superfluous. The results of cell misalignment can be calculated in the normal, elementary way because of the relatively small magnitude of the aberrations established in this work. Acknowledgments. We are much indebted to Mr. F. Hussein and also to Dr. L. J. Gosting for helpful criticisms of the manuscript. We also thank Mr. S. Gresswell for assisting in some preliminary calculations.

The Production of Perfluorocyclopropane in the Reaction of Oxygen

Atoms with Tetrafluoroethylene

by Norman Cohen and Julian Heicklen

Aerospace Corporation, El Segundo, California (Received February 28, 1966)

The reaction of $O(^{3}P)$ with $C_{2}F_{4}$ proceeds by the reaction scheme

$$O + C_2F_4 \xrightarrow{k_{11}} CF_2O + CF_2$$

$$O + C_2F_4 \xrightarrow{k_5} C_2F_4O^*$$

$$2CF_2 \xrightarrow{k_2} C_2F_4$$

$$CF_2 + C_2F_4 \xrightarrow{k_5} cyclo-C_3F_6$$

$$C_2F_4O^* + C_2F_4 \xrightarrow{k_6} CF_2O + cyclo-C_3F_6$$

$$C_2F_4O^* \xrightarrow{k_7} CF_2O + CF_2$$

where $C_2F_4O^*$ is an excited intermediate. The ratio $k_5/(k_{11} + k_5)$ is 0.15 at 22° and drops slightly as the temperature is raised. The CF₂ radicals produced give the same values for $k_3/k_2^{1/2}$ as do singlet CF₂ radicals produced in another system.

Introduction

In recent reports from this laboratory,^{1,2} it has been shown that the reaction of triplet oxygen atoms with C_2F_4 yields CF_2O as the sole oxygen-containing product independent of conditions for temperatures from 23 to 125° . However, at room temperature the cyclo- C_3F_6 formed was about 0.15 that of the CF_2O for C_2F_4 pressures up to 30 mm. This invariance with pressure is contrary to that expected from the sequence of reactions

$$O + C_2F_4 \longrightarrow CF_2O + CF_2 \text{ (singlet)}$$
(1)

$$2CF_2 \longrightarrow C_2F_4 \tag{2}$$

....

$$CF_2 + C_2F_4 \longrightarrow cyclo-C_3F_6$$
 (3)

Therefore, two possible alternatives were suggested^{1,3}

$$O + C_2F_4 \longrightarrow CF_2O + CF_2$$
 (triplet) (4)

$$O + C_2 F_4 \longrightarrow C_2 F_4 O^* \tag{5}$$

⁽¹⁾ D. Saunders and J. Heicklen, J. Am. Chem. Soc., 87, 2088 (1965).

⁽²⁾ D. Saunders and J. Heicklen, J. Phys. Chem., 70, 1950 (1966).

⁽³⁾ J. Heicklen, N. Cohen, and D. Saunders, ibid., 69, 1774 (1965).

where the triplet CF_2 from reaction 4 would disappear by (2) or (3) but with different rate constants from the singlet reactions. The product of reaction 5 is an excited C_2F_4O molecule which never becomes stabilized (neither tetrafluoroethylene oxide nor CF_3CFO is a product of the reaction) but may react *via*

$$C_2F_4O^* + C_2F_4 \longrightarrow CF_2O + cyclo-C_3F_6$$
 (6)

$$C_2F_4O^* \longrightarrow CF_2O + CF_2$$
 (7)

The results¹ in the presence of molecular oxygen favored reaction 4, but reaction 5 could not be eliminated as a possibility. Therefore, we studied the cyclo-C₃F₆ yield over a wide range of conditions to see if we could decide among the possibilities. The results of that study are reported here.

Experimental Section

The experimental procedure was identical with that of an earlier study,⁴ except that an excess of N₂O (Matheson, degassed), usually 500 mm, was present in all runs, and the C_2F_4 was prepared by reacting Zn with 1,2- $C_2F_4Br_2$.² The amount of nitrogen produced was computed from the residual pressure of the gas noncondensable at -196° .

Results

The quantum yield of cyclo- C_3F_6 formation from mercury-sensitized photolyses of mixtures of 500 mm N₂O with smaller amounts of C_2F_4 is shown in Tables I-III and Figures 1-3. The quantum yields $\Phi(\text{cyclo-}C_3F_6)$ are computed as the amount of cyclo- C_3F_6 produced divided by the N₂ produced.

At 22°, $\Phi(\text{cyclo-C}_3F_6)$ rises proportionately (slope = 1.0 on log-log plot of Figure 1) with C₂F₄ pressure for C₂F₄ pressures up to 0.6 mm. For C₂F₄ pressures between 0.6 and 30 mm, $\Phi(\text{cyclo-C}_3F_6)$ is constant at about 0.15, but at higher pressures $\Phi(\text{cyclo-C}_3F_6)$ rises. The data for ref 1 are included in Figure 1; they lie on the same curve as the data from this study. A variation of the absorbed intensity by a factor of 50 had no effect for C₂F₄ pressures are obscured by the scatter in the data, but the low-intensity points lie above those at the higher intensities.

At 95° and C_2F_4 pressures between 1 and 4 mm, $\Phi(\text{cyclo-}C_3F_6)$ is about 0.11 irrespective of intensity, as shown in Figure 2. At higher C_2F_4 pressures, Φ -(cyclo- C_3F_6) rises toward unity with increasing pressure; the steeper the rise, the lower the intensity.

At 150°, there is no intensity-independent, pressureindependent region. $\Phi(\text{cyclo-C}_3F_6)$ is increased by raising the C₂F₄ pressure or lowering the intensity. The limiting high-pressure, low-intensity limit for

Figure 1. Plot of $\Phi(\text{cyclo-C}_3F_6)$ vs. (C_2F_4) at 22°.

Figure 2. Plot of $\Phi(\text{cyclo-C}_3F_6)$ vs. (C_2F_4) at 95°.

Figure 3. Plot of $\Phi(\text{cyclo-}C_3F_6)$ vs. (C_2F_4) at 150°.

⁽⁴⁾ N. Cohen and J. Heicklen, J. Chem. Phys., 43, 871 (1965).

(C2F4),	$R(\mathrm{N}_2) imes10$,		(C2F4),
mm	moles/min cc	Φ(cyclo-Caf's)	mm
$I_{\mathtt{B}}$	$\sim 5 imes 10^{-9}$ einstein/mi	n ce	Ia
0.15	4.3	0.056	1.2
0.24	4.9	0.042	1.85
0.38	5.7	0.085	2.1
0.44	6.0	0.088	0.0 0.0
1.05	6.6	0.13	9.0
1.1	3.7	0.16	9.8 10.0
1.83	6.6	0.16	10.0
3.0	6.0	0.16	10.2
3.4	6.6	0.13	10.4
6.9	7.4	0.17	29.5
10	4.0	0.15	30
20	2.1	0.11	31
20	2.0	0.15	31
<u>2</u> 8 40	3.0	0.24	32
40	2.5	0.21	100
49	3.1	0.25	106
49	5.9	0.19	147
51	3.4	0.21	7
80	2.8	0.31	
90	5.7	0.27	2.85
100	2.7	0.31	3.13
120	2.2	0.40	9.8 20
122	5.4	0.185	30
165	2.5	0.37	100
$I_{\rm a}$ /	$\sim 0.8 imes 10^{-9}$ einstein/n	uin cc	I
0.18	0.78	0.046	1 05
0.25	0.70	0.078	1.50
0.32	0.88	0.078	1.56
0.40	1.05	0.144	3.1
0.46	0.65	0.115	3.15
0.67	1.22	0.116	3.7
1.3	0.98	0.14	4.95
3.35	1.23	0.12	9.6
3.5	0.85	0.162	9.8
10.1	1.10	0.170	10.2
19	1 44	0.14	25
20 40	0.56	0.20	30
40	0.34	0.20	30
40	0.61	0.33	30 100
83	0.39	0.38	102
85	0.53	0.27	102
108	0.42	0.40	$I_{\mathbf{a}}$
160	0.27	0.63	3,35
163	0.34	0.56	9.8
165	0.52	0.42	29
I_{a} /	$\sim 0.1 imes 10^{-9}$ einstein/r	nin ce	<u></u>
0.18		0.034	
5.8	0.21	0.174	$\Phi(\text{cyclo-C}_3\text{F}_6)$ is
40	0.090	0.33	of the log-log
80	0.090	0.50	(C_2F_4) are less
160	0.107	0.70	pendence of $\Phi(c)$

Table I: Mercury-Sensitized Photolysis of $N_2O-C_2F_4$ Mixtures at 22°; $N_2O \sim 500$ mm

Table II: Mercury-Sensitized Photolysis of $N_2O-C_2F_4$ Mixtures at 95°; $N_2O \sim 500$ mm

(C2F4), mm	$R(N_2) \times 10^9$, moles/min cc	Φ(cyclo-CsF6)
	$I_{\rm a} \sim 4 imes 10^{-9}$ einstein/min cc	
1.2	3.8	0.125
1.85	4.4	0.12
2.1		0.08
3.6		0.17
9.8	3.9	0 11
9.8		0.113
10.0	4 7	0 15
10.2	4 6	0.19
10.3	3 7	0.23
10.0	3 5	0.118
20.5	3 4	0.175
20.0	9.1 2.1	0.170
31	25	0.02
21	2.5	0.22
20	3.5	0.30
100	4.0	0.30
100	4.4	0.00
100	2.7	0.52
147	4.2	0.00
	$I_{\rm a} \sim 0.7 imes 10^{-9}$ einstein/min co	0
2.85	0.66	0.069
3.15	0.72	0.087
9.8	0.72	0.16
30	0.78	0.25
30	0.62	0.38
100	0.70	0.67
	$I_{a} 0.2 imes 10^{-9}$ einstein/min cc	
1,05	0.20	0.15
1.50	0.18	0.07
1.56	0.23	0.14
3.1	0.22	0.175
3.15	0.126	0.2
3.7	0.18	0.09
4.95	0.20	0.21
9.6	0.163	0.29
9.8	0.157	0.32
10.2	0.169	0.2
25	0.20	0.55
30	0.17	0.70
30	0 149	0.82
30	0 18	0.60
100	0.080	1.0
102	0.000	0.02
104		0.94
o o-	I_{a} 0.03 \times 10 ⁻⁹ einstein/min c	0
3,35	0.032	0.22
9.8	0.032	0.62
29	0.033	0.90

 $\Phi(\text{cyclo-}C_3F_6)$ is about 1.5. At all intensities the slopes of the log-log plots on Figure 3 of $\Phi(\text{cyclo-}C_3F_6)$ vs. (C_2F_4) are less than unity, indicating that the dependence of $\Phi(\text{cyclo-}C_3F_6)$ on (C_2F_4) is less than linear.

The Journal of Physical Chemistry

(C2F4), mm	$R(N_2) \times 10^9$, moles/min cc	Φ(cyclo-C₃F6)	(C ₂ F ₄), mm	$R(N_2) \times 10^9$, moles/min cc	Φ(cyclo-C ₂Fe
$I_{a} \sim$	$I_{a} \sim 2 \times 10^{-9}$ einstein/min cc		$I_{ m s} \sim 0.5 imes 10^{-9}$ einstein/min cc		
0.39	1.44	0.053	1.1	0.65	0.093
0.66	1.6	0.073	1.65	0.38	0.21
1.0	2.6	0.095	2.9	0.80	0.25
2.53	1.73	0.16	8.6	0.73	0.53
5.5	1.92	0.25	31	0.75	0.94
8.7	1.7	0.30	101	0.68	1.5
9.2	1.92	0.37	.	0.0.10-0.1.1.1	
9.5	1.76	0.29	$I_{a} \sim$	0.2×10^{-9} einstein/r	nin ce
10.5	5.8	0.72	0.71	0.21	0.20
18.5	1.8	0.27	0.84	0.139	0.27
18.5	2.1	0.33	0.95	0.21	0.20
28	1.12	0.85	1.18	0.175	0.58
30	2.9	0.77	1.6	0.22	0.34
33	2.4	0.87	2.85	0.160	0.50
40	4.2	0.59	3.5	0.23	0.46
40	3.8	0.77	9.8	0.147	0.75
40		0.93	10.3	0.25	0.67
52	1.12	0.81	30	0.28	1.18
61	1.0	1.08	30	0.172	0.50
80	3.2	0.82	31	0.150	0.88
80	3.2	0.42	98	0.21	1.6
90	1.2	1,15	100	0.174	1.27
.00	4.0	0.87	100	0.096	1.15
.00	4.8	0.69	100	0.067	0.96
.00	2.3	1.15	150	0.22	1.5
.00	3.2	1.0	7	0.00 x 10-0 -1 -1 /	
~	1 00		$I_{ m a} \sim$	0.03×10^{-9} einstein/	min cc

1.0

3.0

9.35

31

99

Table III: Mercury-Sensitized Photolysis of N₂O-C₂F₄ Mixtures at 150°: N₂O \sim 500 mm

Discussion

104

125

In this system, the initial photolytic act is excitation of the mercury vapor

1.68

1.87

$$Hg + h\nu \longrightarrow Hg^*$$
 (8)

1.4

1.35

The excited mercury atom might react with either N₂O or C_2F_4

$$Hg^* + N_2O \longrightarrow Hg + N_2 + O(^3P) \qquad (9)$$

$$Hg^* + C_2F_4 \longrightarrow Hg + 2CF_2 \text{ (singlet)}$$
 (10)

Reaction 9 is a well-known method for producing oxygen atoms and is the only reaction by which N_2O quenches Hg^{*.5} Reaction 10 is almost the only result of quenching Hg^* by $C_2F_{4.6,7}$ A small fraction of the quenching leads to excited C₂F₄ molecules which can deactivate. However, in this work this process is negligible under all conditions and can be ignored. The relative rate constants k_{9}/k_{10} have been measured to be about 3.0 at room temperature.^{1,8} We measured

this ratio at elevated temperatures and found it to be insensitive to temperature.9 In the experiments reported in this paper, the ratio $(N_2O)/(C_2F_4)$ was always greater than 3.0. Thus at least 90% of the quenching of the mercury was by reaction 9.

0.027

0.037

0.036

0.033

0.035

The oxygen atom produced then reacts exclusively with C_2F_4 to yield ultimately one molecule of CF_2O for every oxygen atom consumed. The possible reactions are (1), (4), and (5). At present we are unable to distinguish between (1) and (4), so we combine them into a composite reaction (11).

(9) Unpublished work of this laboratory.

0.53

0.77

1.15

1.66

1.8

⁽⁵⁾ R. J. Cvetanović, Advan. Photochem., 1, 115 (1963).

⁽⁶⁾ B. Atkinson, J. Chem. Soc., 2684 (1952).

⁽⁷⁾ J. Heicklen, V. Knight, and S. A. Greene, J. Chem. Phys., 42, 221 (1965).

⁽⁸⁾ A. J. Yarwood, O. P. Strausz, and H. E. Gunning, ibid., 41, 1705 (1964).

$$O + C_2F_4 \longrightarrow CF_2O + CF_2$$
 (11)

where the multiplicity of the CF_2 is unspecified.

If CF₂ radicals were the only precursors to cyclo-C₃F₆ formation (*i.e.*, reaction 5 is unimportant) and the only reactions of CF₂ are (2) and (3), then application of a stationary-state treatment to O atoms and to CF₂ radicals as determined by reactions 9, 2, 3, and 11 gives two limiting expressions for $\Phi(\text{cyclo-C}_3F_6)$, depending on the relative rates of reactions 2 and 3

$$\Phi(\text{cyclo-C}_{3}F_{6}) = 1 \qquad (R_{2} < R_{3}) \qquad (12)$$

$$\Phi(\text{cyclo-C}_{8}\mathbf{F}_{6}) = k_{3} \left(\frac{I_{a}}{2k_{2}}\right)^{1/2} (\mathbf{C}_{2}\mathbf{F}_{4}) \qquad (R_{3} < R_{2}) \quad (13)$$

Thus, $\Phi(\operatorname{cyclo-C_3F_6})$ would depend on the intensity and the C_2F_4 pressure $(R_2 > R_3)$ or it would be independent of both variables $(R_3 > R_2)$; it could not depend on one variable and be independent of the other. The data at 22° and C_2F_4 pressures less than 0.6 mm show that $\Phi(\operatorname{cyclo-C_3F_6})$ increases with C_2F_4 pressure but is unaffected by variations in the intensity. Thus another reaction must be playing a role; we presume it is reaction 5. Conversely, if reaction 5 were the only result of oxygen atom-C_2F_4 encounters, then

$$\Phi(\text{cyclo-C}_{3}F_{6}) = 1 \qquad (R_{2} < R_{3}) \qquad (14)$$

. ,

$$\Phi(\text{cyclo-C}_{3}\mathbf{F}_{6}) = k_{3}(\mathbf{C}_{2}\mathbf{F}_{4}) \left\{ \frac{k_{7}}{2I_{a}k_{2}[k_{6}(\mathbf{C}_{2}\mathbf{F}_{4}) + k_{7}]} \right\}^{1/s} + \frac{k_{6}(\mathbf{C}_{2}\mathbf{F}_{4})}{k_{6}(\mathbf{C}_{2}\mathbf{F}_{4}) + k_{7}} \quad (R_{3} < R_{2}) \quad (15)$$

but at all pressures of C_2F_4 greater than 1 mm, k_6 - $(C_2F_4) > k_7$ as will be shown. Therefore, the last equation reduces to

$$\Phi(\text{cyclo-C}_3 F_6) \cong 1 \tag{16}$$

That is, $\Phi(\text{cyclo-C}_3F_6)$ would be unity under all conditions except at the very lowest C_2F_4 pressures. The results indicate that this is not the case. Thus, reaction 11 must participate. Henceforth, discussion is based on the mechanism consisting of reactions 2, 3, 5–9, and 11.

If we apply the steady-state approximation to (CF_2) , (O), and $(C_2F_4O^*)$, recognizing that reaction 7 is an unimportant source of CF_2 radicals, we obtain

$$\Phi(\text{cyclo-C}_3 \mathbf{F}_6) = 1.0 \qquad (R_2 < R_3) \qquad (17)$$

$$\Phi(\text{cyclo-C}_{3}\text{F}_{6}) = \frac{k_{3}(\text{C}_{2}\text{F}_{4})}{I_{a}^{1/2}} \left[\frac{k_{11}}{2k_{2}(k_{11} + k_{5})} \right]^{1/2} + \frac{k_{5}k_{6}(\text{C}_{2}\text{F}_{4})}{(k_{11} + k_{5})[k_{6}(\text{C}_{2}\text{F}_{4}) + k_{7}]} \qquad (R_{3} < R_{2}) \quad (18)$$

The Journal of Physical Chemistry

An important prediction of the mechanism is that in the high C_2F_4 pressure, low-intensity limit, $\Phi(cyclo-C_3F_6) = 1.0$ as long as reaction 10 is negligible. Since we have defined $\Phi(cyclo-C_3F_6)$ as $(cyclo-C_3F_6)/(N_2)$, then the actual limit for $\Phi(cyclo-C_3F_6)$ called Φ_{∞} . $(cyclo-C_3F_6)$, is

$$\Phi_{\infty}(\text{cyclo-C}_{3}\text{F}_{6}) = 1.0 + 2 \frac{k_{10}}{k_{9}} \frac{(\text{C}_{2}\text{F}_{4})}{(\text{N}_{2}\text{O})}$$
(19)

Under our experimental conditions, the last term on the right side of (19) can approach 0.20. At 22 and 95°, $\Phi_{\infty}(\text{cyclo-C}_3F_6)$ is about unity, whereas at 150° it is about 1.5 compared to the theoretical limit of 1.2. Presumably this discrepancy reflects errors in our analytical procedure.

Equation 18 will hold reasonably well for $\Phi(\text{cyclo-}C_3F_6) \leq 0.5$ and will become more and more exact as $\Phi(\text{cyclo-}C_3F_6)$ decreases.

Let us first examine the results at 22°. For C_2F_4 pressures less than 30 mm, $\Phi(\text{cyclo-}C_3F_6)$ is independent of intensity. Consequently, the first term on the right side of (18) must be unimportant. At very low pressures, $k_7 \gg k_6(C_2F_4)$ and (18) reduces to

$$\Phi(\text{cyclo-C}_{3}\mathbf{F}_{6}) \approx \frac{k_{5}k_{6}(\mathbf{C}_{2}\mathbf{F}_{4})}{k_{7}(k_{11}+k_{5})}$$
(20)

In accordance with (20), Figure 1 shows that $\Phi(\text{cyclo-}C_3F_6)$ is proportional to (C_2F_4) at low C_2F_4 pressures and is independent of I_a . From the intercept of the log-log plot, $k_5k_6/k_7(k_{11} + k_5)$ is estimated to be 0.24 mm⁻¹. As the C_2F_4 pressure is raised, $k_6(C_2F_4) \gg k_7$, and (18) becomes

$$\Phi(\text{cyclo-C}_3 \mathbf{F}_6) \approx \frac{k_5}{k_{11} + k_5}$$
(21)

Again, Figure 1 shows a large region where $\Phi(\text{cyclo-}C_3F_6)$ is independent of (C_2F_4) and I_a . The ratio $k_5/(k_{11} + k_5)$ is 0.15. Finally, at higher pressures eq 18 can be rearranged to yield

$$I_{a}^{1/s} \left[\Phi(\text{cyclo-C}_{3}F_{6}) - \frac{k_{5}}{k_{11} + k_{5}} \right] = k_{3}(\text{C}_{2}F_{4}) \left[\frac{k_{11}}{2k_{2}(k_{11} + k_{5})} \right]^{1/s}$$
(22)

Using the value of 0.15 for $k_5/(k_{11} + k_5)$, we can compute the left side of (22) $[I_a = R(N_2)]$, and in Figure 4 it is plotted vs. (C₂F₄). The data are limited (only values for $\Phi(\text{cyclo-C}_3F_6)$ between 0.2 and 0.5 are used) and are scattered. Nevertheless, we force the best straight line of slope unity through the points and from the intercept estimate $k_3/k_2^{1/2}$ to be 1.0 \times 10⁻² (l./mole

Figure 4. Plot of $I_a^{1/2}[\Phi(\text{cyclo-}C_8F_6) - 0.15]$ vs. (C_2F_4) at 22° for values of $\Phi(\text{cyclo-}C_3F_6) < 0.5$.

Figure 5. Plot of $I_a^{1/2}[\Phi(\text{cyclo-}C_3F_6) - 0.11]$ vs. (C_2F_4) at 95° for values of $\Phi(\text{cyclo-}C_3F_6) < 0.5$.

 $(sec)^{1/2}$. This estimate is probably good to about a factor of 2.

At 95° the same analysis can be made as at 22°. The very low-pressure region was not reached, and $k_5k_6/k_7(k_{11} + k_5)$ cannot be estimated. The flat region in Figure 2 is below 4 mm and yields a value of about 0.11 for $k_5/(k_{11} + k_5)$. The left side of (22) is plotted *vs.* (C₂F₄) in Figure 5, and again the best straight line of unit slope if forced through the badly scattered data. The estimate of $k_3/k_2^{1/2}$ at 95° is 3.1 × 10⁻² (l./mole sec)^{1/2}.

At 150°, Figure 3 shows that there is no intensityindependent region. Consequently, the first term on the right side of (18) must always be important. However, there is no region where $\Phi(\text{cyclo-C}_3F_6)$ is proportional to (C₂F₄), so the second term on the right side of (18) must also play a role. In fact, $k_5/(k_{11})$

Figure 6. Plot of $I_a^{1/2}[\Phi(\text{cyclo-}C_8F_8) - 0.10]$ vs. (C_2F_4) at 150° for values of $\Phi(\text{cyclo-}C_8F_6) < 0.5$.

+ k_5) must be about 0.10. If it were much smaller, then there would be a linear region for $\Phi(\text{cyclo-C}_3F_6) \sim$ 0.3; but if it were much larger, then there would be a linear region for $\Phi(\text{cyclo-C}_3F_6) < 0.10$. If we use a value of about 0.10 for $k_5/(k_{11} + k_5)$, then $k_5k_6/k_7(k_{11} + k_5)$ must be similar to that at room temperature and $k_3/k_2^{1/2}$ can be estimated from the appropriate plot, Figure 6, based on eq 22. The estimate is 0.13 (l./mole sec)^{1/2}.

Table IV summarizes the rate constant data. Reactions 5 and 11 are the competing reactions for the highly exothermic $O + C_2F_4$ reaction. The chemical energy greatly exceeds any thermal energy, and the activation energy is only about 0.6 kcal/mole;² thus temperature variations should have little effect on the rates. However, if there is any effect it should be such that reaction 11 is favored with increasing temperature, as the $C_2F_4O^*$ would be more unstable. Our results agree with expectation. Reactions 6 and 7 are highly exothermic, and no temperature effect would be expected for them. Again our crude results agree with this hypothesis. The ratio k_6/k_7 is about 2.0 mm⁻¹, so reaction 7 is unimportant for C_2F_4 pressures in excess of 1 mm. Reaction 3 might well have an activation energy, and thus $k_3/k_2^{1/2}$ could be markedly enhanced at elevated temperatures. In fact, this occurs, and Table IV shows a comparison of the ratio obtained with that obtained in another study for singlet CF_2 radicals. Within experimental error, the results are identical.

We may now address ourselves to the question of what is the nature of the excited species designated $C_2F_4O^*$. Thermochemical considerations indicate that $C_2F_4O^*$ has at least 70 kcal/mole excess energy over the ground state. If all this energy appeared as vi-

Temp,	ks/	$\frac{k_{0}k_{5}}{[k_{7}(k_{11} + k_{5})]}$	$10^3 \times k_3/k_2^{1/2}$ (l./mole sec) ^{1/2}	
°C	$(k_{11} + k_5)$	mm^{-1}	This work	Ref 4
22	0.15	0.24	10.0	4.3
95	~ 0.11		31	40
150	~ 0.10	a	130	130

brational energy, $C_2F_4O^*$ would never be stabilized under our conditions and would always dissociate. Consequently, $C_2F_4O^*$ must be an excited electronic level, presumably a triplet in accordance with the spin conservation rules.

Finally we return to the problem of the multiplicity

of the CF_2 radicals formed in reaction 11. Originally, the suggestion that the CF_2 radicals in this system were triplets was based on their excessive reactivity with C_2F_4 and O_2 . However, the results of this study have shown that their reactivity toward C_2F_4 is identical with that for singlet CF_2 radicals. Thus if they are triplets, the evidence must rest on the reactivity with O_2 . The appropriate experiments are being conducted in the Aerospace Laboratories, and will be the subject of a future report.

Acknowledgment. This research was supported by the U. S. Air Force under Contract No. AF 04(695)-669. The authors wish to thank Mr. Richard Frey for performing many of the analyses and experiments and Mrs. Zanette Kohlmeyer for assistance with the manuscript.

Photolysis of Methyl Iodide in the Presence of Nitric Oxide

by Timothy Johnston and Julian Heicklen

Aerospace Corporation, El Segundo, California (Received March 7, 1966)

Methyl iodide was photolyzed in the presence of NO at room temperature. Iodine is both a primary and secondary product. Nitrosomethane is a primary product, while $(CH_3NO)_2$, NO_2 , CH_3ONO , N_2 , and N_2O are secondary products, and CH_3ONO_2 , CH_2O , and HNO_2 are tertiary products. The complete reaction sequence is given. Methyl iodide enters the chain step to give CH_3O radicals. The important steps in removing CH_3NO are $2CH_3NO \rightarrow (CH_3NO)_2$ and $CH_3NO + NO \rightarrow CH_3O + N_2O$. The rate constants for both reactions were obtained and are tabulated with several other rate constants. Where comparisons could be made with existing results, agreement was good.

I. Introduction

The methyl radical addition to nitric oxide has been studied extensively, and the rate constant is reasonably well known.¹⁻⁶ The adduct has been observed by the use of infrared analysis⁷ as well as mass spectral analysis.⁸

Nitrosomethane can be removed in a number of reactions. If the NO pressure is sufficiently low that all methyl radicals are not scavenged by NO, then two methyl radicals can react with CH₃NO. Such a reaction was proposed by Hoare⁶ to account for the fact

⁽¹⁾ R. W. Durham and E. W. R. Steacie, J. Chem. Phys., 20, 582 (1952).

⁽²⁾ F. P. Lossing, K. V. Ingold, and A. W. Tickner, Discussions Faraday Soc., 14, 34 (1953).

⁽³⁾ W. A. Bryce and K. V. Ingold, J. Chem. Phys., 23, 1968 (1955).
(4) M. I. Christie, Proc. Roy. Soc. (London), A249, 248 (1958).

⁽⁵⁾ W. C. Sleppy and J. G. Calvert, J. Am. Chem. Soc., 81, 769 (1959).