

Palladium-Catalyzed C–H Monoalkoxylation of α,β -Unsaturated Carbonyl Compounds

Yasunari Monguchi,* Kouki Kunishima, Tomohiro Hattori, Tohru Takahashi, Yuko Shishido, Yoshinari Sawama, and Hironao Sajiki*

Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

Supporting Information

ABSTRACT: An efficient method for the direct introduction of alkoxy groups into the β -position of alkene moieties of various $\alpha_{,}\beta_{-}$ unsaturated carbonyl compounds through the palladium-catalyzed $C(sp^2)$ -H monoalkoxylation using alcohols in the presence of sodium nitrite was developed; the corresponding enol ethers were selectively synthesized with minimal generation of acetals.

KEYWORDS: monoalkoxylation, alkene, palladium catalysis, C-H functionalization, mild conditions

E nol ethers have been widely used as building blocks for the preparation of heterocyclic compounds, such as isoxazoles,¹ quinolines,² furans,³ and pyridines,³ as well as for the chemical modification of biologically active compounds, such as nucleosides.⁴ Furthermore, the $\alpha_{,\beta}$ -unsaturated ketonederived enol ethers could be good substrates for the Danishefsky's dienes⁵ and Rawal's dienes,⁶ which could be used for the Diels-Alder reaction. Recently, transition-metalcatalyzed C-H functionalizations have been in the spotlight in organic chemistry due to the elimination of the partial preactivation of substrates, such as the introduction of a leaving group.⁷ The palladium-catalyzed functionalization of a terminal C-H bond of monosubstituted alkenes using nucleophiles under oxidative conditions, which is the so-called Wacker-type reaction, has been applied for C-N⁸ and C- C^{9-11} bond formations. However, no general methods for the mono C–O functionalization of $\alpha_{,\beta}$ -unsaturated carbonyl compounds generating β -monoalkoxylated α_{β} -unsaturated carbonyl compounds have been developed in spite of their valuable utilities, while acetals could be effectively prepared through a further alkoxylation at the β -position (Scheme 1, eq 1).^{12,13} Recently, the Pd/Cu-catalyzed 1,2-diacetoxylation of alkenes under aerobic oxidation conditions has been achieved by the addition of the nitrite anion to the acetic acid-acetic anhydride solution (Scheme 1, eq 2).¹⁴ Pd(MeCN)₂ClNO₂, a Pd(II) nitrite salt, also mediated the oxidation of cyclic alkenes to afford the corresponding cyclic epoxides, ketones, enols, and enones.¹⁵ Furthermore, palladium acetate $[Pd(OAc)_2]$ generally exists as a trimer $[Pd_3(OAc)_6]$, and it is also known that the acetate ions of $Pd_3(OAc)_6$ could be partially substituted by nitrite ions, such as Pd₃(OAc)₅NO.¹⁶

In this paper, we demonstrate that $Pd(OAc)_2$ would catalyze the β -monoalkoxylation of α,β -unsaturated carbonyl compounds in the presence of sodium nitrite under mild oxidative

conditions to selectively afford the corresponding enol ethers (Scheme 1, eq 3).

When a solution of benzyl acrylate (1) and $Pd(OAc)_2$ (10 mol %) in MeOH was stirred at 110 °C under O₂ atmosphere, nearly no reaction took place (Table 1, entry 1), whereas the desired benzyl (*E*)- β -methoxyacrylate (2)¹⁷ was obtained together with dimethylacetal (3) and benzyl methyl malonate

 Received:
 April 16, 2016

 Revised:
 May 17, 2016

Table 1. Optimization of Reaction Conditions^a

	Pd(OAc) ₂ (1 Ag reagent (2 Additive (20	0 mol%) 2.2 equiv) 0 mol%)	_0M	e Me	OOMeMeO_2C
BnO ₂ C ²	MeOH (1 m	nL),6h Bn	0 ₂ C	BnO ₂	BnO ₂ C
1 0.25 mm	nol		2	_	3 4
entry	Ag	additive	temp (°C)	gas	ratio ^b 1/2/3/4
1	-	-	110	O ₂	94/5/1/0
2	Ag ₂ O	-	110	O ₂	58/28/8/6
3	$AgOCOCF_3$	-	110	O ₂	42/24/32/2
4	AgOAc	-	110	O ₂	22/59/2/17
5	AgOAc	$NaNO_2$	110	O ₂	4/80/2/14
6	-	$NaNO_2$	110	O ₂	92/8/0/0
7 ^c	AgOAc	$NaNO_2$	110	O ₂	100/0/0/0
8	AgOAc	$NaNO_2$	80	O ₂	5/80/2/13
9	AgOAc	$NaNO_2$	80	Ar	1/76/2/21
10	AgOAc	KNO ₂	80	Ar	4/75/3/18
11	AgOAc	$NaNO_3$	80	Ar	15/61/2/22
12	AgOAc	NaOAc	80	Ar	36/43/0/21
13 ^d	AgOAc	$NaNO_2$	80	Ar	4/81/3/12
14	AgOAc	$NaNO_2$	25	Ar	45/50/5/0
15 ^e	AgOAc	$NaNO_2$	25	Ar	15/75/10/0
16 ^{e,f}	AgOAc	$NaNO_2$	25	Ar	11/79 (70%) ^g /9/1
17 ^{e,h}	AgOAc	$NaNO_2$	25	Ar	6/82/11/1
$18^{e_i f, i}$	AgOAc	$NaNO_2$	25	Ar	1/77/20/2
-					

^{*a*}Reaction conditions: 1 (0.25 mmol), Pd(OAc) (10 mol %), Ag reagent (2.2 equiv), additive (0 or 20 mol %) in MeOH (1 mL) at 110, 80, or 25 °C for 6 h. ^{*b*}Determined by ¹H NMR analysis ^{*c*}Without Pd(OAc)₂. ^{*d*}Freshly distilled MeOH was used. ^{*e*}20 mol % of Pd(OAc)₂ was used. ^{*f*}8 h. ^{*g*}Isolated yield. ^{*h*}12 h. ^{*i*}MeOH (0.5 mL) was used.

(4) by the addition of a silver(I) salt (2.2 equiv) as an oxidant (entries 2-4); AgOAc was the most effective for the consumption of 1 (entry 4) among the silver(I) salts that we investigated. The production of 2 significantly increased by the addition of NaNO₂ (entry 5), and Pd(OAc)₂ (entry 7) was found to be essential for the β -monomethoxylation of 1. The reaction proceeded with a similar product distribution at 80 °C (entry 8) and even under Ar atmosphere (entry 9). It was found out that only the nitrite anion showed a positive effect regardless of the metal cation elements by comparison with the alternative salts of NaNO₂ (entries 9 and 10 vs 11 and 12). Although the formation ratio of benzyl methyl acrylate (4) was only slightly decreased by the use of freshly distilled MeOH as the solvent, a further study was performed using commercial MeOH without any purification from a practical point of view (entries 13 vs 8 and 9). The decrease in the reaction temperature from 80 to 25 °C led to a low conversion of 1 (entry 14), whereas the reaction efficiency was significantly enhanced with a low level of the byproduct formation by increasing the catalyst use to 20 mol % (entry 15) and the extension of the reaction time to 8 h (entry 16) to give the desired 2 in 70% isolated yield; however, the product balance was not virtually improved by further extension of the reaction time (entry 17). The decrease in the use of MeOH from 1 to 0.5 mL caused a significant increase in the formation ratio of the acetal 3 possibly due to the Pd-mediated further addition of MeOH based on the high concentration of $Pd(OAc)_2$ (entry $18).^{12g}$

A variety of alcohols was applicable for the β -monoalkoxylation of benzyl acrylate, although *i*-PrOH and *t*-BuOH indicated somewhat lower reactivities due to possible steric hindrance (Table 2, 2a-2e). The methoxylation of the benzyl

Table 2. C-H Alkoxylation of Alkenes Using Alcohols^a

^aReaction conditions: 1 (0.25 mmol), Pd(OAc) (20 mol %), Ag reagent (2.2 equiv), NaNO₂ (20 mol %) in alcohol (1 mL) at 25 °C. Isolated yields are shown.

acrylate derivatives and 2-naphthylmethyl acrylate smoothly proceeded regardless of the kinds and substitution pattern of the substituents on the aromatic ring (2f-2k). Aliphatic and aryl esters of acrylic acid as well as vinyl alkyl ketone also underwent the β -monomethoxylation to afford the desired methyl enol ethers (2l-2p). Furthermore, the methoxy group was successfully introduced to the β -position of the β -methyl acrylate derivative, benzyl crotonate, in a completely stereoselective manner (2q),¹⁸ while benzyl metacrylate possessing a methyl substituent at the α -position was not suitable as a substrate for the present reaction (2r).

The present oxidative conditions for the $C(sp^2)$ -H β monoalkoxylation of $\alpha_{,\beta}$ -unsaturated carbonyl compounds could be applied to the C-H β -amination^{8a} and β -arylation⁹ of benzyl acrylate. When 3 equiv of benzyl acrylate was used for the reaction with diphenylamine in 1,2-dichloroethane in the presence of Pd(OAc)₂, AgOAc, and NaNO₂, the desired enamine was obtained in 84% yield (Scheme 2, eq 1). The phenylation of benzyl acrylate could be achieved by the use of PhB(OH)₂ as a nucleophile to give the corresponding benzyl cinnamate in 89% yield (Scheme 2, eq 2).

Benzyl methyl malonate (4) could be obtained under elevated temperature conditions at 80 °C in 60% yield from benzyl (*E*)- β -methoxyacrylate (2), the major product of the present C-H β -monomethoxylation reaction (Scheme 3, eq 1), whereas no reaction took place in the case of the acetal (3) as the starting material (Scheme 3, eq 2).¹⁹ Therefore, there is no doubt that 2 is an intermediate for the formation of the byproduct (4) of the C-H β -methoxylation.

Scheme 2. Application of Other Nucleophiles

≫ .CO₂Bn -	+ Ph _a NH	Pd(OAc) ₂ (20 mol%) AgOAc (2.2 equiv) NaNO ₂ (20 mol%)	SI N∕≪ ∠CO₂Bn	(1)
3 equiv	0.25 mmol	1,2-dichloroethane (1 mL) Ar, 25 ℃, 24 h	Ph ₂ N ≪ - 84%	(1)
> CO-Bn ⊥		Pd(OAc) ₂ (20 mol%) AgOAc (2.2 equiv) NaNO ₂ (20 mol%)	S	(2)
0.25 mmol	1 equiv	1,2-dichloroethane/H ₂ O (100 : 1, 1 Ar, 25 °C, 24 h	Ph ² 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(2)

Scheme 3. Mechanistic Studies

The proposed reaction mechanism of the $C(sp^2)$ -H monoalkoxylation at the β -position of the $\alpha_{,\beta}$ -unsaturated carbonyl compounds is depicted in Scheme 4. Palladium salts

Scheme 4. Proposed Mechanism

are simply expressed as $Pd(OAc)_{l}(NO_{2})_{m}$ (1 + m = 2) for the reason that palladium acetate would be present as $Pd_{3}(OAc)_{6-x}(NO_{2})_{x}$ in the presence of NaNO₂. It coordinates with benzyl acrylate (1) to afford a Pd^{II} complex (A), and the subsequent nucleophilic attack by MeOH to the β -position would give a Pd^{II} intermediate (B), which undergoes β -hydrogen elimination to generate the desired benzyl β -methoxyacrylate (2) with emission of the Pd^{II} -H complex (C). The succeeding reductive elimination gives the Pd^{0} species, which is oxidized to $Pd(OAc)_{2}$ by AgOAc. Pd- $(OAc)_{l}(NO_{2})_{m}$ would be regenerated by the disproportionation of $Pd(OAc)_{2}$ with HNO₃. The acetal **3** should be obtained by the further Pd-mediated addition of MeOH to **2** as reported in ref 12g, and benzyl methyl malonate (4) must be generated from **2** as already described.

In conclusion, we have developed an effective and selective $C(sp^2)-H$ monoalkoxylation at the β -position of $\alpha_{,\beta}$ unsaturated carbonyl compounds in the presence of NaNO₂ under Pd-catalyzed oxidative conditions. A wide variety of enol ethers could be synthesized from acrylates and $\alpha_{,\beta}$ -unsaturated ketones in good yields. Furthermore, the protocol could be applied to the C–N and C–C bond-forming reactions using amine and arylboronic acid derivatives as nucleophiles. One of the distinctive features of the present reaction is the mild conditions (25 °C) and no need of the special purification of reagents. Further study for the application of the present conditions to the novel $C(sp^2)$ –H monofunctionalization of terminal alkenes is ongoing in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b01084.

Experimental procedures and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: monguchi@gifu-pu.ac.jp. *E-mail: sajiki@gifu-pu.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We sincerely thank the N.E. Chemcat Co. for the kind gift of $Pd(OAc)_2$.

REFERENCES

(1) Yamamoto, T.; Fujita, K.; Asari, S.; Chiba, A.; Kataba, Y.; Ohsumi, K.; Ohmuta, N.; Iida, Y.; Ijichi, C.; Iwayama, S.; Fukuchi, N.; Shoji, M. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3736–3740.

(2) Hameed P, S.; Patil, V.; Solapure, S.; Sharma, U.; Madhavapeddi, P.; Raichurkar, A.; Chinnapattu, M.; Manjrekar, P.; Shanbhag, G.; Puttur, J.; Shinde, V.; Menasinakai, S.; Rudrapatana, S.; Achar, V.; Awasthy, D.; Nandishaiah, R.; Humnabadkar, V.; Ghosh, A.; Narayan, C.; Ramya, V. K.; Kaur, P.; Sharma, S.; Werngren, J.; Hoffner, S.; Panduga, V.; Kumar, C. N. N.; Reddy, J.; Kumar KN, M.; Ganguly, S.; Bharath, S.; Bheemarao, U.; Mukherjee, K.; Arora, U.; Gaonkar, S.; Coulson, M.; Waterson, D.; Sambandamurthy, V. K.; de Sousa, S. M. J. Med. Chem. **2014**, *57*, 4889–4905.

(3) Zhu, Z.-B.; Kirsch, S. F. Chem. Commun. 2013, 49, 2272–2283.
(4) Cook, P. D.; Ewing, G.; Jin, Y.; Lambert, J.; Prhavc, M.; Rajappan, V.; Rajwanshi, V. K.; Sakthivel, K. WO 2005/021568 A2, March 10, 2005.

(5) Danishefsky, S.; Kitahara, T.; Shuda, P. F. Org. Synth. 1983, 61, 147–151.

(6) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252–5253.
(7) Reviews: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–238. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624–655. (c) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2, 20–40. (d) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118–1126. (e) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345. (f) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960–9009. (g) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236–10254. (h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053–1064.

(8) (a) Obora, Y.; Shimizu, Y.; Ishii, Y. Org. Lett. **2009**, 11, 5058– 5061. (b) Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. **2013**, 15, 1242–1245. (c) Jin, X.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2014, 53, 455–458.

(9) (a) Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang, H. F.; Fugami, K.; Kosugi, M. Org. Lett. 2001, 3, 3313–3316. (b) Yoo, K. S.; Yoon, C. H.; Jung, K. W. J. Am. Chem. Soc. 2006, 128, 16384–16393. (c) Sun, P.; Zhu, Y.; Yang, H.; Yan, H.; Lu, L.; Zhang, X.; Mao, J. Org. Biomol. Chem. 2012, 10, 4512–4515. (d) Tang, B.-X.; Fang, X.-N.; Kuang, R.-Y.; Hu, R.-H.; Wang, J.-W.; Li, P.; Li, X.-h. Synthesis 2013, 45, 2971–2976.

(10) (a) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097–2100. (b) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3125–3129. (c) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254–9256. (d) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460–461. (e) Babu, B. P.; Meng, X.; Bäckvall, J.-E. Chem. - Eur. J. 2013, 19, 4140–4145. (f) She, Z.; Shi, Y.; Huang, Y.; Cheng, Y.; Song, F.; You, J. Chem. Commun. 2014, 50, 13914–13916. (g) Liu, W.; Yu, X.; Kuang, C. Org. Lett. 2014, 16, 1798–1801. (h) Deb, A.; Bag, S.; Kancherla, R.; Maiti, D. J. Am. Chem. Soc. 2014, 136, 13602–13605.

(11) (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680–3681. (b) Li, S.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 5267–5270. (c) Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055–2059.

(12) (a) Hosokawa, T.; Ataka, Y.; Murahashi, S.-I. Bull. Chem. Soc. Jpn. 1990, 63, 166–169. (b) Jia, L.; Jiang, H.; Li, J. Chem. Commun. 1999, 985–986. (c) Kishi, A.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2000, 2, 523–525. (d) Limbach, M.; Dalai, S.; de Meijere, A. Adv. Synth. Catal. 2004, 346, 760–766. (e) Wang, Z.-Y.; Jiang, H.-F.; Qi, C.-R.; Wang, Y.-G.; Dong, Y.-S.; Liu, H.-L. Green Chem. 2005, 7, 582–585. (f) Wang, K.; Li, W. S.; Zhou, X. P. Catal. Lett. 2005, 105, 89–92. (g) Wang, Z.-Y.; Jiang, H.-F.; Ouyang, X.-Y.; Qi, C.-R.; Yang, S.-R. Tetrahedron 2006, 62, 9846–9854. (h) Jiang, H.-F.; Shen, Y.-X.; Wang, Z.-Y. Tetrahedron 2008, 64, 508–514.

(13) Jiang et al. reported that the reaction of methyl acrylate with MeOH under scCO₂ (5.5 MPa)-O₂ (0.5 MPa) in the presence of Pd(OAc)₂, NaOAc, and polystyrene-supported benzoquinone afforded methyl β -methylacrylate and methyl 3,3-dimethoxpropionate in 62% and 16%, respectively, as a single example for the selective β -monoalkylation of acrylates, see ref 12g..

(14) Wickens, Z. K.; Guzmán, P. E.; Grubbs, R. H. Angew. Chem., Int. Ed. 2015, 54, 236–240.

(15) Andrews, M. A.; Cheng, C.-W. F. J. Am. Chem. Soc. 1982, 104, 4268–4270.

(16) Bakhmutov, V. I.; Berry, J. F.; Cotton, F. A.; Ibragimov, S.; Murillo, C. A. Dalton Trans. 2005, 1989–1992.

(17) The geometry of the alkene moieties was determined by the good agreement of the ¹H NMR data (*J* value, 12.5 Hz) with those in the literature (*J* value, 12.5 Hz for *E*-isomer; 7 Hz for *Z*-isomer):
(a) Winterfeldt, E.; Preuss, H. Chem. Ber. 1966, 99, 450–458.
(b) Quang, Y. V.; Marais, D.; Quang, L. V.; Goffic, F. L. Tetrahedron

Lett. 1983, 24, 5209–5210.

(18) The ¹H and ¹³C NMR data were identical to those in literature: Chaudhuri, R.; Kazmaier, U. *Synlett* **2014**, *25*, 693–695.

(19) Any products including 2 and 4 were not obtained from the acetal 3.