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Abstract--The paper is devoted to the study of the characteristics of structural phase transitions occurring in 
ionic crystals under an extremely high pressure. The calculations are made for crystals of infinite size at abso- 
lute zero temperature. The pressure of B1-B2 polymorphic transformation is calculated for a number of alkali 
halide crystals using pair interaction potentials obtained self-consistently within the framework of inhomoge- 
neous electron gas theory. In so doing, the effects of seven coordination spheres are taken into account in the 
thermodynamic potential. The changes of the cohesion characteristics of crystals (cohesion energy, lattice con- 
stant) are calculated for the transition from the B1 structure (NaCI type) to the B2 structure (CsCI type). Based 
on the obtained results, conclusions are made on the stability of one or another crystal structure in the given 
range of external pressure. For crystals in the B1 phase, the moduli of elasticity and relative changes of the vol- 
ume at the phase transition pressure are calculated. It is shown that the inclusion of the effect of higher coordi- 
nation spheres affects considerably the values of the elastic characteristics of ionic crystals. 

INTRODUCTION 

The choice of the type of lattice of ionic crystals is 
defined by the ratio of ionic radii. In so doing, the cat- 
ions usually have a smaller size than the anions; there- 
fore, the cations in ionic crystals are located in voids 
formed due to close packing of the larger anions. If the 
cations are so large that they do not fit the voids, they 
spread the anions apart and loosen their close packing. 
For example, sodium chloride crystals have a structure 
of face-centered cubic lattice because the size of a chlo- 
rine ion (rct = 1.81 A~is almost twice the size of a 
sodium ion (rNa = 0.98 A). With such a ratio of the ionic 
radii, the free space at the center of the cubic cell of 
sodium chloride turns out to be insufficient to accom- 
modate one more ion. The situation is different with a 
cesium chloride crystal. The sizes of chlorine and 
cesium ions are close (1.81 and 1.65 A), and the space 
at the center of an elementary cube is sufficient to 
accommodate one more ion,. and a closer packed struc- 
ture; i.e., a body-centered cube, proves to be more con- 
venient from the energy point of view. The decisive 
importance of the ratio of ionic radii in the selection of 
the type of ionic crystal lattice is illustrated by the fact 
that, if this ratio changes under the effect of external 
factors (temperature, pressure), the crystal structure of 
this ionic compound will also change [1]. 

The anion radius increases faster with increasing 
temperature than the cation radius, this resulting in an 
increase of the difference in the size of ionic radii. 
Therefore, some crystals (e.g., cesium chloride and 
rubidium chloride) change their structure with an 
increase in temperature: they rearrange from a body- 

centered cube into an elementary cube. An inverse rear- 
rangement is observed with an increase in pressure, 
when the anion radius decreases faster than the cation 
radius: the ionic radii become closer in size, and this 
may result in the transition of the crystal from a primi- 
tive cubic lattice into a body-centered one. Such rear- 
rangements of the crystal lattice with increasing pres- 
sure bring the crystal to a state with a lattice of the CsCI 
type. A further pressure increase may cause the crystal 
to change to a metallized state [2, 3]. This paper is 
devoted to the study of polymorphic transformations of 
alkali halide crystals of an infinitely large size at a tem- 
perature T = 0 K within inhomogeneous electron gas 
theory. 

CALCULATION OF THE PRESSURE 
OF POLYMORPHIC TRANSFORMATION 

OF ALKALI HALIDE CRYSTALS 

The thermodynamic potential of a crystal under an 
external pressure (at T = 0 K) may be represented in the 
form 

Hi(R) = NUi + p V i -  ct~t/R. (1) 

Here, N is the coordination number of the structure; 
V i is the elementary cell volume; Ui is the short-range 
potential of pair interaction; t~t is the Madelung con- 
stant of the given crystal structure; the subscript i num- 
bers both phases. During the calculations, the ion sur- 
roundings were taken into account up to the seventh 
order inclusive. Therefore, the product NUi entering (1) 
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may be represented as the sum over seven coordination 
spheres, i.e., 

7 

Hi(R ) = ~_~ NkU~(t~gR ) + pV i -  ~ / R ,  (2) 
k = l  

where t~ k = Rk/Ro is the ratio of the radius of the kth 
coordination sphere to the radius of the first coordina- 
tion sphere. At T = 0 K, the pressure is related to the 
energy Ui by the relation 

p = - ( ~ U i / ~ V i ) .  (3) 

Therefore, the expression for the thermodynamic 
potential finally assumes the form 

7 
OUi o~ 

Hi(R) = ~-~ NkU~- Vi-~ii R" (4) 
k = l  

The pressure of polymorphic transformation can be 
found from the relation 

Hi(P0) = H2(po), (5) 

in which P0 is the pressure of polymorphic transforma- 
tion. The pressure P0 was calculated using a computer 
by constructing the dependences of the thermodynamic 
potential on the pressure H(p) for a crystal having a 
structure of the NaC1 and CsC1 types. The phase transi- 
tion point was determined with a preset accuracy by the 
equation 

[nl(po) - H2(p0)l < ~, (6) 

where e is the preassigned calculation accuracy. The 
value of e was selected so that the transition pressure KF 
could be determined with an accuracy of up to 1 kbar. 

As follows from the relation (4), the accuracy of cal- 
culation of the crystal potential and transition pressure 
depends on how close the used pair interaction poten- KCI 
tial U i is to the experimental data. In this study, we used 
numerical pair potentials obtained self-consistently 
within the framework of inhomogeneous electron gas 
theory [4]. In so doing, the potentials were approxi- KBr 
mated using a smooth function that was continuous 
together with its derivatives. Table 1 gives the values of 
the cohesion energy U 0 and equilibrium distances R 0 
between ions in the lattice, obtained during the approx- RbF 
imation of potentials [4], for crystals with a lattice of 
the NaC1 type (B1 structure) and CsCI type (B2 struc- 
ture). A comparison of  the results given in Table 1 leads 
to some conclusions. In general, all data of the theoret- RbCI 
ical calculation are in good agreement with each other 
and with the experimental data. However, in the calcu- 
lations of the characteristics of crystals, when estimat- 
ing the first addend in formula (4), Cohen and Gordon RbBr 
[6] included only the interaction of the ions of the first 
coordination sphere, this providing for good agreement 
of the properties of ionic structures with the experimen- 
tal data. Kim and Gordon [5] allowed for the contribu- Note: 
tion by the second neighbors to the energy of interac- 

Table 1, Cohesion characteristics of alkali halide crystals at 
T = 0 K  

B1 phase B2 phase 

R o, au U o, au 
Crystal. 

theo- experi- theo- experi- 
retical mental mental 

data [7] retical data [7] 

LiF 1 3.65 0.4147 

2 3.80 3.81 0.3975 0.3933 

3 3.76 0.4144 

LiCI 1 4.67 0.3285 

2 4.76 4.91 0.3203J 0.3216 

3i 4.79 0.3264 
I 

LiBr 1 5.03 0.3065 

21 5.06 5.16 0.3020 - 

3i 5.09 0.3060 

NaF 1 4.37 0.3543 

2 4.57 4.61 0.3387 0.3473 

3 4.44 0.3544! 

NaC1 1 ! 5.40 0.2912 

2 5.54 5.54 0.2816 0.2953 

3 5.51 0.2911 
I 

NaBr 1 5.74 0.2751 

2 5.82 5.76 0.2684 0.2778 

3 5.77 0.2750 

1 4.91 0.3253 

2 5.12 5.12 0.30921 0.3099 

3 5.11 0.3116 

1 : 5.76 0.2794[ 

2 '5 .97  5.93 0.2668 0.2701 

3 5.88 0.2776 

l i 6.05 0.2665 

2 6.22 6.14 0.25661 0.2539 

3 6.10 0.2648 

1 5.23 0.3092 

2 5.37 5.35 0.2983 - 

3 ~ 5.29 0.2998 

1 6.03 0.2699 ~ 

2 6.19 6.16 0.2591 - 

3 6.14 0.2672 

1 6.27 0.2580 

2 6.18 6.41 0.2488 - 

3 6.33 0.2513 

(1) Gordon, Kim [51; 
with potentials [4]. 

R 0, au U 0, au 

3.83 0.4007 

3.98 0.3837 

3.90 0.3901 

4.87 0.3187 

4.99 0.3107 

4.84 0.3181 

5.24 0.2978 

5.30 0.2932 

5.29 0.2961 

4.56 0.3449 

4.75 0.3295 

4.51 0.3398 

5.61 0.2847 

5.75 0.2749 

5.63 0.2806 

5.92 0.2690 

6.05 0.2621 

6.00 0.2680 

5.07 0.3197 

5.29 0.3030 

5.18 0.3096 

5.95 0.2753 

6.16 0.2620 

6.02 0.2687 

6.22 0.2626 

6.42 0.2522 

6.34 0.2572 

5.37 0.3050 

5.54 0.2935 

5.42 0.3011 

6.18 0.2668 

6.40 0.2554 

6.25 0.2617 

6.48 0.2549 

6.67 0.2454 

6.55 0.2497 

(2) Cohen. Gordon [6]; (3) calculation 
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Table 2. Pressure of polymorphic transformation of alkali halide crystals 

P0, kbar 

Crystal Gordon, Cohen, Zhdanov, numerical calculation 
Kim [5] Gordon [6] Polyakov [8] Wedephol [9] with potentials [4] experiment [10] 

LiF 

LiCI 

LiBr 

NaF 

NaCI 

NaBr 

KF 

KCI 

KBr 

RbF 

RbCI 

RbBr 

550 

160 

110 

142 

49 

35 

51 

21 

19 

32 

16 

12.4 

480 

144 

105 

129 

49 

39 

51 

24 

17 

30 

16 

12.4 

200 

110 

190 

24 

22 

13 

245 

290 

110 

80 

302 

149 

100 

154 

138 

45 

89 

29 

29 

34 

17 

14 

100-310 

110-140 

70-105 

17-200 

18-250 

30-53 

20-100 

20-36 

18-36 

12-100 

5-31 

5-25 

tion of the lattice, which resulted in a rise of the bond 
energy up to 10% and in an approximately correspond- 
ing reduction of the lattice constant. One can assume 
that the Gordon-Kim theory inadequately describes the 
interaction of ions over long distances (-8 a.u. and 
more), because a correct calculation of the dispersion 
interaction is necessary in this case. As mentioned 
above, seven coordination spheres were included in our 
calculations. The data of Table 1 indicate that the pair 
interaction potentials [4] include fairly correctly the 
dispersion term, because during their use no drastic 
increase in the bond energy of the lattice is observed 
(and accordingly, no reduction of the lattice constant), 
and a good agreement is observed with experiment 
when the higher coordination spheres are included. 

We will now turn to the calculation of the character- 
istics of polymorphic transformation. The results of 
calculation of the phase transition pressure for a num- 
ber of alkali halide crystals are given in Table 2. 

In analyzing the data of Table 2, one can easily see 
that the results of our study are in rather good agree- 
ment with the experimental data and with the results of 
other authors (the transition pressure P0 for NaC1 crys- 
tal is an exception). However, in [6] and [8], the inter- 
action between only the nearest neighbors was 
included, while in [5] and [9] the effect of second 
neighbors is included. It is clear that the inclusion of the 
second coordination sphere results in some increase in 
the pressure of polymorphic transformation. However, 
the inclusion of the higher coordination spheres (up to 
the seventh one inclusive) does not result in a signifi- 
cant increase in the transition pressure P0. Note that, in 
the case of lithium halides, the pressure P0, on the con- 
trary, drops down compared to the results obtained in 

[5] and [6]. Furthermore, a very high discrepancy in the 
values of the pressure of polymorphic transformation 
according to Wedephol [9], and Gordon and Kim [5, 6] 
is incomprehensible. Note that all of these researchers 
used the Thomas-Fermi-Dirac functional in their cal- 
culations. In so doing, Wedephol [9] obtained a value of 
the bond energy that was, by and large, 10-12% lower 
than in the calculations by Gordon and Kim and 
Zhdanov and Polyakov (see Table 1) for almost the 
same lattice constant. Because the wave functions used 
in these calculations are taken from the same source 
[11], one can draw a conclusion on a certain error in the 
numerical methods used by the authors of those papers. 

CHANGE OF CHARACTERISTICS OF CRYSTALS 
UPON POLYMORPHIC TRANSFORMATION 

The changes of the characteristics of alkali halide 
crystals occurring upon phase transformation are of 
certain interest. Given in Table 3 are the values of the 
absolute and relative (in percent) changes of the lattice 
constant and cohesion energy during transition from 
the NaCI structure to the CsCI structure (B 1 , B2). 
As follows from Table 3, the relative change of the lat- 
tice constant during polymorphic transformation 
exceeds the relative change of the cohesion energy on 
the average by 50-55%. It is also interesting to com- 
pare the relative changes of the volume of crystals dur- 
ing their phase transformation. The respective results 
are given in Table 4. We will dwell in more detail on the 
notation used. The relative change of the crystal vol- 
ume -(AV/Vol)  may be defined as the ratio of the differ- 
ence of volumes of the more stable phase at a given 
pressure to the volume of the given phase in the absence 

HIGH TEMPERATURE Vol. 38 No. 5 2000 



PHASE TRANSITIONS IN ALKALI HALIDE CRYSTALS 725 

of external pressure. This value is usually written as 
-(AVt/Vol). Therefore, 

AV, Vii - V,2 

V01 V01 ' 
(7) 

where Vii is the volume of the B i phase at some pressure 
p, and V01 is the volume of the Bi phase in the absence 
of external pressure. Relation (7) makes it possible to 
analyze the relative changes of the volumes of both 
phases of the crystal subjected to polymorphic transfor- 
mation. The respective quantities appearing in Table 4 
are defined as follows: 

AVnl Vol - Vs1 

VOl VOl ' 

(8) 

AVB2 Vol -- VB2 
V01 V01 ' 

(9) 

where VB1 and Vn2 are the volumes of the B1 and 
B2 phases corresponding to the pressure P0 (i.e., the 
pressure of phase transformation), and V01 is the vol- 
ume of B1 phase in the absence of external pressure. 
The quantity -(AVt/VoO, whose values are given in the 
third column of Table 4, are determined according to 
(7) but at p = P0. 

On analyzing the data of Table 4, one may notice 
that the inclusion of the second and third coordination 
spheres in [6] leads to an increase in the constants 
--(VBI/VoI ) and "-(VB2/Vo1) for lithium, sodium, and 
potassium halides in comparison with the values of the 
same constants in the approximation of only the first 
coordination sphere [5]. In this case, for lithium 
halides, this increase is about 60%, while for the potas- 
sium halides it is only 7-10%. On the contrary, in the 
KC1, RbCl, and RbBr crystals, the inclusion of the sec- 
ond and third neighbors leads to a reduction of the con- 
stants-(Vm/VoO and-(VsE/Vol ) by 8-12%. It is inter- 
esting to note that for the KCI and KBr crystals we 
observe an increase in the constant -(VsE/Vol) and a 
decrease in the constant -(Vm/VoO by about 8%. The 
constant -(AVt/VoO for all alkali halide crystals 
decreases if the effect of the second and third neighbors 
is taken into account. In this case, we observe the 
above-mentioned tendency: for lithium halides, the 
decrease in the constant -(AVt/Vol) is about 70%, and 
for rubidium halides it is 7-9%. The results obtained 
with inclusion of the higher coordination spheres (up to 
the seventh one inclusive) using the pair interaction 
potentials [4] have confirmed the foregoing remarks. 
Furthermore, the data of Table 4 indicate that the use of 
our approximation improves the agreement with the 
experimental data of the values of the constants charac- 
terizing the relative change of the volumes of the ionic 
crystals during polymorphic transformations. 

Table 3. The change of the cohesion characteristics of ionic 
crystals during polymorphic transformation 

Crystal AR(B2-B1), AU(B1-B2), ER, % ev, % 
au au 

LiF 1 

2 

3 
LiC1 1 

2 
3 

LiBr 1 

2 

3 
NaF 1 

2 

3 
NaCI 1 

2 
3 

NaBr 1 
2 

3 
KF 1 

2 

3 
KC1 1 

2 

3 
KBr 1 

2 

3 
RbF 1 

2 
3 

RbCI 1 

2 

3 
RbBr 1 

2 

3 

0.18 

0.18 

0.14 
0.2 

0.23 
0.15 
0.21 

0.24 

0.20 
0.19 

0.18 

0.06 

0.21 
0.21 
0.12 
0.18 
0.23 

0.23 
0.16 

0.17 

0.07 
0.19 

0.19 

0.14 
0.17 
0.20 
0.24 
0.14 
0.17 
0.11 
0.15 

0.21 

0.11 
0.21 
0.19 

0.22 

0.014 

0.0138 

0.0243 
0.0O98 

0.O096 
0.0083 
0.0087 

0.0088 
0.010 

0.0094 

0.0092 

0.0146 

0.0065 
0.0067 

0.0105 
0.0061 
0.0083 
0.0020 

0.0056 

0.0062 

0.0070 
0.0041 

0.0048 

0.0029 
0.0039 
0.0044 

0.0076 
0.042 
0.048 

0.0013 
0.0031 
0.0037 

0.0055 
0.0031 
0.0034 
0.0019 

4.93 

4.93 

3.72 
4.28 

4.83 

2.05 
4.17 
4.74 

3.93 

4.35 

3.94 

2.35 

3.89 
3.89 
3.18 
3.14 
3.95 

3.98 
3.26 

3.32 

2.37 
3.30 

3.18 

2.38 
2.81 
3.22 

3.93 
2.68 
3.17 

2.08 
2.49 

3.39 
1.79 

3.35 
2.93 

3.48 

3.38 

3.47 

5.86 
2.98 

3.00 
2.54 
2.84 
2.91 

3.24 
2.65 

2.72 

3.12 
2.23 

2.38 
2.61 
2.22 
2.35 
2.55 

1.72 

2.00 

0.64 
1.47 

1.80 

1.07 

1.46 

1.71 

1.87 

1.36 

1.61 

1.44 

1.15 

i .43 
2.06 

1.20 

1.37 

0.78 

Note: (1) Gordon, Kim [5]; (2) Cohen, Gordon [6]; (3) Our results. 

The modulus of elasticity B was calculated by the 
formula 

8 = v(a2u(R)'  , 
t dV 2 )R=Ro 

(lO) 
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Table 4, The relative change of the volume of alkali halide crystals during their polymorphic transformation 

Crystal 

LiF 1 
2 
3 
4 

LiCI 1 
2 
3 
4 

LiBr 1 
2 
3 
4 

NaF 1 
2 
3 
4 

NaCI 1 
2 
3 
4 

NaBr 1 
2 
3 
4 

KF 1 
2 
3 
4 

KCI 1 
2 
3 
4 

KBr 1 
2 
3 
4 

RbF 1 
2 
3 
4 

RbCI 1 
2 
3 
4 

RbBr 1 
2 
3 
4 

AVsl 

VOl 
0.275 
0.533 

0.612 
0.223 
0.475 

0.522 
0.212 
0.478 

0.490 
0.172 
0.280 

0.319 
0.145 
0.214 

0.269 
0.140 
0.189 

0.194 
0.110 
0.153 

0.172 
0.096 
0.116 

0.094 
0.090 
0.093 

0.092 
0.084 
0.125 

0.144 
0.075 
0.073 

0.062 
0.070 
0.052 

0.044 

Theoretical calculation Experimental data 

AV m [ AV, 

Vol Vot 

B • 1011, 
dyn/cm 2 

AVBj 

Vol 

0.357 

0.085 

0.088 

0.030 

A Vs2 A V t 

rot Vol 

0.394 

0.197 

0.193 

0.170 

0.166 

0.037 

0.112 

0.105 

0.105 

0.133 

0.335 
0.553 

0.597 
0.298 
0.492 
r 

0.499 
0.290 
0.492 

0.534 
0.266 
0.332 

0.394 
0.249 
0.281 

0.302 
0.246 
0.257 

0.249 
0.228 
0.239 

0.244 
0.220 
0.216 

0.202 
0.217 
0.198 

0.196 
0.214 
0.220 

0.236 
0.209 
0.193 

0.184 
0.208 
0.178 

0.169 

0.06 
0.02 

0.017 
0.076 
0.017 

0.016 
0.078 
0.014 

0.015 
0.094 
0.053 

0.047 
0.104 
0.067 

0.045 
0.106 
0.068 

0.060 
0.118 
0.086 

0.091 
0.124 
0.100 

0.094 
0.127 
0.105 

0.098 
0.130 
0.085 

0.081 
0.134 
0.120 

0.124 
0.188 
0.126 

0.126 

9.30 
7.61 
8.90 
8.14 
3.60 
3.32 
4.00 
3.28 
2.70 
2.65 
3.10 
2.51 
5.30 
4.46 
5.30 
5.02 
2.42 
2.18 
5.20 
2.11 
2.19 
2.18 

2.23 
3.80 
3.54 
3.90 
3.38 
2.25 
1.86 
2.19 
1.94 
1.70 
1.60 
1.81 
1.58 
3.30 
2.96 
3.13 
2.80 
1.90 
1.71 
1.77 
1.80 
1.90 
1.49 
1.62 
1.45 

0.033 

Bx  1011, 
dyn/cm 2 

8.67 

3.54 

5.14 

2.85 

2.29 

3.19 

2.02 

1.80 

1.85 

1.59 

Note: (1) Gordon, Kim [5]; (2) Cohen, Gordon [6]; (3) Zhdanov, Polyakov [8]; (4) Our results. 
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where V is the elementary cell volume (for an fcc lattice 
of the NaC1 type, V = 2R3). The difference in the values 
of modulus of elasticity calculated in view of only the 
first coordination sphere and taking into account the 
higher spheres (up to the seventh one inclusive) 
amounts, for different crystals, from 40 to 110%. Note 
that the inclusion of even the third neighbors results in 
a difference in the crystal compressibility of about 80% 
on the average. For example, for a LiF crystal in the 
approximation of the first coordination sphere, 
-(AVt/Vol ) = 0.06; when seven spheres are included, 
this constant is 3.53 times lower. It is for lithium halides 
that the effect of the higher coordination spheres is 
most significant, while for sodium and potassium 
halides this effect decreases and, for rubidium halides, 
the inclusion of the higher spheres leads to a difference 
in the results of 10-15% compared to the approxima- 
tion of the first coordination sphere. 

In conclusion, note that the results of this study 
strongly suggest the inclusion of the higher coordina- 
tion spheres when studying the structural phase transi- 
tions in alkali halide crystals. 
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