*n*-hexyl-4-*o*-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and (4-chlorophenyl)(phe-nyl)methanone (325 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **30** (402 mg, 95%) as a colorless oil.

IR (NaCl): 2929, 2090, 1650, 1455, 1278, 928 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.73 (dd, *J* = 5.2, 3.3 Hz, 2 H), 7.69–7.61 (m, 2 H), 7.55 (ddd, *J* = 6.6, 3.9, 1.4 Hz, 1 H), 7.50–7.28 (m, 4 H), 7.27–7.17 (m, 3 H), 6.89 (s, 1 H), 4.21 (t, *J* = 7.1 Hz, 2 H), 2.29 (s, 3 H), 1.78–1.61 (m, 2 H), 1.23–1.01 (m, 6 H), 0.78 (t, *J* = 6.9 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 196.2 (C_q), 146.2 (C_q), 145.2 (C_q), 141.7 (C_q), 138.9 (C_q), 137.5 (C_q), 135.4 (C_q), 132.3 (CH), 130.0 (CH), 129.8 (CH), 129.6 (CH), 129.5 (CH), 129.0 (C_q), 128.5 (CH), 128.2 (CH), 127.2 (CH), 122.8 (CH), 50.0 (CH₂), 30.9 (CH₂), 30.2 (CH₂), 25.8 (CH₂), 22.3 (CH₂), 20.9 (CH₃), 13.9 (CH₃).

MS (EI): m/z (%) = 423 (56, [M⁺]), 395 (45), 284 (7), 218 (8), 105 (100).

HRMS (ESI): m/z calcd for $C_{28}H_{29}N_3O + H^+$: 424.2383; found: 424.2383.

{2'-(1-*n*-Hexyl-1*H*-1,2,3-triazol-4-yl)-3'-methylbiphenyl-3-yl}(phenyl)methanone (3p)

Representative procedure A was followed, using 1-*n*-hexyl-4-o-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and (3-chlorophenyl)(phe-nyl)methanone (325 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3p** (385 mg, 91%) as a colorless oil.

IR (NaCl): 3137, 2928, 1710, 1656, 1452, 717 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.74–7.61 (m, 3 H), 7.55 (m, 2 H), 7.45 (m, 2 H), 7.40–7.16 (m, 5 H), 6.92 (s, 1 H), 4.21 (t, *J* = 7.1 Hz, 2 H), 2.27 (s, 3 H), 1.80–1.60 (m, 2 H), 1.31–1.00 (m, 6 H), 0.81 (t, *J* = 6.8 Hz, 3 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 196.2 (C_q), 145.2 (C_q), 141.8 (C_q), 141.7 (C_q), 138.8 (C_q), 137.1 (C_q), 137.0 (C_q), 133.6 (CH), 132.4 (CH), 131.0 (CH), 129.8 (CH), 129.7 (CH), 129.1 (C_q), 128.4 (CH), 128.3 (CH), 128.1 (CH), 127.6 (CH), 127.2 (CH), 122.8 (CH), 50.0 (CH₂), 30.9 (CH₂), 30.1 (CH₂), 25.8 (CH₂), 22.3 (CH₂), 20.9 (CH₃), 13.9 (CH₃).

MS (EI): m/z (%) = 423 (95, [M⁺]), 378 (37), 318 (52), 105 (100).

HRMS (ESI): m/z calcd for $C_{28}H_{29}N_3O + H^+$: 424.2383; found: 424.2383.

1-{2'-(1-*n*-Hexyl-1*H*-1,2,3-triazol-4-yl)-3'-methylbiphenyl-4-yl}ethanone (3q)

Representative procedure A was followed, using 1-*n*-hexyl-4-o-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and 1-(4-chlorophe-nyl)ethanone (232 mg, 1.50 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3q** (318 mg, 88%) as a colorless oil.

IR (NaCl): 2926, 1641, 1361, 1264 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.83–7.71 (m, 2 H), 7.32 (m, 2 H), 7.25–7.14 (m, 3 H), 6.86 (s, 1 H), 4.20 (t, *J* = 7.0 Hz, 2 H), 2.53 (s, 3 H), 2.28 (s, 3 H), 1.68 (m, 2 H), 1.19 (m, 4 H), 1.08 (m, 2 H), 0.83 (t, *J* = 6.7 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 197.6 (C_q), 146.8 (C_q), 145.2 (C_q), 141.6 (C_q), 138.9 (C_q), 135.1 (C_q), 130.0 (CH), 129.8 (CH), 128.9 (C_q), 128.5 (CH), 127.7 (CH), 127.1 (CH), 122.7 (CH), 50.0 (CH₂), 30.9 (CH₂), 30.1 (CH₂), 26.5 (CH₃), 25.8 (CH₂), 22.3 (CH₂), 20.9 (CH₃), 13.9 (CH₃).

MS (EI): m/z (%) = 361 (100, [M⁺]), 333 (58), 220 (63), 179 (56).

HRMS (ESI): m/z calcd for $C_{23}H_{27}N_3O + H^+$: 362.2227; found: 362.2227.

1-{2'-(1-*n*-Hexyl-1*H*-1,2,3-triazol-4-yl)-4'-methylbiphenyl-3-yl}ethanone (3r)

Representative procedure A was followed, using 1-*n*-hexyl-4-*m*-tolyl-1,2,3-triazole (243 mg, 1.0 mmol) and 1-(4-chlorophenyl)ethanone (232 mg, 1.5 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3r** (184 mg, 51%) as a colorless oil.

IR (NaCl): 2927, 2861, 1642, 1361, 1264, 1224 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.98–7.82 (m, 3 H), 7.38–7.27 (m, 2 H), 7.20 (m, 2 H), 6.53 (s, 1 H), 4.15 (t, *J* = 7.1 Hz, 2 H), 2.60 (s, 3 H), 2.43 (s, 3 H), 1.76–1.61 (m, 2 H), 1.32–1.05 (m, 6 H), 0.84 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 197.5 (C_q), 146.6 (C_q), 146.0 (C_q), 138.3 (C_q), 136.2 (C_q), 135.7 (C_q), 129.8 (CH), 129.8 (CH), 129.7 (CH), 128.9 (CH), 128.8 (C_q), 128.2 (CH), 121.9 (CH), 50.2 (CH₂), 31.1 (CH₂), 30.2 (CH₂), 26.7 (CH₂), 26.0 (CH₃), 22.5 (CH₃), 21.2 (CH₂), 14.0 (CH₃).

MS (EI): m/z (%) = 361 (100, [M⁺]), 333 (48), 220 (98), 179 (79).

HRMS (ESI): m/z calcd for $C_{23}H_{27}N_3O + H^+$: 362.2233; found: 362.2231.

Ruthenium-Catalyzed Direct Diarylation of Triazoles 1; 4-{2',6'-Di-(4''-Ethoxycarbonylphenyl)phenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3d); Representative Procedure B (Scheme 2)

A suspension of $[RuCl_2(p-cymene)]_2$ (15.4 mg, 0.025 mmol, 2.5 mol%), **5** (49.2 mg, 0.300 mmol, 30 mol%), K_2CO_3 (276 mg, 2.00 mmol), 1-*n*-octyl-4-phenyl-1,2,3-triazole (257 mg, 1.00 mmol) and 4-chlorobenzoic acid ethyl ester (552 mg, 3.00 mmol) in PhMe (4.0 mL) was stirred at 120 °C for 20 h. EtOAc (50 mL) and H₂O (50 mL) were added to the cold reaction mixture. The separated aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with H₂O (50 mL) and brine (50 mL), dried (Na₂SO₄), and concentrated under vacuum. The residue was purified by column chromatography on silica gel (*n*-hexane–EtOAc, 5:1) to yield **3d** (354 mg, 64%) as a white solid; mp 133.5–135.8 °C.

IR (NaCl): 2925, 2855, 1706, 1642, 1270, 1108 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.87 (m, 4 H), 7.53 (dd, *J* = 8.6, 6.7 Hz, 1 H), 7.48–7.38 (m, 2 H), 7.28–7.17 (m, 4 H), 6.75 (s, 1 H), 4.32 (q, *J* = 7.1 Hz, 4 H), 4.07 (t, *J* = 6.9 Hz, 2 H), 1.63–1.45 (m, 2 H), 1.35 (t, *J* = 7.1 Hz, 6 H), 1.28–1.09 (m, 8 H), 0.95 (m, 2 H), 0.85 (t, *J* = 6.9 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 166.4 (C_q), 145.9 (C_q), 144.4 (C_q), 142.5 (C_q), 129.5 (CH), 129.0 (CH), 129.0 (CH), 128.8 (C_q), 128.7 (CH), 128.1 (C_q), 123.2 (CH), 60.9 (CH₂), 49.9 (CH₂), 31.7 (CH₂), 30.1 (CH₂), 28.9 (CH₂), 28.6 (CH₂), 25.9 (CH₂), 22.5 (CH₂), 14.3 (CH₃), 14.0 (CH₃).

MS (EI): m/z (%) = 553 (13, [M⁺]), 525 (19), 43 (100).

HRMS (ESI): m/z calcd for $C_{34}H_{39}N_3O_4 + H^+$: 554.3013; found: 554.3010.

4-{2',6'-Di-(4"-methoxyphenyl)-4'-methylphenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3b)

Representative procedure B was followed, using 1-*n*-hexyl-4-*p*-tolyl-1,2,3-triazole (229 mg, 1.00 mmol) and 1-chloro-4-methoxybenzene (428 mg, 3.00 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3b** (264 mg, 58%) as a white solid; mp 78.4–80.8 °C.

IR (NaCl): 2934, 2860, 1709, 1610, 1510, 1245, 1035 cm⁻¹.

PAPER

¹H NMR (300 MHz, CDCl₃): δ = 7.18 (s, 2 H), 7.14–7.03 (m, 4 H), 6.79–6.64 (m, 5 H), 4.10 (t, *J* = 6.9 Hz, 2 H), 3.73 (s, 6 H), 2.42 (s, 3 H), 1.67–1.51 (m, 2 H), 1.28–1.11 (m, 4 H), 1.00 (m, 2 H), 0.84 (t, *J* = 6.7 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): $\delta = 158.1$ (C_q), 145.3 (C_q), 142.8 (C_q), 138.0 (C_q), 134.0 (C_q), 130.5 (CH), 129.6 (CH), 125.4 (C_q), 123.0 (CH), 112.9 (CH), 55.1 (CH₃), 49.8 (CH₂), 31.1 (CH₂), 30.2 (CH₂), 25.7 (CH₂), 22.4 (CH₂), 21.3 (CH₃), 14.0 (CH₃).

MS (EI): m/z (%) = 455 (66, [M⁺]), 427 (100), 356 (19), 316 (45).

HRMS (ESI): m/z calcd. for $C_{29}H_{33}N_3O_2 + H^+$: 456.2646; found: 456.2645.

4-{2',6'-Di-(4"-trifluoromethyl)phenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3c)

Representative procedure A was followed, using 1-*n*-octyl-4-phe-nyl-1,2,3-triazole (259 mg, 1.00 mmol) and 1-chloro-4-(trifluoro-methyl)benzene (542 mg, 3.00 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3c** (327 mg, 60%) as a white solid; mp 132.5–134.2 °C.

IR (NaCl): 2928, 2860, 1643, 1323, 1117 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.55 (dd, *J* = 8.5, 6.8 Hz, 1 H), 7.45 (ddd, *J* = 9.4, 8.5, 0.8 Hz, 6 H), 7.29 (dd, *J* = 8.7, 0.8 Hz, 4 H), 6.75 (s, 1 H), 4.10 (t, *J* = 7.0 Hz, 2 H), 1.56 (m, 2 H), 1.31–1.08 (m, 8 H), 0.98 (m, 2 H), 0.86 (t, *J* = 6.9 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 144.7 (C_q), 144.2 (C_q), 142.1 (C_q), 129.4 (CH), 129.1 (CH), 128.4 (²J_{C,F} = 33 Hz, C_q), 128.3 (CH), 127.7 (C_q), 124.7 (¹J_{C,F} = 272 Hz, C_q), 124.6 (³J_{C,F} = 4 Hz, CH), 122.6 (CH), 49.9 (CH₂), 31.8 (CH₂), 30.2 (CH₂), 29.0 (CH₂), 28.7 (CH₂), 26.0 (CH₂), 22.6 (CH₂), 14.1 (CH₃).

MS (EI): m/z (%) = 545 (31, [M⁺]), 517 (25), 418 (22), 43 (100).

HRMS (ESI): m/z calcd for $C_{30}H_{29}F_6N_3 + H^+$: 546.2338; found: 546.2337.

4-{2',6'-Di-(4"-phenylcarbonylphenyl)phenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3e)

Representative procedure A was followed, using 1-*n*-octyl-4-phenyl-1,2,3-triazole (259 mg, 1.00 mmol) and (4-chlorophenyl)(phenyl)methanone (650 mg, 3.00 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3e** (482 mg, 78%) as a white solid; mp 135.8–137.6 °C.

IR (NaCl): 2926, 1649, 1277, 927 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.75 (dd, *J* = 8.0, 1.0 Hz, 4 H), 7.72–7.63 (m, 4 H), 7.63–7.52 (m, 3 H), 7.52–7.40 (m, 6 H), 7.29 (d, *J* = 8.1 Hz, 4 H), 6.83 (s, 1 H), 4.11 (t, *J* = 7.0 Hz, 2 H), 1.60 (m, 2 H), 1.21–1.06 (m, 8 H), 1.01 (m, 2 H), 0.79 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 196.2 (C_q), 145.6 (C_q), 144.4 (C_q), 142.5 (C_q), 137.6 (C_q), 135.7 (C_q), 132.3 (CH), 129.9 (CH), 129.6 (CH), 129.5 (2 × CH), 128.8 (C_q), 128.2 (CH), 128.1 (CH), 123.3 (CH), 49.9 (CH₂), 31.6 (CH₂), 30.2 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 26.0 (CH₂), 22.5 (CH₂), 14.0 (CH₃).

MS (EI): m/z (%) = 617 (5, [M⁺]), 589 (7), 105 (100).

HRMS (ESI): m/z calcd for $C_{42}H_{39}N_3O_2 + H^+$: 618.3115; found: 618.3112.

4-{2',6'-Di-(4"-methylcarbonylphenyl)-4'-methylphenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3f)

Representative procedure A was followed, using 1-*n*-hexyl-4-*p*-tolyl-1,2,3-triazole (229 mg, 1.00 mmol) and 1-(4-chlorophe-nyl)ethanone (464 mg, 3.00 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3f** (317 mg, 66%) as a white solid; mp 163.1–165.4 °C.

IR (NaCl): 2926, 1678, 1361, 1264, 837 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.76 (d, *J* = 8.3 Hz, 4 H), 7.32–7.14 (m, 6 H), 6.78 (s, 1 H), 4.06 (t, *J* = 6.8 Hz, 2 H), 2.50 (s, 6 H), 2.43 (s, 3 H), 1.63–1.46 (m, 2 H), 1.21–1.07 (m, 4 H), 0.93 (m, 2 H), 0.79 (t, *J* = 6.7 Hz, 3 H).

 ^{13}C NMR (125 MHz, CDCl₃): δ = 197.2 (C_q), 146.0 (C_q), 144.1 (C_q), 142.0 (C_q), 138.4 (C_q), 135.0 (C_q), 130.0 (CH), 129.5 (CH), 127.5 (CH), 124.9 (C_q), 123.1 (CH), 49.7 (CH₂), 30.8 (CH₂), 29.9 (CH₂), 26.4 (CH₃), 25.4 (CH₂), 22.2 (CH₂), 21.1 (CH₃), 13.8 (CH₃). HRMS (ESI): m/z calcd for C₃₁H₃₃N₃O₂ + H⁺: 480.2646; found: 480.2645.

4-{2',6'-Di-(4''-methylcarbonylphenyl)phenyl}-1-*n*-octyl-1*H*-1,2,3-triazole (3g)

Representative procedure A was followed, using 1-*n*-octyl-4-phe-nyl-1,2,3-triazole (259 mg, 1.00 mmol) and 1-(4-chlorophenyl)ethanone (464 mg, 3.00 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1) yielded **3g** (350 mg, 71%) as a white solid; mp 170.4–172.2 °C.

IR (NaCl): 2924, 2090, 1642, 1364, 1254 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.87–7.73 (m, 4 H), 7.54 (dd, J = 8.5, 6.7 Hz, 1 H), 7.43 (dd, J = 7.6, 0.8 Hz, 2 H), 7.31–7.19 (m, 4 H), 6.77 (s, 1 H), 4.08 (t, J = 7.0 Hz, 2 H), 2.56 (s, 6 H), 1.64–1.48 (m, 2 H), 1.30–1.10 (m, 8 H), 0.96 (m, 2 H), 0.85 (t, J = 6.9 Hz, 3 H).

¹³C NMR (125 MHz, CDCl₃): δ = 197.6 (C_q), 146.1 (C_q), 144.4 (C_q), 142.4 (C_q), 135.4 (C_q), 129.8 (CH), 129.6 (CH), 128.8 (CH), 128.0 (C_q), 127.8 (CH), 123.2 (CH), 49.9 (CH₂), 31.7 (CH₂), 30.1 (CH₂), 29.0 (CH₂), 28.7 (CH₂), 26.5 (CH₃), 25.9 (CH₂), 22.5 (CH₂), 14.0 (CH₃).

MS (EI): m/z (%) = 493 (100, [M⁺]), 279 (44), 239 (76).

HRMS (ESI): m/z calcd for $C_{32}H_{35}N_3O_2 + H^+$: 494.2794; found: 494.2802.

Ruthenium-Catalyzed Oxidative Homo-Coupling; 3,3'-Dimethyl-2,2'-di(1*H*-pyrazol-1-yl)biphenyl (4b); Representative Procedure C (Scheme 3)

A suspension of $[\text{RuCl}_2(p\text{-cymene})]_2$ (7.7 mg, 0.012 mmol, 2.5 mol%), **5** (24.6 mg, 0.15 mmol, 30 mol%), K_2CO_3 (138 mg, 1.00 mmol), 1-*o*-tolyl-1*H*-pyrazole (79.1 g, 0.50 mmol), and **2h** (135 mg, 0.75 mmol) in PhMe (2 mL) was stirred at 120 °C for 20 h. MTBE (25 mL) and H₂O (25 mL) were added to the cold reaction mixture. The separate aqueous phase was extracted with MTBE (2 × 25 mL). The combined organic layers were washed with H₂O (25 mL) and brine (25 mL), dried (Na₂SO₄), and concentrated under vacuum. The remaining residue was purified by column chromatography on silica gel (*n*-hexane–EtOAc, 10:1 \rightarrow 5:1) to yield **4b** (56 mg, 71%) as a white solid; mp 146.9–147.4 °C.

IR (NaCl): 3445, 1713, 1362, 1222, 761 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.63–7.46 (m, 4 H), 7.14 (d, J = 7.5 Hz, 2 H), 7.06 (t, J = 7.5 Hz, 2 H), 6.82 (d, J = 7.5 Hz, 2 H), 6.18 (t, J = 2.0 Hz, 2 H), 2.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 139.6 (CH), 138.3 (C_q), 136.6 (C_q), 136.0 (C_q), 131.9 (CH), 129.9 (CH), 127.8 (CH), 127.4 (CH), 105.6 (CH), 17.7 (CH₃).

MS (EI): m/z (%) = 314 (64, [M⁺]), 233 (100), 191 (3).

HRMS (ESI): m/z calcd for $C_{20}H_{18}N_4 + H^+$: 315.1604; found: 315.1606.

2,2'-Bis(1-*n*-hexyl-1*H*-1,2,3-triazol-4-yl)-3,3'-dimethylbiphenyl (4a)

Representative procedure C was followed using 1-*n*-hexyl-4-*o*-tolyl-1,2,3-triazole (243 mg, 1.00 mmol) and **2h** (338 mg, 1.50

mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 3:1) yielded 4a (192 mg, 81%) as a colorless oil.

IR (NaCl): 3448, 3131, 2928, 2861, 1710, 1456, 1049, 731 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.23 (s, 2 H), 7.14–7.01 (m, 4 H), 6.90 (dd, *J* = 7.2, 1.7 Hz, 2 H), 4.20 (t, *J* = 6.9 Hz, 4 H), 2.20 (s, 6 H), 1.76–1.59 (m, 4 H), 1.22 (m, 8 H), 1.05 (m, 4 H), 0.86 (t, *J* = 6.8 Hz, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 145.1 (C_q), 142.2 (C_q), 137.8 (C_q), 129.9 (C_q), 129.0 (CH), 127.6 (CH), 127.2 (CH), 123.4 (CH), 50.0 (CH₂), 31.1 (CH₂), 30.1 (CH₂), 25.7 (CH₂), 22.4 (CH₂), 21.0 (CH₃), 14.0 (CH₃).

MS (EI): m/z (%) = 484 (64, [M⁺]), 399 (14), 385 (100), 345 (21).

HRMS (ESI): m/z calcd for $C_{30}H_{40}N_6$ + H⁺: 485.3387; found: 485.3387.

3,3'-Dimethyl-2,2'-di(pyridin-2-yl)biphenyl (4c)

Representative procedure C was followed, using 2-*o*-tolylpyridine (84.6 mg, 0.50 mmol) and **2h** (135 mg, 0.75 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, 5:1 \rightarrow 1:1) yielded **4c** (44 mg, 52%) as a green solid; mp 154.1–154.9 °C.

IR (NaCl): 3445, 3053, 1710, 1584, 1462, 1029, 789, 752 cm⁻¹.

¹H NMR (300 MHz, $CDCl_3$): $\delta = 8.51$ (d, J = 4.4 Hz, 2 H), 7.48 (td, J = 7.6, 1.7 Hz, 2 H), 7.25 (d, J = 7.6 Hz, 2 H), 7.01 (ddd, J = 8.5, 4.9, 2.4 Hz, 4 H), 6.88 (t, J = 7.6 Hz, 2 H), 6.72 (d, J = 7.3 Hz, 2 H), 2.04 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 159.4 (C_q), 148.7 (CH), 140.2 (C_q), 139.7 (C_q), 135.9 (C_q), 135.4 (CH), 128.8 (CH), 128.5 (CH), 126.6 (CH), 125.6 (CH), 121.1 (CH), 20.5 (CH₃).

MS (EI): *m/z* (%) = 336 (77, [M⁺]), 335 (100), 258 (23), 168 (17).

HRMS (ESI): m/z calcd for $C_{24}H_{20}N_2 + H^+$: 337.1699; found: 337.1699.

3,3'-Di(4-methoxybenzyl)-2,2'-di(pyridin-2-yl)biphenyl (4d)

Representative procedure C was followed, using 2-[2-(4-methoxybenzyl)phenyl]pyridine (138 mg, 0.50 mmol) and **2h** (135 mg, 0.75 mmol) at 120 °C. After 20 h, purification by chromatography (*n*hexane–EtOAc, $5:1 \rightarrow 1:1$) yielded **4d** (72 mg, 52%) as a green solid; mp 123.3–124.2 °C.

IR (NaCl): 3051, 3003, 2958, 2910, 2837, 1610, 1587, 1470, 1446, 1421, 1298, 1177, 1151, 1034, 906, 807, 792 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.52 (s, 2 H), 7.45–7.33 (m, 2 H), 7.23–6.88 (m, 9 H), 6.84–6.62 (m, 9 H), 3.90–3.63 (m, 10 H).

¹³C NMR (75 MHz, CDCl₃): δ = 158.9 (C_q), 157.6 (C_q), 148.4 (CH), 140.6 (C_q), 139.9 (C_q), 139.2 (C_q), 135.0 (CH), 133.5 (C_q), 129.6 (CH), 128.9 (CH), 128.6 (CH), 126.8 (CH), 126.1 (CH), 121.2 (CH), 113.4 (CH), 55.2 (CH₃), 38.4 (CH₂).

MS (ESI): $m/z = 549 (100\%, [M^+])$.

HRMS (ESI): m/z calcd for $C_{38}H_{32}N_2O_2 + H^+$: 549.2537; found: 549.2538.

5,5'-Dimethyl-3,3'-di(4-methoxybenzyl)-2,2'-di(pyridin-2-yl)biphenyl (4e)

Representative procedure C was followed, using 2-[2-(4-methoxybenzyl)-4-methylphenyl]pyridine (145 mg, 0.50 mmol) and **2h** (135 mg, 0.75 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, $5:1 \rightarrow 1:1$) yielded **4e** (81 mg, 56%) as a brown oil.

IR (NaCl): 3042, 3001, 2952, 2915, 2836, 1607, 1590, 1510, 1456, 1427, 1297, 1244, 1177, 1034, 909, 866, 819, 802, 733 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 8.52 (d, J = 4.3 Hz, 2 H), 7.38 (t, J = 7.0 Hz, 2 H), 7.17–6.94 (m, 4 H), 6.85–6.58 (m, 12 H), 3.87–3.63 (m, 10 H), 2.07 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 159.1 (C_q), 157.5 (C_q), 148.2 (CH), 140.6 (C_q), 138.9 (C_q), 137.1 (C_q), 136.2 (C_q), 134.8 (CH), 133.7 (C_q), 129.8 (CH), 129.6 (CH), 129.2 (CH), 126.2 (CH), 121.0 (CH), 113.3 (CH), 55.1 (CH₃), 38.2 (CH₂), 20.8 (CH₃).

MS (ESI): *m*/*z* = 577 (100%, [M⁺]).

HRMS (ESI): m/z calcd for $C_{40}H_{36}N_2O_2 + H^+$: 577.2850; found: 577.2850.

5,5'-Difluoro-3,3'-di(4-methoxybenzyl)-2,2'-di(pyridin-2-yl)bi-phenyl (4f)

Representative procedure C was followed, using 2-[4-fluoro-2-(4-methoxybenzyl)phenyl]pyridine (147 mg, 0.50 mmol) and **2h** (135 mg, 0.75 mmol) at 120 °C. After 20 h, purification by chromatography (*n*-hexane–EtOAc, $5:1 \rightarrow 1:1$) yielded **4f** (34 mg, 23%) as a green oil.

IR (NaCl): 3048, 3002, 2956, 2931, 2836, 1734, 1566, 1510, 1456, 1427, 1298, 1034, 909, 870, 819, 733, 646, 624 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 8.55 (s, 2 H), 7.52–7.39 (m, 2 H), 7.24–7.03 (m, 4 H), 6.84–6.64 (m, 10 H), 6.52 (dd, *J* = 9.2, 2.6 Hz, 2 H), 3.75 (m, 10 H).

¹³C NMR (125 MHz, CDCl₃): δ = 160.9 (C_q, ¹*J*_{C,F} = 247 Hz), 157.7 (C_q), 157.5 (C_q), 148.6 (CH), 142.1 (C_q, ³*J*_{C,F} = 9 Hz), 141.5 (C_q, ³*J*_{C,F} = 9 Hz), 135.9 (C_q), 135.3 (CH), 132.2 (C_q), 129.6 (CH), 126.1 (CH), 121.6 (CH), 115.6 (CH, ²*J*_{C,F} = 23 Hz), 115.2 (CH, ²*J*_{C,F} = 23 Hz), 113.6 (CH), 55.23 (CH₃), 38.43 (CH₂).

¹⁹F NMR (285 MHz, CDCl₃): δ = -115.2 (s).

MS (ESI): *m*/*z* = 585 (100%, [M⁺]).

HRMS (ESI): m/z calcd for $C_{38}H_{30}F_2N_2O_2 + H^+$: 585.2348; found: 585.2351.

Acknowledgment

Support by the DFG and the Alexander von Humboldt foundation (fellowship to R.V.) is gratefully acknowledged.

References

- (1) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565.
- (2) Eicher, T.; Hauptmann, S. *The Chemistry of Heterocycles*, 2nd ed.; Wiley-VCH: Weinheim, **2003**.
- (3) Gilchrist, T. L. *Heterocyclic Chemistry*, 3rd ed.; Addison Wesley Longman Limited: Harlow, **1997**.
- (4) Joule, J. A.; Mills, K. *Heterocyclic Chemistry*, 4th ed.; Blackwell Science Ltd: Oxford, 2000.
- (5) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
- (6) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.
- (7) For complementary ruthenium-catalyzed cycloadditions, see: Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
- (8) For representative recent reviews, see the following themed issue: *Chem. Soc. Rev.* **2010**, *39*, 1231.
- (9) Ackermann, L.; Vicente, R. *Top. Curr. Chem.* 2010, in press; DOI: 10.1007/128_2009_9.

- (10) For representative examples of ruthenium-catalyzed direct arylations and alkylations with organic halides or boronbased reagents, see: (a) Miura, H.; Wada, K.; Hosokawa, S.; Inoue, M. Chem. Eur. J. 2010, 16, 4186. (b) Kitazawa, K.; Kochi, T.; Sato, M.; Kakiuchi, F. Org. Lett. 2009, 11, 1951. (c) Pozgan, F.; Dixneuf, P. H. Adv. Synth. Catal. 2009, 351, 1737. (d) Ackermann, L.; Novák, P. Org. Lett. 2009, 11, 4966. (e) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew. Chem. Int. Ed. 2009, 48, 6045. (f) Ackermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115. (g) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Tetrahedron 2008, 64, 6051. (h) Deng, G.; Zhao, L.; Li, C.-J. Angew. Chem. Int. Ed. 2008, 47, 6278. (i) Ackermann, L.; Mulzer, M. Org. Lett. 2008, 10, 5043. (j) Oi, S.; Sasamoto, H.; Funayama, R.; Inoue, Y. Chem. Lett. 2008, 37, 994. (k) Özdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (l) Ackermann, L.; Born, R.; Álvarez-Bercedo, P. Angew. Chem. Int. Ed. 2007, 46, 6364. (m) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem. Int. Ed. 2006, 45, 2619. (n) Oi, S.; Sakai, K.; Inoue, Y. Org. Lett. 2005, 7, 4009. (o) Ackermann, L. Org. Lett. 2005, 7, 3123. (p) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936. (q) Park, Y. J.; Jo, E.-A.; Jun, C.-H. Chem. Commun. 2005, 1185. (r) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113. (s) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698; and references cited therein.
- (11) Representative recent reviews: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Rev.* 2010, *110*, 624.
 (b) Ackermann, L.; Vicente, R.; Kapdi, A. *Angew. Chem. Int. Ed.* 2009, *48*, 9792. (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. *Angew. Chem. Int. Ed.* 2009, *48*, 5094.
 (d) Thansandote, P.; Lautens, M. *Chem. Eur. J.* 2009, *15*, 5874. (e) Kulkarni, A. A.; Daugulis, O. *Synthesis* 2009, 4087. (f) Kakiuchi, F.; Kochi, T. *Synthesis* 2008, 3013.
 (g) Satoh, T.; Miura, M. *Chem. Lett.* 2007, *36*, 200.
 (h) Seregin, I. V.; Gevorgyan, V. *Chem. Soc. Rev.* 2007, *36*, 1173. (i) Ackermann, L. *Synlett* 2007, 507. (j) Pascual, S.; de Mendoza, P.; Echavarren, A. M. *Org. Biomol. Chem.* 2007, *5*, 2727.

- (12) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299.
- (13) Ackermann, L.; Born, R.; Vicente, R. *ChemSusChem* **2009**, 2, 546.
- (14) Ackermann, L.; Vicente, R. Org. Lett. 2009, 11, 4922.
- (15) For select examples of copper- or palladium-catalyzed direct arylations of the heteroaromatic moiety in 1,2,3-triazoles, see: [Cu]: (a) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081. [Pd]:
 (b) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333. (c) Iwasaki, M.; Yorimitsu, H.; Oshima, K. Chem. Asian J. 2007, 2, 1430. (d) Ackermann, L.; Vicente, R.; Born, R. Adv. Synth. Catal. 2008, 350, 741. (e) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem. Int. Ed. 2009, 48, 201. (f) Lapointe, D.; Fagnou, K. Org. Lett. 2009, 11, 4160.
- (16) Ackermann, L.; Born, R.; Spatz, J. H.; Althammer, A.; Gschrei, C. J. Pure Appl. Chem. 2006, 78, 209.
- (17) Recent examples: (a) Ackermann, L.; Barfüßer, S.; Pospech, J. Org. Lett. 2010, 12, 724. (b) Ackermann, L.; Barfüßer, S. Synlett 2009, 808.
- (18) For preliminarily communicated examples of rutheniumcatalyzed direct arylations of 4-aryl-substituted 1,2,3triazoles 1, which served for palladium-catalyzed dehydrogenative arylations, see: Ackermann, L.; Jeyachandran, R.; Potukuchi, H. K.; Novák, P.; Büttner, L. Org. Lett. 2010, 12, 2056.
- (19) Examples of palladium-catalyzed or copper-mediated directed oxidative homo-coupling reactions: (a) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047. (b) Chen, X.; Dobereiner, G.; Hao, X.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Tetrahedron 2009, 65, 3085.
- (20) For ruthenium-catalyzed oxidative homo-couplings with stoichiometric amounts of FeCl₃ or methallyl acetate, see:
 (a) Guo, X.; Deng, G.; Li, C.-J. Adv. Synth. Catal. 2009, 351, 2071. (b) Oi, S.; Sato, H.; Sugawara, S.; Inoue, Y. Org. Lett. 2008, 10, 1823.
- (21) The use of other sacrificial oxidants, such as Cu(OAc)₂, Ag₂O, benzoquinone, [*t*-BuO]₂, or allyl acetate, did not meet with success, under otherwise identical reaction conditions.