Supersilyltrielane $R^*_n EHal_{3-n}$ (E = Triel, $R^* = SitBu_3$): Synthesen, Charakterisierung, Reaktionen, Strukturen [1]

Supersilyltrielanes $R_n^*EHal_{3-n}$ (E = Triel, $R^* = SitBu_3$): Syntheses, Characterization, Reactions, Structures [1]

Nils Wiberg, Kerstin Amelunxen, Thomas Blank, Hans-Wolfram Lerner,

Kurt Polborn*, Heinrich Nöth, Ralf Littger, Manfred Rackl,

Martin Schmidt-Amelunxen*, Holger Schwenk-Kircher* und Markus Warchold*

Department Chemie der Universität München Butenandtstr. 5-13 (Haus D), D-81377 München * Kristallstrukturanalysen

Sonderdruckanforderungen an Prof. Dr. N. Wiberg. E-mail: niw@cup.uni-muenchen.de

Herrn Professor Dr. H. P. Fritz gewidmet

Z. Naturforsch. 56 b, 634–651 (2001); eingegangen am 2. Mai 2001

Silicon, Trieles, Supersilyl

Water- and oxygen-sensitive compounds $R^*EHal_2 \bullet D$, R^*EHal_2 and R^*_2EHal ($R^* = SitBu_3$; E = B, Al, Ga, In, Tl; Hal = F, Cl, Br, I; $D = OR_2$, NR₃) have been synthesized by reaction of EHal₃ with NaR^{*} in the absence or presence of donors as well as by substitution of D, Hal or R^{*} by other substituents, or by reaction of $R^*_2E-ER^*_2$ (E = Al, In) with I₂, H₂, AgF₂ or HBr. Thermal decomposition of the compounds in solution or in the gas phase leads to elimination of D from R^{*}EHal₂•D, or of R^{*}Hal from R^{*}EHal₂ and R^{*}₂EHal, respectively. The dihalides R^{*}EHal₂ act as Lewis acids with respect to donors OR₂ or NR₃ (formation of adducts R^{*}EHal₂•D), the monohalides R^{*}₂EHal as Lewis bases with respect to acceptors EHal₃ (formation of R^{*}₂E⁺ EHal₄⁻). Dehalogenations of R^{*}₂EHal and R^{*}EHal₂ with alkali metals or NaR^{*} leads to compounds R^{*}₄E₂ (E = Al, In, Tl), R^{*}₃E₂• (E = Al, Ga), R^{*}₄Ga₃⁻, R^{*}₄Ga₄²⁻, R^{*}₄Tl₃Cl, or R^{*}₆Tl₆Cl₂. The structures of R^{*}BBr₂•Py, R^{*}AlBr₂•NEtMe₂, (R^{*}AlClOBu)₂, R^{*}₂BF as well as R^{*}₂ECl (E = B, Al, Ga, Tl) have been determined by X-ray structure analyses.

1. Einleitung

Vor einigen Jahren erhielten wir durch Enthalogenierung von sterisch überladenen Disupersilylaluminium- und -galliumhalogeniden R_2^*EHal ($\mathbf{R}^* =$ **SitBu₃ = Supersilyl**; Hal = Cl, Br) mit Supersilylnatrium in glatter Reaktion erstmals rotes Tetrasupersilyldialan $R_4^*Al_2$ [2] und schwarzviolettes Tetrasupersilyl-*tetrahedro*-tetragallan $R_4^*Ga_4$ [3]:

In der Folgezeit befassten wir uns dann eingehend mit Synthesen von Supersilyltrielanen $R^*_n EHal_{3-n}$ (E = Triel = B, Al, Ga, In, Tl; n = 1, 2, aber nicht 3) in der Hoffnung, durch gezielte Dehalogenierung der betreffenden Produkte neuartige Trielclusterverbindungen zu erhalten. Nachfolgend seien unsere Ergebnisse über Synthesen, Charakterisierung, Reaktionen und Strukturen der betreffenden Verbindungen R^*_n EHal_{3-n} vorgestellt (bezüglich bisher bekannt gewordener Silyltrielane mit E = B vgl. Ref.[4], mit E = Al, Ga, In vgl. Ref. [5] und dort zit. Lit.; Silvlthallane waren bisher unbekannt). Eine nachstehende Veröffentlichung [6] wird sich mit Silyltrielanen $R'_{n}EHal_{3-n}$ beschäftigen, welche anstelle von R* die weniger Raum beanspruchenden Reste $R' = SitBu_2Ph$ mit der Folge enthalten, dass auch halogenfreie Trisilyltrielane R'₃E zugänglich werden. Gegenstände einer weiteren Veröffentlichung sind schließlich Synthesen, Charakterisierung, Re-

Κ

0932–0776/01/0700–0634 \$ 06.00 © 2001 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

aktionen und Strukturen von Ditrielanen $R_4^*E_2$ und $R_4'E_2$, u. a. erzeugt durch Enthalogenierung von Trielanen $(R_3Si)_n$ EHal_{3-n} $(R_3Si = R^*, R')$ [7].

2. Synthesen von $\mathbb{R}^*_n \mathbb{E} X_{3-n}$ und $\mathbb{R}^*_n \mathbb{E} X_{3-n} \bullet \mathbb{D}$ (E = Triel; $\mathbb{R}^* = \operatorname{Sit} \mathbb{B} u_3$, X = H, Hal, OR)

Die Synthese monomerer oder dimerer sowie donorfreier und donorhaltiger Silyltrielane R*EX₂ und R*₂EX des nachfolgend wiedergegebenen Baus (Trielane R*₃E sind aus sterischen Gründen unzugänglich) kann im Zuge eines *Aufbaus* durch Reaktion von NaR* [8] und EHal₃ oder im Zuge einer *Umwandlung* der auf diese Weise erhaltenen Verbindungen R*EHal₂ und R*₂EHal erfolgen (Ersatz von R* bzw. Hal durch X, von D durch D').

R* = SitBu₃; E = Triel; X = H, Hal, OR; D = Ether, Amine

- 2.1. Synthese donorhaltiger oder -freier Trielane $R_n^*EX_{3-n}$ durch Verbindungsaufbau
- 2.1.1. Donorhaltige Monosilyltrieldihalogenide

Verbindungen des Typs R*EHal₂•D entstehen gemäß Gl. (1) durch Reaktion von Trieltrihalogeniden EHal₃ (E = B, Al, Ga, In, Tl) mit äquimolaren Mengen Supersilylnatrium NaR* in Anwesenheit eines Donors, welcher entweder gebunden an die Edukte (EHal₃•D, NaR*•D) oder als Reaktionsmedium vorliegen kann (D z. B. Diethylether Et₂O, Tetrahydrofuran THF, Pyridin Py, Ethyldimethylamin NEtMe₂) oder nach erfolgter Supersilanidierung von EHal₃ dem Reaktionsgemisch zugefügt wird:

$$EHal_{3} + NaR^{*} \xrightarrow{Donor} R^{*}EHal_{2} \bullet D$$
(1)
(E = B, Al, Ga, In, Tl)

Auf diese Weise ließen sich folgende Verbindungen synthetisieren: R*BHal₂•Py, (Hal = F, Cl Br), R*AlHal₂•D (Hal/D = Cl/OEt₂, Cl/THF, Br/THF, Br/NEtMe₂, I/NEtMe₂), R*AlHCl•THF (aus AlHCl₂ und NaR* in THF), R*GaHal₂•D (Hal/D = Cl/THF, Cl/NEtMe₂, Cl/Py, Br/THF), R*InCl₂•THF, R*TlCl₂•THF. Letzteres Addukt zerfällt allerdings oberhalb –50 °C in R*Cl und TlCl und wurde bisher nicht isoliert.

2.1.2. Donorfreie Monosilyltrielhalogenide

Setzt man Trieltrihalogenide $EHal_3$ (E = Al, Ga, In) in Abwesenheit von Donoren mit NaR* in Alkanen als Reaktionsmedien im Molverhältnis 1 : 1 oder 1 : < 1 um, so macht man die überraschende Beobachtung, dass sich gemäß Gl. (3) zunächst Disupersilyltrielhalogenide R*2EHal bilden, wobei EHal₃ unverbraucht zurückbleibt. Somit werden also zwischenzeitlich entstandene Dihalogenide R*EHal₂, die im Sinne der Formulierung (R*EHal₂)₂ als Dimere von R*EHal₂ zu beschreiben sind (siehe obiges Formelbild), rascher supersilanidiert als eingesetztes EHal₃ (vgl. [5] sowie weiter unten). Anschließend wandeln sich die Trielane R^{*}₂EHal dann unter Verbrauch von EHal₃ langsam in donorfreie Monosilyltrieldihalogenide R*EHal₂ um (siehe weiter unten). Die Reaktionen von EHal₃ (E = B) mit äquimolaren Mengen NaR^{*} führen demgegenüber im Sinne der Gl. (2) direkt zu den donorfreien Monosilyltrieldihalogeniden R*BHal₂, welche in Anwesenheit überschüssigen Supersilylnatriums - langsamer - in Disilyltrielhalogenide R^{*}₂BHal übergehen. Donorfreies Monosilylthalliumdihalogenid ließ sich bisher nicht synthetisieren.

$$BHal_3 + NaR^* \xrightarrow[-NaHal]{Alkan} R^*BHal_2$$
(2)

$$\begin{aligned} & \text{EHal}_3 \xrightarrow{+2\,\text{NaR}^*} \{\text{R}^*_2\text{EHal/EHal}_3\} \rightarrow 2\,\text{R}^*\text{EHal}_2 \quad (3) \\ & (\text{E} = \text{Al}, \,\text{Ga}, \,\text{In}) \end{aligned}$$

Folgende Verbindungen konnten auf diese Weise dargestellt werden: R^*BHal_2 (Hal = F, Cl, Br), R^*AlHal_2 (Hal = Cl, Br), R^*GaHal_2 (Hal = Cl, Br), R^*InCl_2 .

2.1.3. Disilyltrielhalogenide

2

Verbindungen des Typs R_2^*EHal (E = B, Al, Ga, In, Tl) erhält man gemäß Gl. (4) aus Trieltrihalogeniden EHal₃ und der doppeltmolaren Menge Supersilylnatrium NaR* sowohl in Anwesenheit als auch in Abwesenheit von Donoren. Reaktionszwischenprodukte sind hierbei naturgemäß Verbindungen R*EHal₂ oder R*EHal₂•D. Insbesondere im Falle stark gebundener Donoren – wie etwa Aminen – reagieren die Addukte R* EHal₂•D nur sehr langsam mit NaR* zu den Produkten R*₂EHal weiter. Dies deutet daraufhin, dass die Substitution von Hal⁻ gegen R*⁻ über donorfreies R*EHal₂ führt. Halogenide EHal₃ oder R*EHal₂, die in Alkanen im Sinne der Formulierung (EHal₃)₂ und (R*EHal₂)₂ Dimere bilden, sollten dann ebenfalls vor der Substitution von Hal⁻ gegen R^{*-} monomerisieren, wobei eine – sterisch bedingte – leichter erfolgende Monomerisierung von (R*EHal₂)₂ erklären würde, dass (R*EHal₂)₂ von NaR^{*} rascher supersilanidiert wird als (EHal₃)₂. Insbesondere Trielane R*EHal₂ und R*₂EHal mit schweren Trielen und / oder schweren Halogenen werden von NaR^{*} leicht reduziert, was die Bildung von R*₂EHal gemäß Gl. (4) beeinträchtigt. Demgemäß reagieren etwa AlI₃, GaBr₃ oder TlCl₃ mit NaR^{*} nicht oder nur teilweise zu R*₂EHal.

$$EHal_{3} + 2 \operatorname{NaR}^{*} \xrightarrow{Alkane, Ether} R^{*}_{2}EHal \qquad (4)$$
$$(E = B, Al, Ga, In, Tl)$$

Gemäß Gl. (4) konnten wir folgende Produkte herstellen: R_2^*BHal (Hal = F, Cl), R_2^*AlHal (Hal = Cl, Br), R_2^*GaHal (Hal = Cl, Br), R_2^*InCl und R_2^*TlCl . Die Halogenide R_2^*EF und R_2^*EI (E = Al und wohl auch Ga, In) sind nicht durch Verbindungsaufbau (4), sondern nur durch Verbindungsumwandlung (s. unten) zugänglich. Die Reaktion von TlCl₃ mit der doppeltmolaren Menge NaR* in THF bei –78 °C führt zu $R_4^*Tl_3Cl$ und $R_6^*Tl_6Cl_2$ [9]. Das Chlorid R_2^*TlCl ist aber durch Zugabe zunächst der dreifachmolaren Menge NaR*, dann von Me₃SiCl zu einer Lösung von TlCl₃ in THF zugänglich.

2.2. Synthesen donorhaltiger und -freier Trielane $R_{n}^*EX_{3-n}$ durch Verbindungsumwandlung

2.2.1. Umwandlungen von Trielanen $R_n^*EHal_{3-n} \bullet D$ und $R_n^*EHal_{3-n}$

Addukte des Typs R*EHal₂•D entstehen aus R*EHal₂•D' mit D, D' = Ether, Amine, aber auch R*EHal₂ gemäß Gl. (5) durch Verdrängung des schwächeren *Donors* D' durch einen stärkeren Donor D (R*EHal₂ < Et₂O < NEtMe₂, Py; Disilyltrielhalogenide R*₂EHal bilden aus sterischen Gründen keine Donoraddukte). So führt etwa die Einwirkung von Et₂O auf (R*GaCl₂)₂ zu R*GaCl₂•OEt₂, die von NEtMe₂ auf R*GaCl₂•THF zu R*GaCl₂•NEtMe₂.

$$R^{*}EHal_{2} \bullet D' + D \rightarrow R^{*}EHal_{2} \bullet D + D'$$
(5)
(E = Triel; D, D' = Donoren)

In Mono- und Dihalogeniden des Typs R*₂EHal bzw. R*EHal₂ lässt sich andererseits *Halogenid* Hal⁻ gemäß Gl. (6) gegen andere Anionen X⁻ austauschen, wie die Bildung von R^{*}₂AlF aus R^{*}₂AlCl bzw. von R^{*}₂InF aus R^{*}₂InCl in Anwesenheit von CsF, die Bildung von R^{*}₂AlH aus R^{*}₂AlCl in Anwesenheit von LiAlH₄ oder die Bildung von R^{*}TIPh₂ aus R^{*}TICl₂ in Anwesenheit von LiPh lehrt.

$$R^*_n EHal_{3-n} + (3-n) X^- \xrightarrow{Alkan} R^*_n EX_{3-n} + Hal^-$$
(6)
(E = Triel; X⁻ z. B. F⁻, H⁻, Ph⁻; n = 2, 1)

Des weiteren kann eine *Supersilylgruppe* in R_2^*EHal gemäß Gl. (7) durch Einwirkung von EHal₃ gegen Halogenid ersetzt werden (vgl. hierzu auch Gl. (3)). Die Verbindungen R^*AlHal_2 (Hal = Cl, Br), R^*GaHal_2 (Hal = Cl, Br) und R^*InCl_2 konnten auf diese Weise gewonnen werden.

$$R^{*}{}_{2}EHal + EHal_{3} \xrightarrow{Alkan} 2 R^{*}EHal_{2}$$
(7)
(E = Al, Ga, In)

2.2.2. Umwandlung von Ditrielanen $R_2^*E-ER_2^*$

Halogene oder Halogenwasserstoffe können Ditrielane R^{*}₄E₂, die unabhängig synthetisiert wurden [2, 10], gemäß Gl. (8) in Disilyltrielhalogenide, Silvltrieldihalogenide und Trieltrihalogenide überführen. Tatsächlich bildet sich durch Einwirkung von I_2 auf $R_4^*Al_2$ in Alkanen bei leicht erhöhter Temperatur das – auf direktem Wege aus All₃ und NaR^{*} nicht zugängliche – Iodid R^{*}₂All in quantitativer Ausbeute (in analoger Weise wandelt sich $R_4^*Al_2$ mit H_2 in R_2^*AlH um). Des weiteren entstehen aus $R_4^*In_2$ und AgF_2 (als Fluorspender) bzw. HBr die Halogenide R*InF2 bzw. R*InBr2. Demgegenüber scheiterten bisher die Versuche zur Umwandlung von $R_4^*Tl_2$ mit AgF₂, Br₂ oder HBr in R^{T} TlHal₂, da letztere Produkte (Hal = F, Br) unter den Versuchsbedingungen wohl in R*Hal und TlHal zerfallen.

$$R^{*}_{2}E-ER^{*}_{2} \xrightarrow{Hal_{2} \text{ bzw.}}_{HHal} R^{*}_{2}EHal, R^{*}EHal_{2}, EHal_{3} \dots$$
(8)
(E = Al, In, Tl)

3. Charakterisierung und Reaktionen von R^{*}_nEX_{3−n} und R^{*}_nEX_{3−n}•D.

Nachfolgend seien einige Kenndaten der hier oder an anderer Stelle [5] von uns gemäß der Gl. (1) - (8) sowie (13), (19) synthetisierten und in Tab. 1 wiedergegebenen donorhaltigen und donorfreien Silyltrielane $\mathbb{R}^*_n \mathbb{E}X_{3-n}$ (X = H, Hal, OR) bespro-

Tab. 1. Darstellung und Kenndaten donorhaltiger und -freier Trielane $R^*_n EX_{3-n}$ (E = Triel; $R^* = SitBu_3$; X = Hal, H, OR).

D* EV	D	ND (D	$(C, D) \mapsto (D^*)$			
$\mathbf{K}_{n}\mathbf{E}\mathbf{A}_{3-n}$ [a,b,c]	Darst Verf.	1 H	C_6D_6 : *(R)	²⁹ Si ^[e] / ¹¹ B		
E = B						
R [*] BF ₂ ●Py	(1)	$1.07^{[f]}$	22.2/31.7 ^[f]	?/8.9 ^[f]		
R*BBCl ₂ •Py	(1)	?	?/?	? /9.7		
R*BBr ₂ •Py	(1)	1.42	24.7/32.6	?/2.1		
R^*BF_2	(2)	?	?/?	?/32.3		
R^*BCl_2	$(2)^{[g]}$?	?/?	?/78.0		
R^*BBr_2	(2)	1.21	23.2/31.9	?/81.1		
$\mathbf{R}_{2}^{*}\mathbf{BF}$	(4)	1.27	23.5/32.2	?/106.7		
$R^{*}_{2}BCl$	(4)	1.33	24.4/33.2	?/135.0		
E = Al [h]						
R [*] AlCl ₂ ●E	(1)	1.34	23.6/32.2	?		
$R^*AlCl_2 \bullet T$	(1)	1.34	23.4/32.3	?		
$R^*AlBr_2 \bullet T$	(1)	1.36	23.4/32.3	?		
$R^*AlBr_2 \bullet A$	(1)	1.38	24.2/32.6	?		
$R^*All_2 \bullet A$	(1)	1.40	24.6/32.8	?		
R*AlHCl•T	(1)	1.35	?/?	?		
R^*AlCl_2	(3, 7)	1.15	23.9/31.8	?		
R^*AlBr_2	$(3, 7)^{[g]}$	1.20	24.9/32.2	?		
R*AlCl(OBu)	(19)	1.34	23.5/32.5	?		
R [*] ₂ AlF	(6)	1.62	25.4/33.5	?		
R [*] ₂ AlCl	(4)	1.29	25.1/32.9	?		
R [*] ₂ AlBr	(4)	1.29	25.3/32.9	25.9		
R [*] ₂ AlI	(8)	1.34	25.9/33.2	?		
R [*] ₂ AlH	(6, 8)	1.53	24.6/33.0	23.9		
R [*] ₂ AlOBu	(19)	1.38	24.6/33.3	?		

chen. Darüber hinaus sei kurz auf das Thermolyse-, Säure-Base- und Redox-Verhalten der betreffenden Verbindungen eingegangen.

3.1. Kenndaten

Im Falle der Verbindungen $R_n^*EX_{3-n}$ und $R_n^*EX_{3-n} \bullet D$ ($R^* = SitBu_3$) handelt es sich um *farblose* (n = 1) bzw. *hellgelbe* bis *gelbe* (n = 2), in organischer Medien mäßig bis gut *lösliche* Feststoffe, die in Donorsolvenzien *Addukte* (n = 1) bilden bzw. adduktfrei bleiben (n = 2). Sie zeigen Empfindlichkeit gegen *Luft* und *Wasser* und *zersetzen* sich bei leicht bis stark erhöhter Temperatur (R^*BHal_2 , R_2^*TICl bzw. R^*TICl_2 zerfallen bereits bei Raumtemperatur bzw. darunter; s. unten).

Die ¹*H-NMR-* und ¹³*C-NMR-*Verschiebungen der *t*Bu-Gruppen donorhaltiger und donorfreier, in C₆D₆ gelöster Verbindungen R*_nEHal_{3-n} liegen aufgrund der peripheren Lage der betreffenden Reste in engen Bereichen $[\delta(^{1}H) = 1.15 - 1.42]$ ^[a] Donorhaltig; donorfrei. Donoren $E = Et_2O$, T = THF, A = NEtMe₂, Py = Pyridin. ^[b] Die Verbindungen sind *farblos* (*n* = 1) bzw. *hellgelb* bis *gelb* (*n* = 2). R*BCl₂•Py ist *orangefarben*, R*₂BF *farblos*. ^[c] Die meisten Verbindungen *schmelzen* unter Zersetzung, R*AlCl₂•T bei 133 °C, R*AlBr₂•T bei 87 °C, R*AlBr₂•A bei 168 °C, R*₂GaCl bei 135 °C. Zersetzung im Falle von R*BBr₂•Py ab 115 °C, R*GaCl₂ ab 85 °C, R*InF₂ ab 40 °C, R*InBr₂ ab 223 °C, R*₂AlI ab 63 °C. ^[d] Erste / zweite Verschiebung 3CMe₃/3CMe₃. ^[e] Die ²⁹Si-NMR-Signale erscheinen sehr breit bis nicht beobachbar. ^[f] CDCl₃ als Solvens. ^[g] Auch aus EHal₃ und ZnR*₂ zugänglich. ^[h] R*EHal₂ (E = Al, Ga, In) und R*AlCl(OBu) dimer. ^[i] Bei –50 °C. ^[k] Aus CpTl + 2 NaR*, dann + Me₃SiCl. ^[I] δ (²⁹SiMe₃) = 8.66.

ppm; $\delta(^{13}C) = 31 - 34/23 - 28$ ppm; vgl. Tab. 1]; die Signallagen sind demzufolge wenig charakteristisch. Die ²⁹Si-NMR-Signale erscheinen – bedingt durch die Beeinflussung seitens der benachbarten Trielatomkerne – sehr breit (E = (Al), Ga, In, Tl) bis nicht beobachtbar (E = B, Al, (In), (Tl)). Sie liegen für E = Al/Ga/In/Tl der donorhaltigen und -freien Verbindungen R*_nEHal_{3-n} in E-abhängigen, zunehmend tieffeldverschobenen Bereichen bei δ um 25/30/50/ > 60 ppm (vgl. Tab. 1), wobei der

637

Tab. 1 (Fortsetzung).						
$\overline{\mathbf{R}_{[a,b,c]}^{*}\mathbf{E}\mathbf{X}_{3-n}}$	Darst Verf.	NMR (C_6D_6): *(R^*) ¹ H ¹³ C ^[d] ²⁹ Si ^[e] / ¹¹ B				
$\overline{E = Ga [h]}$						
$\begin{array}{l} R^*GaCl_2 \bullet E \\ R^*GaCl_2 \bullet T \\ R^*GaCl_2 \bullet A \end{array}$	(5) (1) (1, 5)	1.23 1.29 1.33	?/? 24.0/31.6 24.1/31.8	27.5 27.0 29.8		
$R^*GaCl_2 \bullet Py$ $R^*GaBr_2 \bullet T$ R^*GaCl_2 R^*GaBr_2	(1, 5) (1) (3, 7) (3, 7)	1.38 1.29 1.23 1.19	26.0/31.3 24.4/31.5 25.0/31.2 25.8/31.5	27.5 25.2 ? 36.6		
$\begin{array}{c} R^*{}_2GaCl \\ R^*{}_2GaBr \\ R^*{}_2Ga^+ \end{array}$	(4) (4) (13)	1.31 1.33 1.38	25.7/32.6 26.1/32.8 27.2/32.4	33.6 34.9 56.2		
E = In [h] $R^*InCl_2 \bullet T$ R^*InF_2 R^*InCl_2 R^*InBr_2 R^*_2InF R^*_2InCl $R^*_2In^+$	(1) (8) (3,7) (8) (6) (4) (13)	1.28 1.27 1.16 1.18 1.36 1.31 1.35	25.6/31.7 ?/? 26.1/31.6 26.1/31.4 25.4/31.7 26.2/32.4 ?/?	47.7 50.3 ? 50.6 51.5 60.9		
E = Tl R*TlCl ₂ •T R*TlPh ₂ R* ₂ TlCl R* ₂ TlSiMe ₃ R* ₂ Tl*	(1) (6) (4) [k] (13)	? 1.12 1.32 1.35 1.40	? / ? 28.5/32.8 28.4/32.8 ? / ? 27.4/33.3	62.2 ^[i] ? 112.9 ^[1] ?		

Úbergang von R^{*}₂EHal in R^{*}₂E⁺ zusätzlich mit einer deutlichen Tieffeldverschiebung verbunden ist (für R^{*}₂Ga⁺/R^{*}₂In⁺ > 20/10 ppm). Nicht beobachtet wurden in der Regel die NMR-Verschiebungen der Zentren Al, Ga, In, Tl. Die ¹¹B-NMR-Signale erscheinen für donorhaltige und -freie Borverbindungen in Richtung R^{*}BHal₂●D/R^{*}BHal₂/R^{*}₂BHal bei zunehmend tieferem Feld (vgl. Tab. 1). Bemerkenswert ist insbesondere der Wert der ¹¹B-Resonanz von R^{*}₂BCl, die mit δ = 135 ppm für eine Verbindung mit dreifach von Hauptgruppenelementen koordiniertem Bor bei ungewöhnlich tiefem Feld erscheint.

3.2. Thermolyse-Verhalten

Nach massenspektrometrischen Studien verdampfen die donorhaltigen $Addukte R^*EHal_2 \bullet D$ entsprechend der Stärke ihrer Donorbindung donorhaltig (z. B. R*AlBr₂•NEtMe₂), donorfrei (z. B. R*BBr₂•Py, R*GaCl₂•THF) oder sowohl donorhaltig wie donorfrei (z. B. R*AlHal₂•D mit Hal = Cl, Br und D = OEt₂, THF; vgl. Gl. (9)). Schwache Addukte wie R*GaCl₂•THF verlieren ihren Donor im Hochvakuum bereits bei Raumtemperatur oder sind gegebenenfalls wie R*BF₂•NEtMe₂ nicht mehr zugänglich [11]. Auch die donorfrei dimeren Monosilyltrieldihalogenide (R*EHal₂)₂ (E = Al, Ga, In und wohl auch Tl) verdampfen in Form von R*EHal₂.

2 R*EHal₂•D bzw. (R*EHal₂)₂
$$\xrightarrow{\Delta}$$
 2 R*EHal₂ (9)

Bei thermischer Belastung zersetzen sich die monomeren (oder monomerisierten) Monosilyltrieldihalogenide R*EHal₂ – und zwar die Verbindungen mit leichterem Halogen langsamer als solche mit schwererem und die Al-Verbindungen langsamer als die B- und die Ga-, In- und insbesondere Tl-Verbindungen – unter Eliminierung von R*Hal in Halogenide EHal, die sich gegebenenfalls (E = Al, Ga, In) in E_x und EHal₃ disproportionieren (vgl. Gl. (10)). So wandeln sich R^*BBr_2 sowie – langsamer – R^*BCl_2 bereits bei Raumtemperatur in R^*Hal und - bisher nicht identifizierte - Borsubhalogenide um, wogegen R*AlCl₂ bei 100 °C noch metastabil ist, während R*AlBr₂ bei 100 °C und R*GaCl₂ schon bei 85 °C in Stunden vollständig zerfallen. R*InF₂ thermolysiert bei 40 °C zu R*F, R*₂ und In-Metallflittern. R*TlCl₂ ist bereits um -50 °C instabil und geht quantitativ in R*Cl und TlCl über.

Auch bildet sich als Folge der Einwirkung von AgF_2 auf $R_4^*Tl_2$ nicht das Difluorid R^*TlF_2 , sondern die – als Thermolyseprodukt von R^*TlF_2 interpretierbare – Verbindung R^*F .

$$R^*EHal_2 \xrightarrow{\Delta} EHal (\rightarrow 2/3 E + 1/3 EHal_3)$$
 (10)

Disilyltrielmonohalogenide R^{*}₂EHal sind thermostabiler als vergleichbare Dihalogenide R*EHal₂, doch hängt die Geschwindigkeit ihres Zerfalls in R^*Hal und – seinerseits thermolabiles – R^*E (vgl. Gl. (11)) in ähnlicher Weise wie die des Zerfalls der Dihalogenide in R*Hal und EHal vom vorliegenden Halogen und Triel ab. So findet sich in den Massenspektren von R*2AlF und R*2AlCl anders als in denen von R^{*}₂AlBr, R^{*}₂AlI, R^{*}₂GaCl, R^{*}₂GaBr oder R^{*}₂InCl kein Hinweis auf die Bildung von R^{*}Hal. Während R_2^*AlCl in C_6D_6 bei 150 °C in 5 d zu 23% thermolysiert, zerfällt R_2^*AlBr in C_6D_6 bei 60 °C in 40 d zu 37% und R^{*}₂GaCl in 4 d sowie R*2InCl in 5 h bei 100 °C zu 50%. Das Thalliumhalogenid R*2TlCl ist bereits bei Raumtemperatur hinsichtlich der Bildung von R* Cl und R* Tl thermolabil, wobei sich gebildetes Supersilylthallium(I) im Sinne von Gl. (11) offensichtlich zweimal reversibel in die TlCl-Bindung unzersetzten Halogenids $R_{2}^{*}TlCl$ unter Bildung des Trithallans $R_{4}^{*}Tl_{3}Cl$ einschiebt (bezüglich der Struktur von $R_4^*Tl_3Cl$ vgl. [9]). Nach längerer Thermolysedauer entstehen letztendlich R*Cl und Supersilylthallium (in organischen Medien unlöslich), das bei 100 °C in R*H und Tl-Metallflitter zerfällt.

$$2 \operatorname{R}^{*}_{2} \operatorname{EHal} \xrightarrow{\Delta}_{-2\operatorname{R}^{*}\operatorname{Hal}} 2 \operatorname{R}^{*} \operatorname{E} (\stackrel{\Delta}{\longrightarrow} \operatorname{R}^{*}_{2}, \operatorname{R}^{*}\operatorname{H}, \operatorname{Tl})$$
(11)
$$2 \operatorname{R}^{*} \operatorname{E} \stackrel{\operatorname{R}^{*}_{2} \operatorname{EHal}}{\underset{}{\overset{}{\longleftarrow}}} \operatorname{R}^{*}_{4} \operatorname{E}_{3} \operatorname{Hal} (\operatorname{mit} \operatorname{E} = \operatorname{Tl}, \operatorname{Hal} = \operatorname{Cl})$$

3.3. Säure-Base-Verhalten

Die Supersilyltrieldihalogenide und Disupersilyltrielhalogenide weisen saure Triel- und basische Halogenzentren auf. Die *Lewis-Acidität* von R^*EHal_2 kommt in der (reversiblen) Bildung von stabilen Addukten mit Donoren wie Ethern oder Aminen zum Ausdruck (vgl. Gl. (12a) sowie Tab. 1). Ihre Stabilität wächst mit zunehmender Lewis-Basizität der Donoren hinsichtlich E (Ether < Amine) und der durch die elektronischen sowie sterischen Verhältnisse bedingten Lewis-Acidität von E (vgl. Abschnitt 3.2) Die Monohalogenide R^*_2EHal bilden zwar als Folge ihrer sterischen Überladung keine derartigen Addukte, doch weist z. B. ihre unter Bildung von HHal und R*H verlaufende Hydrolyse oder die unter Austausch von Cl⁻ gegen F⁻ mögliche Fluoridierung (vgl. Gl. (6)) auf die Möglichkeit einer intermediären Bildung von Addukten im Sinne von Gl. (12b). Auch gemäß (12a) gebildete Donoraddukte R*EHal₂ können gegebenenfalls weiterreagieren, wie die Umsetzungen von R*TlCl₂ mit LiPh zu R*TlPh₂ oder von R*AlHCl und THF zu R*AlCl(OBu) lehren (vgl. Gl. (6) und (17)).

$$R^{*}EHal_{2} \xrightarrow[(a)]{\text{Donor } D} R^{*}EHal_{2} \bullet D$$
(12)

 $\begin{array}{ll} R^{*}EHal \underbrace{\stackrel{Donor\,D}{\longleftrightarrow}}_{(b)} & \{R^{*}EHal {\bullet} D\} & \rightarrow Folgereaktionen \\ & (Zwischenstufe) \end{array}$

Die Lewis-Basizität von R*2EHal zeigt sich andererseits in der Reaktion der Verbindungen mit Akzeptoren wie EHal₃, die gemäß Gl. (13b) in Methylenchlorid als Solvens zur Verbindungsionisierung führt. Die auf diese Weise erzeugten Kationen $R_{2}^{*}E^{+}$ (E = Ga, In, Tl) sind im Sinne nachfolgenden Formelschemas isoelektronisch mit neutralen bzw. anionischen Disupersilylverbindungen von Metallen der Zink- und Kupfergruppe, die von uns bis auf R^{*}₂Ag⁻ und R^{*}₂Au⁻ bereits synthetisiert wurden [12, 13]. Offensichtlich setzen sich auch die Dihalogenide R*EHal2 mit Akzeptoren EHal₃ unter Hal⁻Abstraktion zu Kationen R*EHal⁺ um (isoelektronisch mit R^*MHal ; M = Zn, Cd, Hg [12]), wie die gemäß Gleichung (13a) zu R*Cl und $Ga(Benzol)_2^+GaCl_4^-$ führende Umsetzung von R*GaCl₂ mit GaCl₃ in Benzol lehrt (vgl. hierzu [5] sowie Zerfall von R^*TlCl_2 in $R^*Cl + TlCl$, oben).

$$R^{*}EHal_{2} \xrightarrow{Akzeptor EHal_{3}} \{R^{*}EHal^{+}EHal_{4}^{-}\}$$
(Zwischenstufe)
 \rightarrow Folgereaktionen (13)

$$R^{*}EHal_{2} \xrightarrow{Akzeptor EHal_{3}} R^{*}{}_{2}E^{+}EHal_{4}^{-}$$

$$R^{*}{}_{2}Cu^{-}, R^{*}{}_{2}Zn, R^{*}{}_{2}Ga+$$

$$R^{*}{}_{2}Ag^{-}, R^{*}{}_{2}Cd, R^{*}{}_{2}In+$$

$$R^{*}{}_{2}Au^{-}, R^{*}{}_{2}Hg, R^{*}{}_{2}Tl+$$

Zugleich als *Lewis-Säure und -Base* wirken die Dihalogenide R*EHal₂ hinsichtlich sich selbst: Sie bilden – abgesehen von R*BHal₂ – Dimere des in Gl. (14a) wiedergegebenen Typs. Sterische Effekte verhindern eine analoge Dimerisierung der Monohalogenide R_2^*EHal . Letztere Verbindungen vermögen aber offensichtlich im Sinne von Gleichung (14b) Säure-Base-Addukte mit den – sterisch wenig überladenen – Trieltrihalogeniden zu bilden, welche in – ihrerseits gemäß (14a) dimerisierende – Dihalogenide R^*EHal_2 aufspalten. Die Dimeren (R^*EHal_2)₂ stellen Isomere der Salze $R_2^*E^+$ EHal₄⁻ dar, in welche letztere langsam übergehen (in Alkanen, Benzol, Ethern reagieren die Monohalogenide R^*EHal_3 direkt zu R^*EHal_2).

In entsprechender Weise sind Addukte R*EHal₂ • EHal₃ Isomere der in Gl. (13a) als Zwischenstufen postulierten Salze R*EHal⁺EHal₄. Sowohl Addukte wie Salze könnten hiernach Intermediate der Reaktionen von Dihalogeniden R*EHal₂ mit Trihalogeniden EHal₃ sein.

3.4. Redox-Verhalten

In den Supersilyltrieldihalogeniden und Disupersilyltrielhalogeniden kommen den Triel- und Siliciumatomen teils die Oxidationsstufen III und II, teils aber auch < III und > II zu (Elektronegativitätsreihe B > Ga > Si > Al, In, Tl [14]), so dass Oxidationen bzw. Reduktionen teils die Triel-, teils die Siliciumzentren in R*EHal₂ und R*₂EHal betreffen. Zweckmäßigerweise geht man jedoch einheitlich von den Formulierungen $(tBu_3Si^{II})_n E^{III}Hal_{3-n}$ aus. Damit sind Reaktionen mit Sauerstoff, die gemäß $tBu_3Si-E < + \frac{1}{2}O_2 \rightarrow tBu_3SiO-E < verlaufen [5]$ als Oxidationen des Siliciums, Enthalogenierungenmit Alkalimetallen in Ab- oder Anwesenheit vonNaphthalin oder mit Supersilylnatrium als Reduktionen des Triels zu klassifizieren.

Der Verlauf letzterer Reaktionen hängt wesentlich von den eingesetzten Edukten (R*EHal₂, R*₂EHal, Reduktionsmittel) und den Umsetzungsbedingungen ab (Reaktionstemperaturen, Solvens). *Trielmonohalogenide* R*₂EHal setzen sich offensichtlich in Heptan mit Kalium gemäß Gl. (15a) zu – ihrerseits weiterreagierenden – Trielaniden KER^{*}₂ um. Sie enthalten die mit den Disupersilyltetrelen R^{*}₂E (E = C bis Pb; vgl. [15]) isoelektronischen Disupersilyltriel-Anionen R^{*}₂E⁻ (E = B bis Tl), die im Sinne der Gl. (15b) Addukte von Supersilanid R^{*-} mit Supersilyltrielen R^{*}E^I darstellen.

$$R^{*}{}_{2}EHal \xrightarrow{+e^{-},-Hal^{-}}_{(a)} R^{*}{}_{2}E^{-} \xleftarrow{+R^{*}-}_{(b)} R^{*}E$$
(15)
$$R^{*}{}_{2}E^{-} \xleftarrow{isoelek^{-}}_{tronisch} R^{*}{}_{2}E'$$
(E = Triel) (E' = Tetrel)

Die angesprochene Beziehung kommt etwa darin zum Ausdruck, dass sich das aus R^*_2BF und K bzw. aus R^*_2BHal (Hal = Cl, Br) und NaR* wohl zunächst bildende Anion $R^*_2B^-$ in gleicher Weise gemäß Gl. (16) unter intramolekularer Insertion in eine CH-Bindung stabilisiert [11], wie das aus $R^*_2SiHal_2$ (Hal = Cl, Br) und K bzw. NaR* gewinnbare R^*_2Si [15] (vgl. hierzu auch "Schrägbeziehung" zwischen B und Si [14] sowie das in [16] Besprochene).

Im Sinne von Gl. (15a) reagieren des weiteren die Halogenide R_2^* AlHal (Hal = Cl, Br) in Heptan mit K zum heptanunlöslichen Verbindung, die durch Protonierung mit Ph₃CH in das Alan R_2^* AlH überführbar ist (bei der betreffenden Substanz könnte es sich hiernach sowohl um KAIR₂ als auch um eine, dem Produkt in Gl. (16) entsprechende Verbindung (E = Al) handeln). Im Sinne der Gl. (15b) bildet sich andererseits das Thallanid NaTIR $_2^*$ aus TlX und NaR * (X = C₅H₅); seine Existenz geht aus der zu R_2^* TISiMe₃ führenden Umsetzung mit Me₃SiCl hervor.

Anders als mit Kalium in Heptan setzen sich die Halogenide $R_2^*EHal (E = AI, Ga, In, TI; Hal = CI, Br)$ mit NaR* gemäß Gl. (17) auf dem Wege über Radikale $R_2^*E^{\bullet}$ zu Ditrielanen $R_4^*E_2$ um [2, 10]. ($R_2^*B^{\bullet}$ kann – sterisch bedingt – nicht dimeriseren und wird offensichtlich weiter zu $R_2^*B^-$ reduziert; s. oben):

$$R^{*}{}_{2}EHal \xrightarrow{\pm 2NaR^{*}; 2NaHal - 2R^{*}}_{\text{über } R^{*}_{2}E^{\bullet}} R^{*}{}_{2}E^{\bullet}ER^{*}{}_{2}$$
(17)
(E = Al, Ga, In, Tl)

Die betreffenden Ditrielane lassen sich ihrerseits thermisch oder mit NaR* in andere Trielclusterverbindungen umwandeln (bei erhöhter Temperatur oder in Anwesenheit von NaR* entstehen letztere Verbindungen naturgemäß direkt aus R*₂EHal). So zerfällt R*₄Al₂ bei 100 °C in Heptan in R*₃Al₂•, R*₄Al₃• und R*₄Al₄ [17], R*₄Ga₂ in Alkanen bereits bei sehr tiefen Temperaturen in R*₃Ga₂• und dann bei 100 °C in R*₄Ga₄ [17], sowie R*₄In₂ in Heptan bei 100 °C in R*₈In₁₂ [18]. Auch wandelt sich R*₃Ga₂• mit NaR* in ein THF-Addukt von NaGa₂R*₃ um, das in Gegenwart von R*Br in das – unter Bildung von R*₄Ga₄ und R*₆Ga₈ thermolysierende [19] – Radikal R*₄Ga₃• übergeht [17].

Die Verbindung R*GaCl₂•THF, ein Beispiel aus der Reihe der *Trieldihalogenide* R*EHal₂, setzt sich mit Na in Heptan bei 100 °C gemäß Gl. (18a) bzw. (18b) zu einem THF-Addukt des Gallanids Na₂Ga₄R*₄ um, welches sich gemäß Gl. (18b) zum *tetrahedro*-Tetragallan R*₄Ga₄ oxidieren läßt [17].

$$4 \operatorname{R}^{*}\operatorname{GaCl}_{2} \xleftarrow{+10\operatorname{Na}}_{-8\operatorname{NaCl}} \operatorname{Na}_{2}\operatorname{Ga}_{4}\operatorname{R}^{*}_{4} \xrightarrow{\operatorname{Luft}}_{(b)} \operatorname{R}^{*}_{4}\operatorname{Ga}_{4} \quad (18)$$

THF-Addukt) ^(a) (THF-Addukt)

Unerwarteterweise lieferte die Enthalogenierung von R*AlHal₂•D (D = THF, NEtMe₂; Hal = Cl, Br) mit Na oder K in Benzol bzw. LiC₁₀H₈ oder NaC₁₀H₈ kein zu *tetrahedro*-Tetraalan R*₄Al₄ oxidierbares Produkt.

Die aus $R_{n}^{*}EHal_{3-n}$ nach teilweisem oder vollständigem Ersatz von Hal gegen H hervorgehenden Verbindungen wirken stark reduzierend. So führt die Reaktion von R*AlHCl bei Raumtemperatur bzw. von R*₂AlH bei 80 °C mit THF im Sinne der Gl. (19) auf dem Wege über THF-Addukte (in ersterem / letzterem Falle isolierbar / nicht isolierbar) und einer hydrierenden Spaltung von THF zu R*AlCl(OBu) (dimerer Bau) bzw. R*₂Al(OBu) (monomerer Bau).

Bezüglich der thermisch erfolgenden Reduktion von R_2^*EHal und R^*EHal_2 vgl. das in Abschnitt 3.1 Besprochene.

(

Abb. 1. Struktur des Moleküls R*BBr₂•Py im Kristall und verwendete Atomnumerierung (ORTEP, thermische Schwingungsellipsoide 25%, H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°]: B1-Si1 2.117(5), B1-Br1/Br2 2.057(5) / 2.046(5), B1-N1 1.617(6), Si-C (Mittelwert) 1.95. - Si1-B1-N1 116.7(3), Si1-B1-Br1/Br2 112.0(2) / 112.5(2), Br1-B1-Br2 104.1, Br1/Br2-B1-N1 105.3(3) / 103.2(3), C-Si-C (Mittelwert) 109.5.

Abb. 2. Struktur des Moleküls R*AlBr₂•NEtMe₂ im Kristall und verwendete Atomnumerierung (ORTEP, thermische Schwingungsellipsoide 25%). Ausgewählte Bindungslängen [Å] und -winkel [°]: Al1-Si1 2.562(3), Al1-Br1/Br2 2.327(7) / 2.339(7), Al1-N1 2.043(6), Si-C (Mittelwert) 1.97. - Si1-Al1-N1 125.0(2), Si1-Al1-Br1/Br2 111.8(3) / 112.5(3), Br1-Al1-Br2 106.9(10), N1-Al1-Br1/Br2 100.2(6) / 98.4(6), C-Si-C (Mittelwert) 110.7, Al1-N1-C13/C14/C15 109.3, C-N-C 109.3.

4. Kristallstrukturen von R*BBr₂•Py, R*AlBr₂•NEtMe₂, (R*AlClOBu)₂, R*₂BF und R*₂ECl (E = B, Al, Ga, Tl)

4.1. Verbindungen des Typs $R^*EX_2 \bullet D$

Aus der Gruppe der Donoraddukte von Dihalogeniden R^*EHal_2 (E = Triel) wurden bisher nur $R^*BBr_2 \bullet Py$ (farblose Plättchen aus Toluol, monoklin, $P2_1/c$) und $R^*AlBr_2 \bullet NEtMe_2$ (farblose Quader

Abb. 3. Struktur des Moleküls $[R^*AlCl(OBu)]_2$ im Kristall (Lokalsymmetrie: C_i) und verwendete Atomnumerierung (ORTEP, thermische Schwingungsellipsoide 25%, H-Atome unberücksichtigt). Ausgewählte Bindungslängen [Å] und -winkel [°]: Si1-Al1 2.513(1), Al1-Cl2 2.152(1), Al1-O1/O1A 1.843(2) / 1.840(2), Si-C (Mittelwert) 1.97. – Si1-Al1-O1/1A 122.64(6) / 123.82(6) Si1-Al1-Cl2 112.34(4), Cl2-Al1-O1/O1A 106.18(6) / 107.61(6), O1-Al1-O1A 79.43(7), Al1-O1-Al1A 100.57(7), C-Si-C (Mittelwert) 111.0.

aus Pentan, orthorhombisch, $Pca2_1$) röntgenstrukturanalytisch untersucht. Den Bau der Moleküle im Kristall geben die Abbn. 1 und 2 zusammen mit ausgewählten Bindlungslängen und -winkeln wieder.

Hiernach ist Pyridin in R*BBr₂•Py über das N-Atom (planar, Winkelsumme 359.9°) mit dem B-Atom von R*BBr₂ verknüpft, wodurch das B-Atom verzerrt-tetraedrisch von 1Si/2Br/1N umgeben ist. In analoger Weise koordiniert Ethyldimethylamin in R*AlBr₂•NEtMe₂ über das N-Atom mit dem Al-Atom der Verbindung R*AlBr2, wobei das Al-Atom eine verzerrt-tetraedrische Umgebung mit 1Si/2Br/1N, das N-Atom eine tetraedrische Umgebung mit 1Al/3C aufweist (Winkel Al-N-C in letzterer Verbindung 109.3°). Als Folge der beachtlichen Raumerfüllung von Supersilyl sind die Bindungen Si-B und Si-Al mit 2.117 und 2.562 Å vergleichsweise lang (Summe der Atomradien [14] = 1.17 +0.88 = 2.05 Å für SiB, 1.17 + 1.25 = 2.42 Å für SiAl; in (R₃Si)AlCl₃⁻ mit der weniger raumbeanspruchenden Hypersilylgruppe $R_3Si = (Me_3Si)_3Si$ beträgt der SiAl-Abstand 2.45 Å [20]). Die BBrund AlBr-Abstände liegen mit 2.05 und 2.33 Å im Erwartungsbereich $(0.88 + 1.14 = 2.02 \text{ Å}, 1.25 + 1.14 = 2.02 \text{ Å$ 1.14 = 2.39 Å).

4.2. Verbindungen des Typs $(R^*EX_2)_2$

Von den Supersilyltrieldihalogeniden R*EHal₂ und verwandten Verbindungen wurden bisher nur R*GaCl₂ (farblose Kristalle aus Toluol, orthorhombisch, Pna2₁) und R*AlCl(OBu) (farblose Quader aus Pentan, triklin, $P\bar{1}$) röntgenstrukturanalytisch aufgeklärt. Beide Verbindungen liegen dimer mit *trans*-ständigen R*-Gruppen vor, und Entsprechendes ist wohl für andere Dihalogenide R*EHal₂ und verwandte Verbindungen mit E = Al, Ga, In, Tl zu erwarten (die Dihalogenide R*BHal₂ sind wohl monomer). Den Bau des Moleküls [R*AlCl(OBu)]₂ im Kristall gibt die Abb. 3 zusammen mit ausgewählten Bindungslängen und -winkeln wieder (bezüglich [R*GaCl₂]₂ vgl. [5]).

Hiernach leitet sich das Gerüst von R*AlCl(OBu) von dimeren Al₂Hal₆ (zwei über eine gemeinsame Kante verknüpfte AlHal₄-Tetraeder) durch Tausch zweier exo-ständiger Hal-Atome in trans-Stellung gegen R*-Gruppen und der beiden endoständigen Hal-Atome durch OBu-Gruppen ab. Das Verbindungszentrum bildet eine gleichseitige, planare AlOAlO-Raute, in welchem ein kristallographisches Inversionszentrum liegt (Winkel am Al/O-Atom: 100.57 / 79.43°; Winkelsumme: 360 °C). Im Falle von $(R^*GaCl_2)_2$ ist der viergliederige GaClGaCl-Ring demgegenüber fast quadratisch (Winkel am Ga/Cl-Atom: 87.30 / 92.68°; Winkelsumme: 360° [5]). Die Al-Atome sind verzerrttetraedrisch von 1Si/1Cl/2O, die O-Atome planar von 2Al/1C umgeben (Winkelsumme am O: 359.2°).

4.3. Verbindungen des Typs R^{*}₂EHal

Folgende Verbindungen der Zusammensetzung R_2^*EHal wurden bisher röntgenstrukturanalytisch charakterisiert: R_2^*BF (farblose Nadeln aus Pentan; monoklin; $P2_1/c$), R_2^*BCl (hellgelbe Prismen aus Toluol; monoklin; P2/n), R_2^*AlCl (hellgelbe Nadeln aus Heptan; monoklin; P2/n), R_2^*GaCl (zitronengelbe Platten aus Pentan; monoklin; P2/n), R_2^*Clcl (gelbe Platten aus Pentan; monoklin; P2/n), R_2^*Clcl (gelbe Platten aus Pentan; monoklin; P2/n). Abb. 4 gibt den Bau von R_2^*AlCl stellvertretend für die analog gebauten Verbindungen R_2^*BF , R_2^*BCl , R_2^*GaCl und R_2^*TlCl , Tab. 2 ausgewählte Bindungslängen und -winkel der erwähnten Verbindungen wieder.

Die Verbindungen sind monomer mit planaren Si₂EHal-Zentren (Winkelsumme an E 360°C) und der Lokalsymmetrie C_S (im Falle von R_2^*BF angenähert C_S). Im Unterschied zu Diorganylthallium(III)-halogeniden wie Me₂TICI [14] weist

Abb. 4. Struktur des Moleküls R_2^*AlCl im Kristall (Lokalsymmetrie: C_S) und verwendete Atomnumerierung (ORTEP, thermische Schwingungsellipsoide 25%). Bezüglich ausgewählter Bindungslängen und -winkel, zusammen mit entsprechenden Daten der analog gebauten Moleküle R_2^*BF , R_2^*BCl , R_2^*GaCl [5], R_2^*InCl vgl. Tab. 2.

Tab. 2. Ausgewählte Bindungslängen und -winkel für $R_{2}^{*}BF$ und $R_{2}^{*}ECl$ (E = B, Al, Ga, Tl)^a.

R*2 E	EHal Hal	Si-E [Å]	E-Hal [Å]	Si-E-Si [°]	Si-E-Hal [°]
В	F	2.126(4) 2.102(3) ^b	1.380(4)	151.1(2)	104.5(2) $104.2(2)^{b}$
В	Cl	2.127(1)	1.803(3)	151.9(1)	104.0(1)
Al	Cl	2.525(11)	2.155(3)	148.3(8)	105.7(7)
Ga	Cl	2.485(1)	2.246(1)	152.93(5)	103.53(2)
Tl	Cl	2.623(4)	2.579(3)	148.3(8)	105.7(7)

^a Si-C/C-Si-C für R_2^*BF 1.96 / 111.1, R_2^*BC1 1.96 / 110.1, R_2^*AIC1 1.95 / 111.3, R_2^*GaC1 1.95 / 111.8, R_2^*TIC1 1.93 / 113.1. ^b Mittelwerte 2.114 und 104.3.

 R_2^*TICI keinen ionischen Bau $R_2^*TI^+CI^-$ auf, da möglicherweise die unterschiedlichen Ionengrößen keine Ausbildung eines energiearmen Ionenkristalls erlauben.

Gemäß Tab. 2 nehmen die Abstände E-Cl der Verbindungen R*₂ECl in Richtung B-Cl < Al-Cl < Ga-Cl < Tl-Cl zu, was der Erwartung entspricht, da die Atomradien von E nach bisheriger Lehrmeinung [14] ebenfalls in Richtung B < Al < Ga < Tl anwachsen. Uneinheitlich ist demgegenüber der Gang der Abstände Si-E (Si-B < Si-Al > Si-Ga > Si-Tl) und der Winkel Si-E-Si (Si-B-Si > Si-Al-Si < Si-Ga-Si > Si-Tl-Si). Möglicherweise geht der vergleichsweise kurze Si-Ga-Abstand darauf zurück, dass der Ga-Atomradius als Folge der vergleichsweise hohen Elektronegativität EN von Ga (EN_B > EN_{Ga} > EN_{Si} > EN_{Al,In,Tl} [14]) nicht größer, sondern etwas kleiner als der von Al ist (in Richtung R₂Al-AlR₂ → R₂Ga-GaR₂ mit R = CH(SiMe₃)₂, SitBu₃ verkürzen sich ebenfalls der Si-E- und E-E-Abstand; vgl. [7] und dort zit. Lit.). Die Vergrößerung des E-Cl-Abstands in Richtung $R^*_2AlCl \rightarrow$ R*2GaCl geht dann auf die Erniedrigung der Bindungspolarität in Richtung Al-Cl > GaCl zurück. wobei die hiermit verbundene Bindungsverlängerung die radienbedingte Bindungsverkürzung (r_{A1} > r_{Ga}) überkompensiert ($r_{\text{AB}} = r_{\text{A}} + r_{\text{B}} - c/\Delta \text{EN}/[14]$). Die Si-E-Abstandsverkürzung in Richtung R*2AlCl $> R^*_2GaCl$ bedingt andererseits eine Annäherung der R*-Gruppen, wobei hiermit verbundene zusätzliche sterische Behinderungen durch eine Aufweitung des Winkels R*-E-R* kompensiert werden (die Bindungspolaritäten – mit umgekehrten Vorzeichen - sind für Si-Al und Si-Ga etwa gleich groß).

Die hohe Raumbeanspruchung der Supersilylgruppen kommt in vergleichsweise großen Abständen Si-E (größer als die Summe der betreffenden Atomradien) und Winkeln Si-E-Si (deutlich größer als 120°) der Verbindungen R*₂EHal zum Ausdruck. Die Größe des Winkels R*-E-R* in R*2EHal wird wohl wesentlich durch zwei entgegengesetzt wirkende Effekte bestimmt: (i) Erhöhung der sterischen Abstoßungskräfte zwischen den R*-Gruppen bei Verkleinerung des R*-E-R*-Winkels bis – minimal – zum R*-Kegelwinkel (letzterer verkleinert sich naturgemäß mit wachsendem Atomradius von E); (ii) Erniedrigung der Winkelspannung bei Verkleinerung des R*-E-R* Winkels bis – idealerweise – 120°. Während der geringe zur Verfügung stehende Raum um das kleine B-Atom zur Verkleinerung des R*-B-R*-Winkels sowohl in R*2BF wie R*2BCl auf den übereinstimmenden Winkel von 150° zwingt (wohl der Kegelwinkel für B-gebundene R*-Reste), ist der R^* -E- R^* -Winkel sowohl in R^*_2 AlCl wie R^*_2 GaCl wegen des größeren um Al- und Ga-Atome zur Verfügung stehenden Raumes mit ca. 150 °C deutlich größer als der Kegelwinkel für Al- und Ga-gebundene R*-Reste von ca. 130 °C [2]. Der Ubergang von R^*_2ECl mit E = Al, Ga zu R^*_2ECl mit dem noch größeren, den R*-Gruppen noch mehr Platz bietenden Tl-Zentrum ist sogar mit einer R*-E-R*-Winkelverkleinerung verbunden (vgl. Tab. 1; die vergleichsweise geringe sterische Abstoßung der R*-Gruppen in R*2TlCl zeigt sich auch in einem vergleichsweise großen C-Si-C-Winkel der R*-Reste [15]).

5. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Luft und Feuchtigkeit durchgeführt. $\ddot{O}V/HV =$ Ölpumpenvakuum / Hochvakuum. Zur Verfügung standen: BF₃, BF₃•OEt₂, BCl₃, BBr₃, AlF₃, AlCl₃, AlBr₃, AlI₃, GaCl₃, GaBr₃, InCl₃, TlCl₃, LiPh, ZnR^{*}₂, CsF, AgF, AgF₂, LiAlH₄, H₂, Me₃SiCl, Ph₃CH, Ph₃CCl und CpTl. Nach Literaturvorschriften wurden synthetisiert: NaR^{*} [8], NaR^{*}•2THF [8], AlHCl₂ in Et₂O [21], R^{*}₄Al₂ [2], R^{*}₄In₂ [10] und R^{*}₄Tl₂ [10]. Die Lösungsmittel (Pentan, Heptan, Diethylether, Tetrahydrofuran, Pyridin, Ethyldimethylamin, Toluol, Benzol, Cyclohexan) wurden vor Gebrauch getrocknet.

Für *NMR-Spektren* dienten Multikerninstrumente Jeol GX 270 (¹H / ¹³C / ²⁹Si: 270.17 / 67.94 / 53.67 MHz) und Jeol EX-400 (¹H / ¹³C / ²⁹Si / ¹⁹F 399.78 / 100.41 / 79.31 / 375.97 MHz). Die ²⁹Si-NMR-Spektren wurden mit Hilfe eines INEPT- bzw. DEPT-Pulsprogramms mit energetisch optimierten Parametern für die jeweiligen Substituenten aufgenommen. – Für *Massenspektren* standen die Geräte Varian CH7 und MStation JMS 700 der Firma Jeol zur Verfügung.

Die *Identifizierung* der Verbindungen R*H, R*R* und R*Hal erfolgte durch Vergleich mit authentischen Proben [8].

5.1. Darstellung und Reaktionen von Verbindungen des Typs R^{*} EX₂•D

Bezüglich Synthesen und Reaktionen von R^*AlCl_2 • OEt₂, R^*AlCl_2 • THF, R^*AlBr_2 • THF, R^*GaCl_2 • OEt₂, R^*GaCl_2 • THF, R^*GaCl_2 • NEtMe₂, R^*GaBr_2 • NEtMe₂, R^*GaBr_2 • THF und R^*InCl_2 • THF vgl. Lit. [5].

a) Supersilylbordibromid-Pyridin (1/1): Zu 0.280 g (0.760 mol) R*BBr₂ (vgl. 5.2c) in 10 ml Toluol gibt man 0.5 ml (6.2 mmol) Pyridin. Bei -30 °C kristallisieren aus der eingeengten Reaktionslösung 0.300 g (0.67 mmol; 88%) R*BBr₂•Py in farblosen luft- und hydrolyseempfindlichen, bei 115 °C unter Zersetzung schmelzenden Plättchen aus. – ¹H-NMR (C₆D₆, iTMS): $\delta = 1.42$ (s; SitBu₃), 6.14/6.41/9.55 (m/m/m; *m-/p-/o*-H von Py). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 24.67/32.60$ (3CMe₃/3CMe₃), 123.9/140.6/148.5 (*m-/p-/o*-C von Py). $-{}^{29}$ Si-NMR: Nicht beobachtbar. $-{}^{11}$ B-NMR (C₆D₆; eBF₃) in Et_2O): * = 2.1 (s; BBr₂). – MS: m/z = 370 (M⁺-Py; 1%), 313 (M⁺-Py-C₄H₉; 100%), 271 (M⁺-Py-C₇H₅; 40%), 257 (M⁺-Py-C₈H₁₇; 15%); jeweils Isotopenmuster für 2 Br. Röntgenstrukturanalyse: Vgl. Abb. 1. – Anmerkung: R*BBr₂•Py entsteht auch durch Reaktion äquimolarer Mengen BBr3 und NaR* in pyridinhaltigem Toluol. -C₁₇H₃₂BBr₂Si (449.2): ber. C 45.46, H 7.18, N 3.12; gef. C 48.89, H 6.88. N 3.25.

b) Supersilylbordifluorid-Pyridin (1/1), Supersilylbordichlorid-Pyridin (1/1): Vereinigt man entsprechend der Darstellung von R*BBr₂•Py eine Lösung von R*BF₂ (vgl. 5.2a) in Hexan mit überschüssigem Pyridin, so bildet sich augenblicklich R*BF₂•Py als farbloser Niederschlag. Letzterer lässt sich aus einem Toluol/Hexan-Gemisch bei –20 °C umkristallisieren. Die erhaltenen farblosen Kristalle von R*BF₂•Py eigneten sich nicht für eine Röntgenstrukturanalyse. -¹H-NMR (CDCl₃, *i*TMS): $\delta = 1.07$ (s; SitBu₃), 7.65/8.08/8.87 (t/t/d; *m-/p-/o*-H von Py). $-{}^{13}C{}^{1}H{-}NMR$ (CDCl₃, *i*TMS): $\delta = 22.2/31.7$ (3CMe₃/3CMe₃), 125.3/142.2/145.0 m-/p-/o-C von Py). -²⁹Si-NMR: Nicht beobachtbar. – ¹¹B-NMR (C_6D_6 , eBF₃ in Et₂O): * = 8.9 (in Hexan, aber nicht in CDCl₃ oder C_6D_6 Triplett; ${}^{1}J_{BF} = 104$ Hz; BF₂). - $C_{17}H_{32}BF_2NSi$ (327.3): ber. C 62.38, H 9.85, N 4.28; gef. C 60.14, H 10.10, N 3.96.

Anmerkungen: 1) Das ¹¹B-NMR-Spektrum der Lösung von R*BCl₂ (vgl. 5.2b) und Pyridin in Toluol weist ein scharfes Hauptsignal bei * = 9.7 ppm auf, das dem Addukt R*BCl₂•Py zugeschrieben werden kann. – 2) Die Reaktionslösungen von R*BF₂ bzw. R*BCl₂ und Pyridin weisen noch zwei weitere ¹¹B-NMR-Signale bei * = 1.7(s; scharf) und 34.5 (breit) bzw. 3.0 (s; scharf) und 36.2 (breit) auf, die von bisher nicht identifizierten B-haltigen Nebenprodukten stammen.

c) Supersilylaluminiumdibromid-Ethyldimethylamin (1/1); Supersilylaluminiumdiiodid-Ethyldimethylamin (1/1): Zu einer auf -78 °C gekühlten Suspension von 2.70 mmol AlBr₃•NEtMe₂ bzw. 2.02 mmol AlI₃ • NEtMe₂ in 15 ml Heptan (gewonnen durch Zugabe von 18.5 mmol NEtMe₂ zu 2.70 mmol AlBr₃ bzw. 2.02 mmol All₃ in 15 ml Heptan) werden 2.70 mmol bzw. 2.02 mmol NaR* in 20 ml Heptan getropft. Nach Erwärmen auf Raumtemperatur enthält die Lösung - laut NMR - ausschließlich R*AlBr₂•NEtMe₂ bzw. R*AlI₂•NEtMe₂. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 40 ml Pentan und Abfiltrieren unlöslicher Anteile (NaBr bzw. NaI) kristallisieren nach Einengen auf 10 ml bei -23 °C 1.06 g (2.31 mmol; 85%) R*AlBr₂•NEtMe₂ bzw. 0.901 g (1.63 mmol; 81%) R*All₂•NEtMe₂ (jeweils farblos, luft-, hydrolyse- und lichtempfindlich). – \mathbf{R}^* AlBr₂•NEtMe₂: ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.38$ (s; Si*t*Bu₃), 0.32/2.97 (t/q; CH₃/CH₂N), 2.04 (s; (CH₃)₂N). – ${}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): δ = 4.98/51.79 (CH₃/CH₂N), 24.23/32.61 (3CMe₃ / 3CMe₃), 42.39 (Me₂N). -²⁹Si-NMR: Nicht beobachtbar. -²⁷Al-NMR $(C_6D_6; eAl(NO_3)_3 in D_2O): * = 127 (AlBr_2). -$ Röntgenstrukturanalyse: Vgl. Abb. 2. – R^{*}AlI₂•NEtMe₂: ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.40$ (s; Si*t*Bu₃), 0.55/2.66 $(t/q; (CH_3/CH_2N), 2.18 (s; (CH_3)_2N). - {}^{13}C{}^{1}H$ -NMR $(C_6D_6, \text{iTMS}): \delta = 5.23/51.62 (CH_3/CH_2N), 24.55/32.82$ $(3CMe_3/3CMe_3)$, 42.63 (Me₂N). – ²⁹Si-/²⁷Al-NMR:

Nicht beobachtbar. – $C_{16}H_{38}AlI_2NSi$ (553.4): ber. C 34.73, H 6.92; gef. C 35.36, H 7.29.

Anmerkungen: Zu 0.35 mmol R*AlCl₂•THF bzw. R*AlHal₂•NEtMe₂ (Hal = Br, I) in 10 ml Pentan (– 100 °C) werden 0.70 mmol MC₁₀H₈ (M = Li, Na) in THF getropft. Die auf Raumtemperatur erwärmte braune Reaktionsmischung enthält dann ein Gemisch bisher nicht identifizierter Produkte. Auch Na bzw. K setzen sich mit R*AlBr₂•NEtMe₂ in C₆D₆ bei 105 °C, zu einem Verbindungsgemisch um (enthält u. a. R*C₆D₅), aber nicht zu R*₄Al₄.

d) Supersilylaluminiumchloridhydrid-Tetrahydrofuran (1/1): Zu einer auf -40°C gekühlten Lösung von 3.4 mmol AlHCl₂ in 5 ml Et₂O werden 1.6 mmol NaR*•2THF in 5.0 ml THF getropft. Nach Erwärmen auf Raumtemperatur enthält die Lösung – laut NMR (C₆D₆) – neben geringen Mengen R*H und R*₂ ausschließlich R*AlClH•THF. Die Verbindung verblieb im Gemisch mit R*H und R*₂ nach Abkondensieren aller im ÖV flüchtigen Anteile als farbloser, luft- und hydrolyseempfindlicher Feststoff, der sich langsam zu R*AlCl(OBu) zersetzte (vgl. 5.2f) und sich nicht in Reinsubstanz isolieren ließ. – ¹H-NMR (C₆D₆, iTMS): δ = 0.87/3.82 (m/m; (2CH₂CH₂O), 1.35 (s; SitBu₃), 4.46 (s; AlH). – ²⁹Si-NMR: Nicht beobachtbar. – ²⁷Al-NMR (C₆D₆; eAl(NO₃)₃ in D₂O): * = 50 (breit; AlClH).

e) Supersilylgalliumdichlorid-Pyridin (1/1): Zu einer auf -78 °C gekühlten Suspension von 3.17 mmol GaCl₃•Py in 20 ml Heptan (gewonnen durch Zugabe von 3.71 mmol Pyridin zu 0.558 g (3.17 mmol) GaCl₃ in 20 ml Heptan) werden 3.17 mmol NaR* in 15 ml Heptan / 5ml THF getropft. Nach Erwärmen auf Raumtemperatur enthält die Lösung - laut NMR - ausschließlich R*GaCl₂•Py. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 40 ml Pentan und Abfiltrieren unlöslicher Anteile fallen nach Einengen der Lösung auf 10 ml bei -23 °C 1.236 g (2.31 mmol; 93%) R*GaCl₂•Py in Form orangefarbener, luft- und hydrolyseempfindlicher Kristalle aus. $-{}^{1}$ H-NMR (C₆D₆, iTMS): $\delta = 1.374$ (s; SitBu₃), 7.54/8.93 (m/m; *m-/p-/o*-CH von Py). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.99/31.28$ (3*C*Me₃/3*C*Me₃), 127.8/133.1/.145.3 (*m*-/*p*-/*o*-C von Py). $-{}^{29}\text{Si}{}^{1}\text{H}$ -NMR (C₆D₆, eTMS): $\delta = 27.53$ (SitBu₃). -C₁₇H₃₂GaCl₂NSi (419.2): ber. C 48.71, H 7.69; gef. C 48.32, H 7.63.

f) Supersilylthalliumdichlorid-Tetrahydrofuran (1/1): Zu einer auf -78 °C gekühlten Suspension von 0.238 g (0.770 mmol) TlCl₃ in 15 ml THF werden 0.171 g NaR*•2THF in 5 ml THF getropft. Ein bei -50 °C von der Lösung aufgenommenes NMR-Spektrum weist auf die Bildung einer neuen Verbindung hin, bei der es sich aufgrund ihrer Derivatisierbarkeit zu R*TlPh₂ (vgl. 5.2n) wohl um R*TlCl₂ (als THF-Addukt) handelt: $-^{29}$ Si{¹H}- NMR (C₆D₆, eTMS): $\delta = 62.2$ (d; ${}^{1}J_{\text{Si205/203TI}} = 516.7 / 513.6$ Hz; SitBu₃). Im Zuge der Erwärmung wird die hellgelbe Reaktionslösung unter Bildung eines farblosen Niederschlags (TICl ?) farblos und enthält dann – laut NMR – ausschließlich R*Cl.

5.2. Darstellung und Reaktionen von Verbindungen des Typs R^{*}EX₂

a) Supersilvlbordifluorid: Man gibt zu BF₃, gekühlt auf -120 °C, zunächst Pentan, dann eine äquimolare Menge NaR* in Pentan. Die langsam auf Raumtemperatur erwärmte Reaktionslösung enthält - laut NMR - zu 95% R*BF₂ als B-haltige Verbindung, die nach Abfiltrieren unlöslicher Anteile (NaF) und Abkondensieren aller im ÖV flüchtigen Anteile als farbloser, luft- und hydrolyseempfindlicher, bei Raumtemperatur sehr langsam unter Bildung von R*F thermolysierender Feststoff zurückbleibt. Letzterer konnte bisher weder durch Umkristallisieren noch durch Sublimation von geringen Mengen an Nebenprodukten (z. B. R*H, R*F) gereinigt werden. -²⁹Si-NMR: Nicht beobachtbar. – ¹¹B-NMR (C_6D_6 , eBF₃ in Et₂O): * = 32.3 (t; ${}^{1}J_{BF} = 162$ Hz; BF₂). – Anmerkung: Die Reaktionslösung von R*BF2 enthält noch 5% einer weiteren B-haltigen Verbindungen mit einem ¹¹B-NMR-Signal bei * = 12.2 (s).

b) Supersilylbordichlorid: Zu einer auf -78 °C gekühlten Lösung von BCl₃ in Hexan wird eine äquimolare Menge NaR^{*} in Hexan getropft. Nach Erwärmen auf Raumtemperatur enthält die Mischung – laut NMR – ausschließlich R*BCl₂. Nach Abfiltrieren unlöslicher Anteile (NaCl) und Einengen der Lösung, bis sie ölartig wird, fällt aus ihr bei -20 °C im Laufe einiger Wochen R*BCl₂ in großen farblosen, luft- und hydrolyseempfindlichen, rascher als R*BF₂ und langsamer als R*BBr₂ unter R*Hal-Eliminierung thermolysierender Kristalle aus, die sich nicht für eine Röntgenstrukturanalyse eigneten.

c) Supersilylbordibromid: Zu einer auf -35 °C gekühlten Lösung von 1.68 mmol BBr3 in 10 ml Pentan werden 0.39 g (0.84 mmol) ZnR*2 in 10 ml Pentan getropft. Nach Erwärmen enthält die Reaktionslösung - laut NMR - neben geringen Mengen R*H und R*Br ausschließlich R*BBr₂. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan, Abfiltrieren unlöslicher Bestandteile (ZnCl₂) und Einengen auf 10 ml kristallisieren bei -23 °C aus der Lösung 0.410 g (1.11 mmol; 66%) R*BBr₂ in farblosen, luft- und hydrolyseempfindlichen Nadeln, die sich in Lösung bei Raumtemperatur rasch unter Bildung von R*Br und nicht identifizierten Borverbindungen zersetzen. - ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.21$ (s; SitBu₃). $- {}^{13}C{}^{1}H{}-NMR$ (C₆D₆, *i*TMS): $\delta = 23.15 / 31.88 (3CMe_3/3CMe_3). - {}^{29}Si-NMR:$ Nicht beobachtbar. $-^{11}$ B-NMR (C₆D₆; eBF₃ in OEt₂): * = 81.1 (BBr₂). – MS: m/z = 370 (M⁺, 1%), 313 (M⁺-C₄H₉; 12%), 278 (R^{*}Br⁺; 11%), 271 (M⁺-C₇H₁₅; 6%), 257 (M⁺-C₈H₁₇; 2%). – *Anmerkungen:* 1) R^{*}BBr₂ bildet sich auch aus äquimolaren Mengen NaR^{*} und BBr₃ in Alkanen. – 2) Nach einer vorläufigen Röntgenstrukturanalyse liegt R^{*}BBr₂ monomer vor.

d) Supersilylaluminiumdichlorid: Bezüglich der Synthese von R*AlCl₂ aus R*₂AlCl (vgl. 5.3d) und AlCl₃ (Molverhältnis 1 : 1) sowie aus AlCl₃ und NaR* (Molverhältnis 2 : 1), jeweils in 9 d in Benzol bei 150 °C, sowie der Charakterisierung von R*AlCl₂ vgl. [5] sowie Tab. 1. – Anmerkung: Im Zuge der Umsetzung von NaR* und AlCl₃ entsteht – laut NMR – nach kurzer Zeit zunächst ausschließlich das Chlorid R*₂AlCl, das langsam mit AlCl₃ unter Bildung von R*AlCl₂ weiterreagiert.

e) Supersilylaluminiumdibromid: Beläßt man eine Lösung von 0.062 g (0.28 mmol) NaR^{*} und 0.077 g (0.28 mmol) AlBr₃ (Molverhältnis 1 : 1) 5 d in Heptan bei Raumtemperatur, so enthält die Lösung – laut NMR – ausschließlich R^{*}AlBr₂. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Heptan und Abfiltrieren unlöslicher Anteile (Na-Br) verbleiben 0.037 g (0.096 mmol; 35%) R^{*}AlBr₂ als hellgelber, luft- und hydrolyseempfindlicher Feststoff. – Charakterisierung: [5] sowie Tab. 1. - Anmerkung: Im Zuge der beschriebenen Umsetzung von NaR^{*} und AlBr₃ entsteht – laut NMR – nach kurzer Zeit zunächst ausschließlich das Bromid R^{*}₂AlBr, das langsam (in 4 h / 3 d / 9 d / 24 d zu 20 / 35 / 90 / 100%) mit AlBr₃ unter Bildung von R^{*}AlBr₂ weiterreagiert.

f) Supersilylaluminiumchloridbutoxid: Nach Abkondensieren aller im ÖV flüchtigen Anteile der durch Reaktion von 3.4 mmol AlHCl2 und 1.6 mmol NaR* in Et₂O/THF gewonnen Lösung von R*AlClH•THF (vgl. 5.1d), Aufnahme des Rückstands in 40 ml Pentan und Abfiltrieren unlöslicher Anteile (NaCl), fällt aus der auf 10 ml eingeengten Lösung im Laufe mehrerer Wochen R*AlCl(OBu) in Form farbloser, luft- und hydrolyseempfindlicher Kristalle aus. $-{}^{1}$ H-NMR (C₆D₆, *i*TMS): $\delta = 1.34$ (SitBu₃), 0.71 / 1.02 / 2.01 / 4.07 (t/m/m/m; CH₂) $/ CH_2 / CH_2 / CH_2O$). $- {}^{13}C{}^{1}H{}-NMR (C_6D_6, iTMS)$: $\delta = 23.46 / 32.49 (3CMe_3/3CMe_3), 13.64 / 18.34 / 34.05 /$ 65.29 (CH₂ / CH₂ / CH₂/CH₂O). - ²⁹Si-NMR: Nicht beobachtbar. – ²⁷Al-NMR (C_6D_6 ; eAl(NO₃)₃ in D₂O): * = 140 (breit; AlCl(OBu)). - Röntgenstrukturanalyse: Vgl. Abb. 3.

g) Supersilylgalliumdichlorid: Bezüglich der Synthese von R*GaCl₂ aus R*₂GaCl (vgl. 5.3i) und GaCl₃ (Molverhältnis 1 : 1; Alkane, Toluol, Benzol; 5 h; Raumtemperatur) vgl. [5]. – Charakterisierung: Vgl. [5] und Tab. 1. - Anmerkungen: 1) R*GaCl₂ entsteht wohl auch aus GaCl₃ und NaR* in Alkanen nach längeren Reaktionszeiten. – 2) Die Reaktion von R*₂GaCl und GaCl₃ verläuft in Methylenchlorid anstelle von Alkanen oder Aromaten unter Bildung von $R^*_2Ga^+GaCl_4^-$ (vgl. 5.3i). - 3) R^*GaCl_2 setzt sich mit GaCl₃ in Benzol zu R^*Cl sowie Ga(Benzol)₂+GaCl₄⁻ um [5].

h) Supersilylgalliumdibromid: Bezüglich der Synthese von R*GaBr₂ aus R*₂GaBr (vgl. 5.3k) und GaBr₃ (Molverhältnis 1 : 1; Benzol; 2 d; Raumtemperatur) vgl. [5]. – Charakterisierung: Vgl. [5] und Tab. 1. – Anmerkungen: 1) R*GaBr₂ entsteht wohl auch aus GaBr₃ und NaR* in Alkanen nach längeren Reaktionszeiten. – 2) Offensichtlich reagiert R*GaBr₂ mit GaBr₃ ähnlich wie R*GaCl₂ mit GaCl₃ in Benzol zu R*Br sowie Ga(Benzol)₂+GaBr₄⁻, wie die zusätzliche Bildung von R*Br im Zuge der Reaktion von R*₂GaBr mit GaBr₃ anzeigt.

i) Supersilylindiumdifluorid: 0.075 g (0.073 mmol) $R_4^*In_2$ und 0.015 g (0.10 mmol) AgF_2 werden in 25 ml Heptan 1 h umgesetzt. Die zunächst violette Lösung hat sich dann entfärbt und enthält – laut NMR – nun R^*H , R^*F , R_2^* und R^*InF_2 im Molverhältnis *ca.* 1 : 1 : 1 : 2. Nach Abkondensieren aller im HV flüchtigen Anteile und Abfiltrieren unlöslicher Bestandteile (AgF, AgF₂) verbleiben R_2^* und R^*InF_2 (Molverhältnis 1 : 1) als farbloser, luft- und hydrolyseempfindlicher Feststoff (der Festoff enthält nicht R_2^*InF wie in [5] behauptet; bz-gl. der unabhängigen Synthese von R_2^*InF vgl. 5.3 l). – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.27$ (s; Si*t*Bu₃). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 50.27$ (Si*t*Bu₃). – *Anmerkung:* R^*InF_2 thermolysiert in C₆D₆ bei 40 °C innerhalb 24 h vollständig zu R^*F , R_2^* und In.

k) Supersilylindiumdichlorid: Bezüglich der Synthese von R*InCl₂ aus R*₂InCl (vgl. 5.3 m) und InCl₃ (Molverhältnis 1 : 1; Benzol; 14 d; Raumtemperatur) vgl. [5]. - Charakterisierung: Vgl. [5] und Tab. 1. – Anmerkung: R*InCl₂ entsteht wohl auch aus InCl₃ und NaR* in Alkanen nach längeren Reaktionszeiten.

l) Supersilylindiumdibromid: Bezüglich der Synthese von R*InBr₂ aus R*₄In₂ und HBr (Molverhältnis 1 : 3; Heptan; 6 h; -10 °C), die zusätzlich zu H₂ und R*H führt (Molverhältnis R*InBr₂ zu R*H *ca.* 1 : 1), vgl. [5]. – Charakterisierung: Vgl. [5] und Tab. 1.

m) Supersilylthalliumdifluorid: 0.080 g (0.066 mmol) $R_4^*Tl_2$ und 0.015 g (0.10 mmol) AgF_2 werden in 25 ml Et₂O 10 min umgesetzt. Die zunächst tiefgrüne Lösung hat sich dann unter Bildung von Ungelöstem (TIF?) entfärbt und enthält – laut NMR – R*H, R*F und R*₂ im Molverhältnis 2 : 8 : 3. Offensichtlich entsteht intermediär das Difluorid R*TIF₂ (vgl. R*InF₂-Synthese, 5.2 i), das unter den Reaktionsbedingungen zu R*F und TIF zerfällt (vgl. R*TICl₂•THF, 5.1 f).

n) Supersilyldiphenylthallan: Zu einer auf -78 °C gekühlten Lösung von 1.75 mmol R*TlCl₂•THF in 25 ml THF (bereitet aus 1.75 mmol TlCl₃ in 20 ml THF und 1.75 mmol NaR* in 5 ml THF gemäß 5.1 f) werden

3.5 mmol LiPh in Cyclohexan / Diethylether (70:30) getropft (Bildung eines schwarzen Niederschlags). Die nach Erwärmen auf Raumtemperatur hellgelbe Lösung enthält – laut NMR – R*Cl und R*TlPh₂. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.120 (breit; SitBu₃), 7.45 / 7.18 (m/m; *m*-/*p*-/*o*-/*i*-CH von 2 Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 28.45 / 32.77 (3*C*Me₃/3*C*Me₃), 127.4 / 127.5 / 129.0 / 141.7 (*m*-/*p*-/*o*-/*i*-C von 2 Ph). – ²⁹Si-NMR: Nicht beobachtbar.

5.3. Darstellung und Reaktionen von Verbindungen des Typs $R_{2}^{*}EX$

a) Disupersilylborfluorid: Zu einer auf -20 °C gekühlten Lösung von 0.388 g (1.74 mmol) NaR* in 30 ml Heptan werden 1.74 mmol BF₃•OEt₂ in 20 ml Heptan getropft. Nach Erwärmen enthält die Reaktionslösung laut NMR - praktisch ausschließlich R*2BF. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 30 ml Pentan und Abfiltrieren unlöslicher Bestandteile (NaF) fallen aus der Lösung bei -23 °C nach Einengen auf 15 ml 0.454 g (1.06 mmol; 61%) R*₂BF in Form farbloser, luft- und hydrolyseempfindlicher Nadeln aus. $-{}^{1}$ H-NMR (C₆D₆, *i*TMS): $\delta = 1.27$ (s; SitBu₃). -¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 23.47 / 32.22$ (d/d; ${}^{4}J_{CF} = 1.39 \text{ Hz} / {}^{3}J_{CF} = 2.22 \text{ Hz}; (3CMe_{3}/3CMe_{3}). - {}^{29}\text{Si-NMR: Nicht beobachtbar.} - {}^{11}\text{B-NMR} (C_{6}D_{6}; \text{eBF}_{3})$ in OEt₂): * = 106.7 (breit; in Hexan Dublett mit ${}^{1}J_{BF}$ = $203 \text{ Hz}; \text{BF}). - \text{MS}: m/z = 428 (\text{M}^+; 22\%), 371 (\text{M}^+-\text{C}_4\text{H}_9;$ 100%). – Röntgenstrukturanalyse: Vgl. Abb. 4 und Tab. 2.

b) Disupersilylborchlorid: Zu NaR*, gekühlt mit flüssigem Stickstoff, kondensiert man zunächst Toluol, dann eine halbäquimolare Menge BCl₃. Nach langsamem Erwärmen (über Nacht) enthält die Reaktionslösung laut NMR - drei B-haltige Verbindungen mit ¹B-NMR-Signalen (Toluol, eBF₃ in Et₂O) bei 134.1 (R*₂BCl), 77.9 (R*BCl₂) und 52.4 (nicht identifiziert) im Molverhältnis 3:3.5:3.5. Nach Abkondensieren aller im ÖV flüchtigen Anteile (NaCl) fällt aus der eingeengten Lösung R*₂BCl (20% Ausbeute) in gelben, luft- und hydrolyseempfindlichen Kristallen aus. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.33 (s; SitBu₃). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 24.4$ / 33.2 (6 $CMe_3/6CMe_3$). – ²⁹Si-NMR: Nicht beobachtbar. $-{}^{11}$ B-NMR (C₆D₆; eBF₃ in Et₂O): * = 135.0 (BCl). -Röntgenstrukturanalyse: Vgl. Abb. 4 und Tab. 2. - Anmerkung: Wird zu einer auf -40 °C gekühlten Lösung von BCl₃ in Hexan die doppeltmolare Menge NaR* in Hexan getropft, so enthält die Lösung nach Erwärmen auf Raumtemperatur - laut NMR - nur untergeordnet R^{*}₂BCl (ca. 15%) neben R^{*}BCl₂ und einer Verbindung mit $\delta(^{11}B) = 95$ (breit), bei der es sich um R*ClB-BClR* handeln könnte.

c) Disupersilylaluminiumfluorid: Man fügt zu 0.126 g (0.274 mmol) R*₂AlCl in 20 ml THF 0.369 g (2.43 mmol)

CsF und rührt die Lösung 24 h bei Raumtemperatur, wonach sich - laut NMR - ausschließlich R*2AIF gebildet hat. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 15 ml Heptan und Abfiltrieren unlöslicher Anteile (CsF, CsCl) fallen nach Einengen der Lösung auf 7 ml bei –23 °C im Laufe von Wochen 0.095 g (0.214 mmol; 78%) R*2AlF in Form hellgelber, luft- und hydrolyseempfindlicher Kristalle aus. $-{}^{1}$ H-NMR (C₆D₆, *i*TMS): $\delta = 1.62$ (s; 2Si*t*Bu₃); (C₄D₈O, *i*TMS): * = 1.26 (s; $2SitBu_3$). - ${}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.40$ $/ 33.52 (6CMe_3/6CMe_3); (C_4D_9O, iTMS): * = 25.37 /$ 33.60 (6 $CMe_3/6CMe_3$). – ²⁹Si-, ²⁷Al-NMR: Nicht beobachtbar. $-MS: m/z = 444 (M^+; 3\%), 387 (M^+-C_4H_9; 37\%),$ $303 (M^+-C_{10}H_{21}; 45\%), 261 (M^+-C_{13}H_{27}; 39\%), 219 (M^+-C_{13$ C₁₆H₃₃; 100%). – Anmerkung: Die Einwirkung von AgF auf R*2AlBr in THF bei 80 °C führt nicht zu R*2AlF, sondern – laut NMR – zu R*H, R*2, R*Br, im Molverhältnis ca. 1:3:4:3. - C₂₄H₅₄AlFSi₂ (448.8): ber. C 64.80, H 12.24; gef. C 56.41, H 12.32.

d) Disupersilylaluminiumchlorid: Eine Lösung von 0.263 g (1.97 mmol) AlCl₃ und 0.883 g (3.97 mmol) NaR* in 50 ml Benzol enthält nach 24 h bei Raumtemperatur laut NMR - praktisch nur R*2AlCl. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 50 ml Heptan und Abfiltrieren unlöslicher Bestandteile (NaCl) kristallisieren aus dem auf 10 ml eingeengten Filtrat bei –23 °C im Laufe von Tagen 0.708 g (1.537 mmol; 78%) R^{*}₂AlCl in Form hellgelber, luft- und hydrolyseempfindlicher Nadeln. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.29 (s; $2SitBu_3$). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.08$ / 32.86 (6CMe₃/6CMe₃). - ²⁹Si-, ²⁷Al-NMR: Nicht beobachtbar. – MS: $m/z = 460 (M^+; 14\%), 403 (M^+-C_4H_9^+;$ 41%), 319 (M⁺-C₁₀H₂₁; 42%), 277 (M⁺-C₁₃H₂₇; 43%), $235 (M^+-C_{16}H_{33}; 100\%);$ Isotopenmuster für 1 Cl. – Röntgenstrukturanalyse: Vgl. Abb. 4 und Tab. 2. - Anmerkungen: 1) 0.027 g (0.060 mmol) R^{*}₂AlCl thermolysieren in 0.6 ml C_6D_6 – laut NMR – in 84 h bei 60 °C nicht, in 117 h bei 150 °C zu 23% (Bildung von R*D sowie R*Cl). -2) Bezüglich der Reaktion von R^{*}₂AlCl und K in Heptan vgl. 5.3 e. $-C_{24}H_{54}AlClSi_2$ (461.3): ber. C 62.49, H 11.80; gef. C 61.98, H 11.13.

e) Disupersilylaluminiumbromid und Reaktion mit Kalium: Zu einer auf -45 °C gekühlten Lösung von 0.400 g (1.65 mmol) AlBr₃ in 10 ml Heptan werden 0.733 g (3.30 mmol) NaR* in 20 ml Heptan getropft. Nach Erwärmen auf Raumtemperatur enthält die Reaktionslösung – laut NMR – ausschließlich R*₂AlBr. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 60 ml Heptan und Abfiltrieren unlöslicher Anteile (NaBr) fallen aus dem auf 10 ml eingeengten Filtrat bei -23 °C im Laufe von Tagen 0.718 g (1.420 mmol; 86%) R*₂AlBr in Form hellgelber, luftund hydrolyseempfindlicher Kristalle. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.29$ (s; 2SitBu₃). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.25/32.87$ (6*C*Me₃/6*CMe*₃). $- {}^{29}$ Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 25.9$ (breit; 2 SitBu₃). - ²⁷Al-NMR: Nicht beobachtbar. - MS: m/z = 504 (M⁺; 2%), 447 ($M^+-C_4H_9$; 41%), 425 (M^+-Br ; 1%), 319 ($M^+-C_8H_{17}$; 2%), 226 (M⁺-R^{*}Br; 100%), 221 (M⁺-R^{*}-C₆H₁₂; 15%); Isotopenmuster für 1 oder 0 Br. - Anmerkung: 0.021 g $(0.040 \text{ mmol}) \text{ R}^*_2 \text{AlBr}$ thermolysieren in 0.6 ml C₆D₆ – laut NMR - in 40 d bei 60 °C zu 37% (Bildung von R*D sowie $R^*Br. - 2$) 0.60 mmol R^*_2 AlHal (Hal = Cl, Br) und 3 g (77 mmol) K reagieren in 20 ml Heptan in 2 d unter Bildung eines grauen Niederschlags, der nach Zugabe von Ph₃CH das Alan R^{*}₂AlH (vgl. 5.3 g) liefert. Na setzt sich mit R*2AlHal zu R*H, R*2 und nicht identifizierten supersilylhaltigen Verbindungen um. $-C_{24}H_{54}AlBrSi_2$ (505.8): ber. C 57.00, H 10.76; gef. C 56.82, H 10.29.

f) Disupersilylaluminiumiodid: Man erwärmt 0.023 g $(0.03 \text{ mmol}) \text{ R}_{4}^{*}\text{Al}_{2} \text{ und } 0.007 \text{ g} (0.03 \text{ mmol}) \text{ I}_{2} \text{ in 5 ml}$ Pentan 3 h auf 40 °C. Die Lösung enthält dann – laut NMR - ausschließlich das Iodid R*2AlI, das nach Abkondensieren aller im ÖV flüchtigen Anteile als gelber, luft- und hydrolyseempfindlicher, sich ab 63 °C zersetzender Feststoff verbleibt. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.34 (s; 2 SitBu₃). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.92$ / 33.23 (6CMe₃/6CMe₃). - ²⁹Si-, ²⁷Al-NMR: Nicht beobachtbar. – MS: $m/z = 552 (M^+; 3\%), 495 (M^+-C_4H_9; 42\%),$ 425 (M⁺-I; 2%), 439 (M⁺-C₈H₁₇; 9%), 226 (M⁺-R^{*}I; 100%). – Anmerkung: R^{*}₂All lässt sich nicht aus All₃ und NaR* in Pentan synthetisieren. Die Reaktionslösung enthält – laut NMR – R*H, R*2, R*I im Molverhältnis ca. $3: 4: 1. - C_{24}H_{54}AllSi_2$ (552.8): ber. C 52.15, H 9.98; gef. C 51.79, H 10.10.

g) Disupersilylaluminiumhydrid: Man füllt ein NMR-Rohr mit 0.168 g (0.20 mmol) $R_{2}^{*}Al_{4}$, 0.6 ml $C_{6}D_{12}$ und 700 mbar H₂ und schmilzt es ab. Nach 15 min Erwärmung auf 50 °C enthält die Reaktionslösung – laut NMR - ausschließlich R*2AlH. Nach Abkondensieren aller im ÖV flüchtigen Anteile und Aufnahme des Rückstands in 5 ml Heptan erhält man bei -23 °C im Laufe von Monaten R*2AlH in farblosen, luft- und hydrolyseempfindlichen Kristallen. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.53 (s; $2SitBu_3$); (C₆D₁₂, *i*TMS): * = 1.25 ($2SitBu_3$), nicht beobachtet (AlH). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 24.62 / 33.30 (6CMe_3/6CMe_3); (C_6D_{12}, iTMS): * =$ 25.31 / 32.79 (6CMe₃/6CMe₃). $-^{29}$ Si{¹H}-NMR (C₆D₆, eTMS): δ = 23.91 (breit; 2 SitBu₃). – ²⁷Al-NMR: Nicht beobachbar. – MS: m/z = 425 (M⁺-H; 2%). – Anmerkung: R^{*}₂AlH entsteht auch nach Zugabe von 0.173 g $(0.375 \text{ mmol}) \text{ R}^*_2 \text{AlCl in } 20 \text{ ml THF zu einer auf } -78 ^{\circ}\text{C}$ gekühlten Lösung von 0.033 g (0.869 mmol) LiAlH₄ in 10 ml THF. Nach Erwärmen auf Raumtemperatur enthält die Lösung - laut NMR - R*2AlH und daraus in THF langsam hervorgehendes R^{*}₂AlOBu (vgl. 5.3 h).

- C₂₄H₅₄AlHSi₂ (426.9): ber. C 67.53, H 12.99; gef. C 68.43, H 13.63.

h) Disupersilylaluminiumbutoxid; Reaktion von $R_{2}^{*}AlH$ mit THF: $R_{2}^{*}AlH$ (vgl. 5.3 g) wandelt sich in THF bei 80 °C – laut NMR – langsam (nach 48 h vollständig) in R*2AlOBu und eine bisher nicht charakterisierte Substanz um (Flächenverhältnis der SitBu3-Signale beider Substanzen bei * = 1.38 und * = 1.51 ca. 5:1). Das Verbindungsgemisch verbleibt nach Abkondensieren aller im OV flüchtigen Anteile als farbloser, luft- und hydroyseempfindlicher Feststoff. Die Charakterisierung von R^{*}₂AlOBu erfolgte im Substanzgemisch: -¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.38$ (s; 2 SitBu₃), 0.83 / 0.94 / 1.79 / 4.07 (t/m/m/m; (CH2 / CH2 / CH2 / CH₂O). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 24.62$ / 33.29 (6CMe₃ / 6CMe₃), 14.11 / 18.16 / 23.22 / 62.81 (CH₃/CH₂/CH₂CH₃O). - ²⁹Si-, ²⁷Al-NMR: Nicht beobachtbar.

i) Disupersilylgalliumchlorid; Disupersilylgalloniumtetrachlorogallat: Zu 0.280 (1.59 mmol) GaCl₃ in 20 ml Pentan (-30 °C) werden 1.59 mmol (A) bzw. 3.18 mmol (B) NaR*•2THF in 10 ml Pentan getropft. Die Lösung enthält dann – laut NMR – R*GaCl₂•THF und $R_{2}^{*}GaCl$ im Molverhältnis 1 : 4 (A) bzw. 0 : 1 (B). Nach Abkondensieren aller im OV flüchtigen Anteile, Aufnehmen des Rückstands in 50 ml Pentan und Abfiltrieren unlöslicher Anteile (NaCl) kristallisieren aus dem auf 10 ml eingeengten Filtrat bei -23 °C 0.510 g (1.01 mmol; 54%; A) bzw. 0.600 g (1.19 mmol; 75%; **B**) R^{*}₂GaCl in Form zitronengelber, bei 132 -135 °C schmelzender, luft- und hydrolyseempfindlicher Platten. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.31 (s; Si*t*Bu₃). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 25.67 / 32.59$ $(6CMe_3/6CMe_3)$. $-^{29}Si\{^1H\}$ -NMR (C₆D₆, eTMS): $\delta =$ 33.6 (2SitBu₃). – MS: m/z = 467 (M⁺-Cl; 2%), 445 $(M^+-C_4H_9; 6\%), 268 (M^+-R^*Cl; 100\%). - Röntgenstruk$ turanalyse: Vgl. Abb. 4 und Tab. 2. - Anmerkungen: 1) Äquimolare Mengen GaCl₃ und NaR*•2THF reagieren in THF anstelle von Pentan hauptsächlich zu R*GaCl₂•THF [4]. - 2) 0.050 g (0.10 mmol) R*₂GaCl thermolysieren in 0.6 ml C₆D₆ - laut NMR - in 4 d bei 100 °C zu 50% (Bildung von R*D sowie R*Cl). – 3) Nach Zugabe von 0.009 g (0.054 mmol) GaCl₃ zu 0.027 g (0.034 mmol) R*2GaCl in 0.7 ml CD2Cl2 vertieft sich die Lösungsfarbe von zitronengelb nach dunkelgelb. Das Reaktionsgemisch enthält dann - laut NMR - eine Verbindung, bei der es sich um R^{*}₂Ga⁺GaCl₄⁻ handeln könnte $[*(^{1}H) = 1.376 (2SitBu_{3}); *(^{13}C) = 27.22 / 32.37$ $(6CMe_3/6CMe_3); *(^{29}Si) = 56.2 (2SitBu_3)].$ Im Zuge des Ersatzes von CD₂Cl₂ durch Pentan oder Toluol lagert sich die erwähnte Verbindung zu R*GaCl₂ (vgl. 5.2 g) um. – C₂₄H₅₄ClGaSi₂ (504.0): ber. C 57.19, H 10.80; gef. C 56.83, H 10.84.

k) Disupersilylgalliumbromid: Zu 0.262 g (0.846 mmol) GaBr₃ in 10 ml Heptan werden 0.295 g (1.325 mmol) NaR* in 15 ml Heptan getropft. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 30 ml Pentan und Abfiltrieren unlöslicher Anteile (NaBr) kristallisieren aus dem auf 10 ml eingeengten Filtrat bei –23 °C in Tagen 0.218 g (0.398 mmol; 47%) R^{*}₂GaBr in gelben, luft- und hydrolyseempfindlichen Nadeln. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.33$ (s; 2 SitBu₃). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 26.10/32.78 (6*C*Me₃) $/ 6CMe_3$). $- {}^{29}Si{}^{1}H$ -NMR (C₆D₆, eTMS): $\delta = 34.9$ $(2SitBu_3)$. – MS: $m/z = 548 (M^+; 1\%), 491 (M^+-C_4H_9^+;$ 4%), 268 (M⁺-R^{*}Br; 100%); Isotopenmuster für 1 bzw. 0 Br. - Anmerkungen: 1) 1.23 mmol GaBr3 und 1.23 mmol NaR*•2THF (Molverhältnis 1 : 1) bilden in 20 ml Heptan eine orangefarbene Lösung, die - laut NMR - R*GaBr₂ (THF) [5] und R^{*}₂GaBr im Molverhältnis 2 : 1 neben R*Br enthält. - 2) 1.26 mmol GaBr₃ und 2.52 mmol NaR*•2THF (Molverhältnis 1 : 2) bilden in 20 ml Pentan eine blaugrüne Lösung, die – laut NMR – R*GaBr₂•THF, R^{*}₂GaBr und R^{*}₃Ga₂Na(THF)₃ [17] im Molverhältnis 1 : 4 : 1 neben R^*H , R^*_2 und R^*Br , darüber hinaus – laut Lösungsfarbe – wohl R^{*}₂Ga-GaR^{*} (keine NMR-Signale) enthält. – C₂₄H₅₄Si₂BrGa (548.5): ber. C 52.56, H 9.92; gef. C 51.67, H 9.62.

l) Disupersilylindiumfluorid: Man fügt zu 0.091 g (0.166 mmol) R_2InCl (vgl. 5.3 m) in 0.6 ml C_6D_6 0.080 mg (0.527 mmol) CsF und rührt die Lösung 24 h bei Raumtemperatur, wonach sich – laut NMR – ausschließlich R_2AIF gebildet hat. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 5 ml Pentan und Abfiltrieren unlöslicher Anteile (CsI, CsCl) verbleibt nach Abkondensieren von Pentan gelbes, luftund hydrolyseempfindliches $R_2InF. - {}^1H$ -NMR (C_6D_6 , *i*TMS): $\delta = 1.360$ (s; 2S*it*Bu₃). $- {}^{13}C{}^1H$ -NMR (C_6D_6 , *i*TMS): $\delta = 50.6$ (2S*it*Bu₃).

m) Disupersilylindiumchlorid; Disupersilylindoniumtetrachloroaluminat: Zu einer auf -78 °C gekühlten Lösung von 0.564 g (2.55 mmol) InCl₃ in 15 ml THF werden 1.870 g (5.10 mmol) NaR*•2THF in 10 ml Heptan getropft. Die auf Raumtemperatur erwärmte Lösung enthält - laut NMR - ausschließlich R*2InCl. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 60 ml Heptan und Abfiltrieren unlöslicher Anteile (NaCl) fallen aus dem auf 10 ml eingeengten Filtrat bei -23 °C in Tagen 1.162 g (2.10 mmol; 83%) R*2InCl als luft- und hydrolyseempfindlicher Feststoff. – ¹H-NMR $(C_6D_6, iTMS): \delta = 1.310 (s; 2SitBu_3). - {}^{13}C{}^{1}H{}-NMR$ $(C_6D_6, iTMS): \delta = 26.17 / 32.35 (6CMe_3/6CMe_3). -$ ²⁹Si{¹H}-NMR (C₆D₆, eTMS): $\delta = 51.5$ (2SitBu₃). – Anmerkungen: 1) 0.053 g (0.096 mmol) R*₂InCl thermolysieren in 0.6 ml C₆D₆ – laut NMR – in 5 h bei 100 °C

	R*BBr ₂ (Pyridin)	$\frac{R^*AlBr_2}{(NEtMe_2)}$	$\begin{matrix} [R^*AlCl\\(OBu)]_2 \end{matrix}$	R*2BF	R*2BCl	R*2AlCl	R [*] ₂ GaCl [5]	R*2TICI
Formel	C ₂₄ H ₄₀ BBr ₂ NSi	C ₁₂ H ₂₇ AlBr ₂ Si	C ₃₂ H ₇₂ Al ₂ Cl ₂ O ₂ Si ₂	C ₂₄ H ₅₄ BFSi ₂	C ₂₄ H ₅₄ BClSi ₂	C ₂₄ H ₅₄ AlClSi ₂	$C_{24}H_{54}$ GaClSi ₂	C ₂₄ H ₅₄ TICISi ₂
M _r	541.29	386.22	669.94 <i>~ ~</i>	428.66	445.11	461.30	504.02	638.67
$T[\mathbf{K}]$	203	294	198	193	197	294	163	193
$Mo-K_{\alpha}$ [Å]	0.71073	0.71069	0.71073	0.71073	0.71073	0.71069	0.71073	0.71073
System	monoklin	orthorhomb.	triklin	monoklin	monoklin	monoklin	monoklin	monoklin
Raumgr.	$P2_1/c$	$Pca2_1$	$P\overline{1}$	<i>P</i> 2/n	P2/n	P2/n	P2/n	C2/c
a [Å]	16.382(2)	14.539(4)	8.681(2)	8.531(1)	12.100(1)	12.890(2)	12.765(1)	20.396(4)
b [Å]	9.071(1)	11.653(3)	9.351(2)	15.911(2)	8.766(2)	8.894(1)	8.834(1)	15.437(3)
c [Å]	18.758(2)	13.552(3)	12.835(6)	20.919(3)	14.116(3)	14.293(2)	14.085(1)	41.621(8)
α [°]	90.00	90.00	97.87(2)	90.00	90.00	90.00	90.00	90.00
β[°]	111.046	90.00	102.14(2)	101.26(1)	110.69(1)	114.55(2)	114.39(2)	99.97(3)
γ [°]	90	90.00	91.08	90.00	90.00	90.00	90.00	90.00
$V[Å^3]$	2601.4(2)	2296.0(1)	1007.8(6)	2784.8(2)	1400.6(6)	1490.6(2)	1446.57(10)	12906(45)
Z	4	4	1	4	2	2	2	10
ρ [g/cm ³]	1.382	1.329	1.104	1.022	1.055	1.028	1.157	1.242
$\mu [mm^{-1}]$	3.173	3.618	0.289	0.142	0.231	0.246	1.135	5.086
F(000)	1120	952	368	960	496	512	548	4912
2θ [°]	4.49 - 56.54	2.24 - 23.97	3.28 - 49.98	3.24 - 58.20	13.78 - 49.42	2.77 - 23.93	3.62 - 55.12	4.70 - 54.24
Bereiche	$-21 \le h \le 20;$	$-16 \le h \le 0;$	$-10 \le h \le 7;$	$-10 \le h \le 10;$	$-14 \le h \le 11;$	$-13 \le h \le 14;$	$-15 \le h \le 15;$	$-21 \le h \le 25;$
	$-9 \le k \le 12;$	$0 \le k \le 13;$	$-10 \le k \le 10;$	$-20 \le k \le 20;$	$-10 \le k \le 10;$	$-10 \le k \le 0;$	$-5 \leq k \leq 8;$	$-19 \le k \le 11;$
	-24 < l < 24	$-15 \le l \le 15$	$-14 \le l \le 14$	$-20 \le l \le 28$	$-16 \le l \le 15$	$-16 \le l \le 0$	$-17 \le l \le 17$	$-53 \le l \le 53$
Reflexe gesamt	12710	3609	4631	15882	6641	2435	4500	25125
unabh. (> 4Φ)	5181	3603	3348	3866	1974	2332	2449	12448
R _{int}	0.0729	-	0.0430	0.0471	0.0537	-	0.0437	0.0323
x^{a}	0.0263	0.0485	0.0513	0.0959	1.00	0.0541	0.0517	1
y ^a	5.3262	8.6352	0.5236	4.8962	1.00	1.00	2.1493	1
R1 ^b	0.0462	0.0628	0.0385	0.0714	0.0295	0.0568	0.0339	0.1044
wR2 b	0.0963	0.1264 ^c	0.1006	0.1831	0.0755	0.1262	0.1035	0.2784
GOOF	1.181	1.094	1.030	1.073	1.046	1.131	1.109	0.976
Restel.	0.488	0.746	0.576	2.180	0.261	0.333	0.651	0.646
$[e/Å^3]$	-0.798	-0.356	-0.192	-0.507		-0.201	-0.478	-4.588

Tab. 3. Ausgewählte Angaben zu Röntgenstrukturanalysen der in der ersten Zeile wiedergegebenen Verbindungen.

^a Wichtungsfaktor $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$. ^b $F > 4\sigma(F)$. ^c Flack-Parameter 0.53(4), racemischer Zwilling.

zu 50% (Bildung von R^{*}Cl, R^{*}D, In). – 2) Nach Zugabe von 0.018 g (0.135 mmol) AlCl₃ zu 0.062 g (0.112 mmol) R^{*}₂InCl in 0.6 ml CD₂Cl₂ vertieft sich die Lösungsfarbe von gelb nach dunkelgelb. Das Reaktionsgemisch enthält dann – laut NMR – bei –20 °C eine Verbindung, bei der es sich um R^{*}₂In⁺ AlCl₄⁻ handeln könnte [*(¹H) = 1.350 (2Si*t*Bu₃); *(²⁹Si) = 60.9 (2Si*t*Bu₃)]. Bei Raumtemperatur entfärbt sich die Lösung in wenigen Minuten und enthält dann R^{*}InCl₂ (vgl. 5.2 k) und R^{*}AlCl₂ (vgl. 5.2 d).

n) Disupersilylthalliumchlorid; Disupersilylthallonium-tetrachloroaluminat: Zu einer auf -78 °C gekühlten Lösung von 0.520 g (1.67 mmol) TlCl₃ in 20 ml THF werden 1.12 g (5.02 mmol) NaR* (Molverhältnis 1 : 3) in 10 ml THF getropft. Nach 4 h bei -78 °C tropft man zum dunkelgrünen Reaktionsgemisch (-78 °C) 3.31 mmol Me₃SiCl in 5 ml THF. Nach Erwärmen auf Raumtemperatur enthält die nunmehr gelbe Lösung – laut NMR – R*₂TlCl neben geringen Mengen R*Cl und R*SiMe₃ [8]. Man kondensiert alle im ÖV flüchtigen Anteile ab, nimmt den Rückstand in 40 ml Pentan auf und filtriert unlösliche Anteile (NaCl) ab. Nach Einengen auf 15 ml kristallisieren bei -23 °C aus dem Filtrat 1.12 g (1.09 mmol; 41%) R*₂TlCl in Form gelber, luft- und hydrolyseempfindlicher, bei Raumtemperatur zersetzlicher Platten aus. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.319 (breit, $2SitBu_3$). $-{}^{13}C{}^{1}H$ -NMR (C_6D_6 , *i*TMS): $\delta = 28.35 / 32.75$ (breit / sehr breit; $6CMe_3 / 6CMe_3$). -²⁹Si-NMR: Nicht beobachtbar. – MS: m/z = 603 (M⁺-Cl; 67%), 581 (M^+ - C_4H_9 ; 22%), 405 (M^+ -Si $C_{12}H_{27}$; 90%), 205 (Tl⁺; 100%). - Röntgenstrukturanalyse: Vgl. Abb. 4 und Tab. 2. - Anmerkungen: 1) Gibt man zu 0.170 g (0.545 mmol) TlCl₃ in 10 ml THF (-78 °C) 0.243 g (1.09 mmol) NaR* (Molverhältnis 1 : 2) in 5 ml THF so enthält die rasch auf Raumtemperatur erwärmte Lösung (farblos) ausschließlich R^{*}₂ und R^{*}Cl, aber kein R^{*}₂TlCl (gebildeter schwarzer Niederschlag ist wohl $(R^*Tl)_n$).

Beläßt man das betreffende Reaktionsgemisch 20 h bei -78 °C, dann Monate bei -25 °C, so erhält man kristallines $R_4^* Tl_3Cl$ und $R_6^* Tl_6Cl_2$ [9]. – 2) Die gelbe Lösung von 0.045 g (0.070 mmol) R_{2}^{*} TlCl in 0.5 ml C₆D₆ wird bei Raumtemperatur im Laufe von 4 h rotbraun (laut NMR Bildung von R*Cl und R*4Tl3Cl [9]), im Laufe von 2 Wochen unter Bildung eines schwarzen Niederschlags (wohl $(R^*Tl)_n$; Zerfall bei 100 °C in C₆D₆ zu Tl und R*D) farblos und enthält dann - laut NMR - ausschließlich R*Cl. - 3) Nach Zugabe von 0.009 g (0.07 mmol) AlCl₃ zu 0.045 g (0.07 mmol) R^{*}₂TlCl in 0.6 ml CD₂Cl₂ vertieft sich die Lösungsfarbe von gelb nach dunkelgelb. Das Reaktionsgemisch enthält dann - laut NMR - eine Verbindung, bei der es sich um R*2Tl+AlCl4handeln könnte $[*(^{1}H) = 1.40 \text{ (breit; } 2SitBu_{3}); *(^{13}C) = 27.35 / 33.25$ (jeweils sehr breit; $6CMe_3/6CMe_3$); *(²⁹Si) = nicht beobachtbar]. Die Verbindung ist in Pentan und Toluol nicht beständig. – 4) Das Dithallan R^{*}₄Tl₂ konnte bisher nicht in R*2TlHal ungewandelt werden. Es führt die Einwirkung (i) von Ph₃CCl in Pentan bei Raumtemperatur zu R^{*}₂ und TlCl, (ii) von Me₃SiCl in THF bei Raumtemperatur zu keiner Reaktion, (iii) von HBr in THF bei -30 °C zu R*Br, R*H und einer nicht charakterisierten Tl-Verbindung ($R_4^*Tl_3Br$?), (iv) von Br_2 in Pentan bei -78 °C zu R*Br und TlBr.

o) Natrium-disupersilylthallanid; Disupersilyltrimethylsilylthallan: Das Thallanid NaTIR^{*}₂ entsteht wohl aus 0.445 g (1.65 mmol) CpTl und 0.735 g (3.30 mmol) NaR^{*} (Molverhältnis 1 : 2) in 20 ml THf (-78 °C), da nach Zugabe von 1.65 mmol Me₃SiCl in 5 ml THF zur auf -78 °C gekühlten Reaktionsmischung – laut NMR – R^{*}₂TISiMe₃ vorliegt. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren unlöslicher Anteile (NaCl) verbleibt nach Abkondensieren von Pentan R^{*}₂TISiMe₃ als gelber Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.350 (d; ⁴J_{HTI} = 15.48 Hz; 2SitBu₃), 0.266 (d; ⁴J_{HTI} = 15.95 Hz; SiMe₃). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 112.9 (d; ¹J_{Si205/203TI} = 1235 / 1224 Hz; 2SitBu₃), 8.66 (breites d; ¹J_{SiTI} = 114 Hz; SiMe₃).

- 148. Mitteilung über Verbindungen des Siliciums. Zugleich 15. Mitteilung über Supersilylverbindungen des Bors und seiner Homologen. 147. Mitteilung: N. Wiberg, W. Niedermayer, H.-W. Lerner, M. Bolte, Z. Anorg. Allg. Chem. 627, 1043 (2001). 14. Mitteilung: [17].
- [2] A. Purath, C. Dohmeier, A. Ecker, H. Schnöckel, K. Amelunxen, T. Passler, N. Wiberg, Organometallics 17, 1894 (1998).

5.4. Kristallstrukturen von $R^*BBr_2 \bullet Py$, $R^*AlBr_2 \bullet NEtMe_2$, $[R^*AlCl(OBu)]_2$, R^*_2BF und R^*_2ECl (E = B, Al, Ga, In, Tl)

Für die Strukturbestimmungen der Verbindungen R*AlBr₂(NEtMe₂) und R*₂AlCl wurde ein Mach 3 Gerät der Fa. Nonius, für die Verbindungen R*BBr₂ (Pyridin), R*2BF, R*2BCl [R*AlCl(OBu)]2, R*2GaCl und R*2TICl ein Siemens P4-Gerät mit CCD-Flächendetektor verwendet. Die Strukturlösungen (Direkte Methoden und Verfeinerungen (volle Matrix gegen F^2) erfolgten mit SHELXS-86 / SHELXL-93 (R*AlBr₂ (NEtMe₂), R^{*}₂AlCl), XS (Siemens) / SHELXL (R^{*}BBr₂ (Pyridin), [R*AlCl(OBu)]₂), XS (SHELXTL-Ver.5) / SHELXL-93 $(R^*_2BF, R^*_2BCl und R^*_2GaCl), SHELXS-97 (R^*_2TlCl).$ Die Lagen der Nichtwasserstoffatome sind in anisotroper Beschreibung verfeinert, H-Atome in berechneten Lagen und mit dem riding model in die Verfeinerung einbezogen. Die Abbildungen 1, 2, 3 und 4 geben Strukturen wieder, die Tab. 3 faßt kristallographische Details zusammen.

Die kristallographischen Daten (ohne Strukturfaktoren) der Verbindungen wurden als "supplementary publication" No. CCDC-165963 (R*BBr₂ (Pyridin)), CCDC-163179 (R*AlBr₂•NEtMe₂), CCDC-163512 ([R*AlCl(OBu)]₂), CCDC-165964 (R*₂BF) CCDC-163513 (R*₂BCl), CCDC-163180 (R*₂AlCl), CCDC-101026 (R*₂GaCl; [5]) und CCDC-165965 (R*₂TlCl) beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung der Arbeit mit Personal- und Sachmitteln.

- [3] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, W. Ponikwar, H. Schwenk, J. Organomet. Chem. 574, 246 (1999).
- [4] W. Lippert, H. Nöth, W. Ponikwar, T. Seifert, Eur. J. Inorg. Chem. 817 (1999); W. Lippert, Dissertation, München 1998; H. Nöth, T. Habereder, W. Lippert, Contemporary Boron Chemistry, Royal Soc. Chem. Special Publ. 253, 386 (2000) und zit. Lit.

- [5] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, J. Knizek, I. Krossing, Z. Naturforsch. 53b, 333 (1998).
- [6] N. Wiberg, T. Blank, H.-W. Lerner, H. Nöth, T. Habereder, D. Fenske, Z. Naturforsch. 56b, 652 (2001).
- [7] N. Wiberg, T. Blank, K. Amelunxen, H. Nöth, H. Schnöckel, E. Baum, A. Purath, D. Fenske, Eur. J. Inorg. Chem. im Druck.
- [8] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542, 1 (1997).
- [9] N. Wiberg, T. Blank, H.-W. Lerner, D. Fenske, G. Linti, Angew. Chem. **113**, 1275 (2001); Angew. Chem. Int. Ed. Engl. **40**, 1232 (2001).
- [10] N. Wiberg, K. Amelunxen, H. Nöth, M. Schmidt, H. Schwenk, Angew. Chem. **108**, 110 (1996); Angew. Chem. Int. Ed. Engl. **35**, 65 (1996).
- [11] R. Littger, H. Nöth, N. Wiberg, unveröffentlichte Ergebnisse.
- [12] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Nöth, A. Appel, J. Knizek, K. Polborn, Z. Anorg. Allg. Chem. 623, 1861 (1997).
- [13] H.-W. Lerner, S. Scholz, M. Bolte, Organometallics 20, 5751 (2001).
- [14] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, DeGruyter, Berlin (19959.
- [15] N. Wiberg, W. Niedermayer, J. Organomet. Chem. 628, 57 (2001); N. Wiberg, in B. Marciniec, J. Chojnousk (Hrsg.): Progress in Organosilicon Chemistry, S. 19, Gordon and Breach Publishers, Amsterdam (1995); N. Wiberg, H.-W. Lerner, S.-K. Vasisht, S. Wagner, K. Karaghiosoff, H. Nöth, W. Ponikwar, Eur. J. Inorg. Chem. 1211 (1999); N. Wiberg, H.-W. Lerner, unveröffentlichte Ergenisse.

- [16] R_2^*Si existiert sterisch bedingt wohl im Triplettzustand [15]. Analoges ist für $R_2^*B^-$ zu erwarten. Die Stabilisierung von R_2^*Si besteht demzufolge in einer intramolekularen H-Abstraktion aus der Molekülperipherie mit sich anschließender Cyclisierung des gebildeten Diradikals [15]. Analoges sollte für die Bildung des röntgenstrukturanalytisch charakterisierten [11] Silaboretanats gelten. Neben dem Siletan entsteht aus R_2^*Si noch das Silan $R_2^*SiH_2$ unter Aufnahme von 2 H-Atomen als Nebenprodukt. In der Tat entsteht bei der Reduktion von R_2^*BF mit K in Benzol neben dem Silaboretanat [$*(^{11}B) = 32.9$; d mit $^{13}B_{\rm H} = 72$ Hz] eine weitere Verbindung [$*(^{11}B) = -46.9$; t mit $^{13}B_{\rm H} = 72$ Hz]; bei der es sich um $R_2^*BH_2^-$ handeln könnte [11]. Das röntgenstrukturanalytisch charakterisierte Borat $R^*BH_3^-$ [$*(^{13}B) = -46.4$; q mit $^{13}B_{\rm H} = 79$ Hz] ließ sich aus NaR* und BH₃ in THF gewinnen [11]).
- [17] N. Wiberg, T. Blank, K. Amelunxen, H. Nöth, J. Knizek, T. Habereder, W. Kaim, M. Wanner, Eur. J. Inorg. Chem., im Druck (2001), und dort zit. Lit.
- [18] N. Wiberg, T. Blank, W. Ponikwar, Angew. Chem. 111, 887 (1999); Angew. Chem. Int. Ed. Engl. 38, 839 (1999).
- [19] N. Wiberg, T. Blank, unveröffentlichte Ergebnisse.
- [20] M. L.Sierra, V. S. J. de Mel, J. P. Oliver, Organometallics 8, 2312 (1989); A. Heine, D. Stalke, Angew. Chem. 105, 90 (1993); Angew. Chem. Int. Ed. Engl. 32, 121 (1993).
- [21] D. L. Schmidt, E. E. Flagg, Inorg. Chem. 1262 (1967); vgl. auch P. K. Rahm, Dissertation, Universität München (1989); Ch. Tacke, Dissertation, Universität München (1994).