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Abstract: A short-step route to GlcNAc-Cbz-Asn was developed.
Treatment of GlcNAc in sat. aq. NH4HCO3 solution and subsequent
electorodialytic desalting provided ammonia-free glycosylamine in
large quantity. The product was coupled with Cbz-Asn �-isobutyl
ester �-fluoride, and finally, the isobutyl ester was deprotected by
enzyme-catalyzed hydrolysis under mild conditions.
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Increasing demand on N-acetylglucosaminylasparagine
(1a) in the synthesis of glycoproteins and glycopeptides,1

especially endo-�-N-acetlylglucosaminidase-catalyzed
chemo-enzymatic synthesis,2 has prompted the develop-
ment of expeditious routes to 1a itself as well as the pro-
tected forms. Here we present a chemo-enzymatic
approach to N-Cbz derivative 1b (Figure 1), which does
not depend on the so-far developed “glycosyl azide” inter-
mediate.3–7 Our scheme has the following two features: 1)
as few synthetic steps as possible; 2) intermediates carry-
ing the least protecting groups.

Figure 1 GlcNAc-Asn and Cbz derivative.

First, glycosylamine 3 was prepared according to Kochet-
kov’s report8 (Scheme 1). There is a great advantage in
Kochetkov’s procedure in that the desired compound 3 is
obtained in only one step from 2. Indeed, treatment of 2 in
a sat. aq. NH4HCO3 solution at 35 °C for 4 days reached
an equilibrium of 3 and 2 in 86:14 ratio. This method of
preparation is very simple; however, there remained a del-
eterious effect of the co-existing NH4HCO3 and H2O,
which show considerable nucleophilicity toward the ami-
no acid acyl donor. Our initial attempts using vacuum
pump-dried workup9 only resulted in a very low yield of
the subsequent coupling step.

Scheme 1 Synthesis of Ammonia-free Glycosylamine 3.

This problem was cleanly solved by means of electrodia-
lytic desalting. The concentration of NH4HCO3 was mon-
itored by the measurement of electroconductivity, which
lies in linear relationship as depicted in Figure 2.

Figure 2 Calibration of NH4HCO3 in aq. solution.

The electrodialysis was carried out with a membrane Ac-
220-550 (Asahi Chemical Co.), which allows all ionized
components with less than MW 220 to go through. Typi-
cal example of time course on the decrease of NH4HCO3

is shown in Figure 3. In the preparative-scale experi-
ment,10 99.5% of the initial NH4HCO3 was removed. The
subsequent lyophilization provided a mixture of 3 (54%)
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and 2 (9%). Through this step, no interchange between
amine 3 and GlcNAc 2 was observed.

Next, a selectively protected (�-ester) form 5a11 of N-Cbz-
L-aspartate was prepared according to the reported proce-
dure via a cyclic oxazolidinone 6a.12 Activation of the
acyl donor was accomplished by the conversion to acyl
fluoride,6 expecting enhanced affinity toward the nitrogen

nucleophile,13 glycosylamine 3, since this amine is a free
sugar and, moreover, contaminated with GlcNAc (2, ca.
9%). The acids 5a and 6a were treated with cyanuric
fluoride14 to give stable fluorides 5b (92%)15 and 6b
(90%), respectively.

The coupling reactions were examined in the presence of
NaHCO3, as listed in Table. The complete dissolution of
the glycosylamine 3 in a polar solvent such as DMF was
essential for the efficient progress of the reaction, and the
yield reached as high as 84%.16 The great advantage of
acyl fluoride indeed is the cleanness of the reaction prod-
uct. In contrast, an attempted reaction between 3 and 5a
with a conventional N-hydroxysuccinimide protocol8 pro-
vided the desired product; however, we faced many diffi-
culties throughout the purification of such a polar
polyhydroxy compound from the debris of the coupling
reagents.

Finally, enzyme-catalyzed hydrolysis17 under mild condi-
tions as neutral pH was applied to deprotection of the �-
ester, to avoid the decomposition of glycosyl amide and/
or epimerization at the �-position of the asparagine moi-
ety. Bacillus licheniformis protease (subsilisin, Sigma)
showed very low activity; in turn, papain-catalyzed
hydrolysis18 worked well on the isobutyl ester to give 1b
in 67% isolated yield (Scheme 2).19 The cyclic ester 1d,
however, was a poor substrate toward either enzyme.

In conclusion, a chemo-enzymatic short-step route to
GlcNAc-Cbz-Asn 1b was established, involving ammo-
nia-free formation of N-acetylglucosaminylamine (3) in a
preparative scale, followed by the coupling with acyl flu-
oride 5b, and papain-catalyzed hydrolysis of the ester pro-
tective group of �-carboxyl group at the final step.
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Table Coupling Reactions Between 3 and Acyl Fluorides.

Substrate Solvent Time (h) Yield (5)

6b H2O–dioxane (1:5) 2.5 63

6b CH3CN 24 ND

6b DMF 1 65

5b H2O–dioxane (1:3) 2.5 21

5b dioxane 24 ND

5b DMF 1 84

Scheme 2 Synthesis of 1b.
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Figure 3 Electrodialytic Desalting of NH4HCO3 in the Reaction
Mixture.
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