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Abstract Compared to the current knowledge on cancer

chemotherapeutic agents, only limited information is

available on the ability of organic compounds, such as

drugs and/or natural products, to prevent or delay the onset

of cancer. In order to evaluate chemical chemopreventive

potentials and design novel chemopreventive agents with

low to no toxicity, we developed predictive computational

models for chemopreventive agents in this study. First, we

curated a database containing over 400 organic compounds

with known chemoprevention activities. Based on this

database, various random forest and support vector

machine binary classifiers were developed. All of the

resulting models were validated by cross validation pro-

cedures. Then, the validated models were applied to vir-

tually screen a chemical library containing around 23,000

natural products and derivatives. We selected a list of 148

novel chemopreventive compounds based on the consensus

prediction of all validated models. We further analyzed the

predicted active compounds by their ease of organic syn-

thesis. Finally, 18 compounds were synthesized and

experimentally validated for their chemopreventive activ-

ity. The experimental validation results paralleled the cross

validation results, demonstrating the utility of the devel-

oped models. The predictive models developed in this

study can be applied to virtually screen other chemical

libraries to identify novel lead compounds for the chemo-

prevention of cancers.
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CPT Consensus prediction thresholds

EBV-EA Epstein–Barr virus early activation

MLR Multiple linear regression

MOE Molecular operating environment

PKC Protein Kinase C

PLS Partial least square

PTLC Preparative thin layer chromatography

QSAR Quantitative structure–activity

relationship

RF Random forest

SVM Support vector machines

TLC Thin layer chromatography

TMS Tetramethylsilane

TPA 12-O-tetradecanoylphorbol-13-acetate

ZND ZINC natural derivative

Introduction

Cancer is listed among the major causes of mortality in the

world. In 2013, cancer was ranked as the second leading

cause of death in the United States. A recent report from

the American Cancer Society revealed that, statistically,

the lifetime chances of developing cancers are as high as 1

in 3 for women and 1 in 2 for men [1]. Current strategies in

cancer patient treatments, such as chemotherapy, have met

with clinical success. However, most chemotherapeutic

agents have severe side effects, which negatively impact a

cancer patient’s quality of life [2]. For this reason, che-

moprevention, which normally uses either natural or syn-

thetic compounds with low toxicity, was employed to

impede, halt, or reverse the carcinogenesis process before a

tumor can develop [3], especially for patients at high risk.

The different stages of chemoprevention research have

been extensively reviewed [4–8].

As a relatively new area of cancer research, there is a

high demand for efficient methods to identify novel che-

moprevention agents. To date, a standardized method for

identifying chemopreventive compounds has not been

developed. But several in vitro methods have been used by

different research groups to evaluate potential chemopre-

ventive agents [9–11]. Most of these methods measure

chemopreventive activity on the basis of similar general

principles. These approaches involve measuring cellular

expression of a protein in a human cancer cell line with and

without the test compound. A positive impact is noted by a

decrease in expression, which indicates interference with a

potential cancer-inducing pathway [12–18]. The Epstein–

Barr virus early antigen (EBV-EA) activation assay is one

such test recognized as a primary screening method for

assessing antitumor promoting properties, through inhibi-

tion of Protein Kinase C (PKC) activity, which serves as a

major receptor for 12-O-tetradecanoylphorbol-13-acetate

(TPA) [19, 20]. In this test, the experiment is carried out in

Raji cells, a human lymphoma cell line with an Epstein–

Barr virus genome. The assay is less tumor type specific,

which limits its applicability in mechanistic studies of

chemoprevention; however, it can measure the chemopre-

ventive effects of a particular agent on the promotion and

progression phases of carcinogenesis, and usually results in

parallel outcomes to in vivo animal models. It is considered

to be a useful in vitro assay to initially screen chemopre-

ventive agents [12, 13, 18].

Currently, only a few studies have employed computa-

tional modeling in the area of chemoprevention. Among

them, several Quantitative structure–activity relationship

(QSAR) studies used simple modeling approaches, such as

Multiple linear regression (MLR) or Partial least square

(PLS), to model a limited number of chemopreventive

agents. For example, Bertosa et al. [21] used PLS to

develop QSAR models for 59 amides and quinolones. The

antitumor activities of these compounds were tested against

MiaPaCa-2 (pancreatic carcinoma) and MCF-7 (breast

carcinoma) cells. In another study, Saeed et al. [22] used

linear regression to generate models for six curcumin

derivatives. In a recent published work, Aleksic et al. [23]

reported a three-dimensional (3D) QSAR study of substi-

tuted heterocyclic quinolones. Nineteen compounds with

similar quinolone scaffolds were synthesized and tested for

antitumor activity against multiple cell lines in this study.

The results were modeled with commercial modeling

software. Other receptor-based modeling studies, which

used molecular docking analysis, have focused on using

known cancer tumor targets and their interaction with

specific chemopreventive compounds. For example, a

recent study tested the binding affinities of curcumin

derivatives against several well-known cancer targets [24].

The results revealed a favorable correlation between the

two test compounds and their binding affinity for cancer

targets, thus, implying a functional role as enzyme inhibi-

tion activators. Although previous modeling studies

achieved certain successes (e.g., molecular docking studies

usually helped to explain the binding mechanisms of the

chemopreventive agents to the relevant receptors), they

have restricted predictive ability due to the limited number

of compounds used in the studies.

In this study, we proposed to develop QSAR models

based on a large set of chemopreventive agents tested by

the EBV-EA assay and to apply the resulting models to

design new lead agents. To this end, we curated a che-

mopreventive database by collecting compounds tested by

the EBV-EA assay from published research articles [25–

51]. We used an in-house tool to automatically generate an

activity endpoint based on the original multi-dose chemo-

preventive response data. Various QSAR models were
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developed and validated. Then, these models were used to

virtually screen over 23,000 natural products and their

derivatives to identify novel chemopreventive agents.

Finally, 18 lead compounds resulting from the prediction

results were synthesized and experimentally validated

using the same EBV-EA assay.

Methods

Chemopreventive agent data set

The chemopreventive agent database was generated by

collecting data from different journal papers published

during the past decade [25–51]. All compounds in the

database were tested using the EBV-EA assay by the same

standard methodology. The original database contained

compounds that were reported in different papers. After

removing duplicated compounds by harmonizing their

activities, we had 405 unique compounds left in the final

curated chemopreventive agent database.

The EBV-EA assay data were treated by the CurveP

algorithm to ensure monotonicity of each dose–response

curve and to convert it into a numeric value, LogCurveP

(a log10-transformed fingerprint), which was used as a

numeric indicator of activity. This algorithm was devel-

oped in our laboratory in a prior study [52]. Briefly, the

response at each of the various test concentrations was

represented by two bits (00, 01, 10, 11) for coding four

categories (0, 25, 50, and 75 %? relative inhibition). Then,

these bits were concatenated from lowest to highest test

concentrations and resulted in an eight bit value (CurveP).

If nonzero, the CurveP was then log10-transformed. The

chosen activity threshold of 1.25 corresponds to strong

inhibition at the two highest test concentrations. Based on

these factors, the chemopreventive agent database con-

tained 204 ‘‘actives’’ categorized as class-1 and 201

‘‘marginal actives’’ categorized as class-2. All 405 com-

pounds and their chemopreventive activity (both the ori-

ginal data and the LogCurvP results) are listed in a

supplemental file (Supplemental Table 1).

EBV-EA assay

Raji cells (106 cells/mL) were incubated at 37 �C for 48 h

in RPMI-1640 medium with 10 % Fetal calf serum (FCS),

n-butyric acid (4 mmol), TPA (32 pmol), and test com-

pounds. Smears were made from the cell suspension, and

EBV-EA inducing cells were stained by an indirect

immunofluorescence technique. In each assay, at least 500

cells were counted and the number of stained cells (positive

cells) was recorded. The EBV-EA-inhibiting activity of the

test compound was estimated on the basis of the percentage

of the number of positive cells compared with that of the

control without the test compound. Cell viability was

assayed by the Trypan Blue staining method. For the

determination of cytotoxicity, the cell viability was

required to be more than 60 % [53]. Each compound was

measured at four concentrations of 0.32, 3.2, 16, and

32 nmol, representing 10-, 100-, 500-, 1,000-fold of TPA

(32 pmol). Each measurement was repeated three times for

each test compound concentration and the average values

of the three readout data were used.

Chemical descriptors

The chemical descriptors used in this study were obtained

from Dragon version 6.0 (Talete SRL, Milano, Italy) and

Molecular Operating Environment (MOE) version 2011.

The Dragon descriptors include E-state values and E-state

counts, constitutional descriptors, topological descriptors,

walk and path counts, connectivity and information indi-

ces, 2D autocorrelations, Burden eigenvalues, molecular

properties, Kappa, hydrogen bond acceptor/donor counts,

molecular distance edge, and molecular fragment counts.

The MOE descriptors include topological indices, struc-

tural keys, E-state indices, physical properties (i.e., LogP,

molecular weight, and molar refractivity), and topological

polar surface area. Over 4,000 Dragon descriptors were

initially generated, but most of them were redundant. We

removed redundant Dragon descriptors by using pairwise

comparisons between each of the two descriptor pairs. If

the correlation between two descriptors of our 405 com-

pounds was high (correlation coefficient [0.95), one of

them was randomly selected and removed. Eventually, 688

Dragon descriptors were left for this study. MOE generated

186 descriptors, all of which were used in the modeling

process.

Modeling approaches

This study used the Random forest (RF) and Support vector

machine (SVM) algorithms available in R.2.15.1. These

two algorithms have been employed in several of our

previous modeling studies for various biological activities

[54, 55].

The entire Combinatorial QSAR (Combi-QSAR) mod-

eling workflow is shown in Fig. 1. Individual models were

developed using a combination of Dragon or MOE

descriptors and RF or SVM algorithms. This technique

resulted in four different models: Dragon-RF, Dragon-SVM,

MOE-RF, and MOE-SVM. The results for each classifica-

tion model were averaged to generate consensus predictions,

which will be further referred to as a consensus model.

All models were validated using five-fold external cross

validation. Briefly, the original chemopreventive dataset
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was randomly divided into five equal subsets. One subset

was used as the validation set (20 % of the original set) and

the other four subsets (80 % of the original set) were used

as the training sets. The training sets were used to develop

the models and the resulting models were used to predict

the left-out validation set. This procedure was repeated five

times, so that each compound was used for validation

purposes once.

Robustness of QSAR models was verified using a

Y-randomization (randomization of response) approach as

described by Tropsha and coworkers [56–58]. We ran-

domly assigned the activities of the modeling set com-

pounds into class-1 or -2. Then, we developed QSAR

models using the same protocol as for compounds with

actual experimental results. The purpose of this procedure

was to see if statistically significant QSAR models could be

obtained for the original data, but could not be developed

with randomized activities. The Y-randomization tests for

each combination of modeling approach and descriptor

were repeated five times.

Universal criteria for model evaluation

Because various modeling approaches and different

descriptors were used in the modeling process, universal

statistical metrics were needed to evaluate the performance

of the models developed individually. The results were

harmonized by using sensitivity (percentage of class-1

compounds predicted correctly), specificity (percentage of

class-2 compounds predicted correctly), and CCR (correct

classification rate or balanced accuracy). These parameters

are defined as follows:

% sensitivity ¼ true positives

true positivesþ false negatives

� �
� 100

ð1Þ

% specificity ¼ true negatives

true negativesþ false positives

� �
� 100

ð2Þ

% CCR ¼ sensitivityþ specificity

2

� �
� 100 ð3Þ

Synthesis of selected compounds

Eighteen compounds derived from the predicted results

were designated for chemical synthesis. Among them,

twelve compounds (1–12) resulted from the class-1 com-

pound list and six compounds (13–18) were derived from

the class-2 prediction set (Table 2). Compound selection

from more than 100 predicted leads was based on the

chemical capability of producing the molecules through

basic organic synthesis and the availability of chemical

reagents for making the compound. Compound 12 was

purchased from Aldrich. All final compounds were struc-

turally confirmed by mass spectrometry (Shimadzu LCMS-

2010 ESI–MS) and proton nuclear magnetic resonance

spectroscopy (1H NMR) [Varian 400 MHz with tetra-

methylsilane (TMS) as the internal standard]. Melting

points were determined on a Fisher-John melting point

apparatus and are uncorrected. CombiFlash� chromato-

graphic system (Isco Companion) with a Grace silica gel

cartridge was used for general separation and purification.

Preparative thin layer chromatography (PTLC) on silica gel

plates (Kieselgel 60, F254, 1.50 mm) was also used for

Fig. 1 The Combi-QSAR

modeling workflow of this study
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separation and purification. Precoated silica gel plates

(Kieselgel 60, F254, 0.25 mm) were used for Thin layer

chromatography (TLC) analysis. All reagents and solvents

were purchased from Aldrich, Fisher, VWR, and other

vendors. Some chemicals were used after purification, and

others were used as purchased.

Results and discussions

The overview of our chemopreventive agent database

We analyzed the structural similarities between the com-

pounds in the dataset by performing a Principal component

analysis (PCA) on the chemical descriptors. After gener-

ating the principal components using the 186 MOE

descriptors for all of the compounds in the database, we

selected the top three most important components to create

a 3D plot (Fig. 2) for all 405 compounds. Considering the

186 MOE descriptors that we used, these three principal

components captured around 30 % of the variance in our

database. In this way, we could visualize the chemical

similarity between modeling set compounds in this 3D plot

(Fig. 2). According to this analysis, not surprisingly, many

compounds were chemically similar, since they are deriv-

atives of several known chemopreventive agents (e.g.,

curcumin). But there were several structural outliers that

were dissimilar to the majority of the compounds. Some

previous studies showed that removing structural outliers

before the modeling process was beneficial to the results of

the QSAR models [55, 59, 60]. However, in our study, we

kept these outliers, since they were only a small portion

(*1 %) of the whole dataset. Furthermore, removing the

outliers did not improve the resulting models (data not

shown).

Chemopreventive activity endpoint

All 405 compounds were tested in the EBV-EA assay at

four different doses (10, 100, 500 and 1,000 times the TPA

dose) and the chemopreventive activity reported as relative

percentage induction of TPA-mediated EBV-EA activation

(Fig. 3a). Most of the compounds showed significant

activity at high dose levels, but half of the compounds

exhibited no activity at the lowest dose. We next applied a

method previously developed in our laboratory and suc-

cessfully applied in prior studies in which the multi-dose

response data for each compound was converted into a

meaningful endpoint that could be used for modeling

purposes [52]. Figure 3b shows the transformed Log-

CurveP results based on the original four dose induction

response data from Fig. 3a. Noticeably, a clear threshold

(LogCurveP = 1.25) was present (see middle of Fig. 3b),

which could be used to distinguish ‘‘actives’’ and ‘‘mar-

ginal actives’’. It should be emphasized that the definition

of these two categories is somewhat arbitrary, since most of

the compounds showed significant activity in the high dose

testing. However, this strategy gave us a criterion to dif-

ferentiate the compounds that are likely to have high effi-

cacy from the remaining compounds. On this basis, the

actual chemopreventive agent modeling database contained

204 ‘‘actives’’ and 201 ‘‘marginal actives’’.

Fig. 2 Chemical structure

space of chemopreventive agent

database (n = 405) using top 3

principal components of MOE

descriptors
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Modeling results

We developed four individual and one consensus model for

the 405 compounds (204 actives and 201 marginal actives).

The fivefold external cross validation results for all of the

models are shown in Table 1. The sensitivity, specificity,

and CCR metrics for the four individual models ranged

from 57 to 75, 61 to 74, and 59 to 74 %, respectively. The

SVM-MOE model had the lowest predictivity

(CCR = 59 %), and the RF-DRG model had the highest

predictivity (CCR = 74 %). The consensus model showed

equivalent statistics with sensitivity, specificity, and CCR

all equal to 69 %.

Y-randomization tests were also performed for the mod-

eling set. After five time random assignments of class-1 or -2

to the 405 compounds, we developed four individual QSAR

models. The average CCR values obtained from five-fold

cross validation for all four individual models with ran-

domized classes were around 0.5, indicating that randomi-

zation of the classifications did not result in meaningful

models. In addition, we used Pearson’s Chi squared test to

calculate the v2 and p values for the prediction results

obtained using actual and randomized classes [61]. The

improvement achieved by our real QSAR models, compared

with those obtained by randomized classes, was statistically

significant (v2[30 and p \ 0.0001).

Figure 4 shows the Receiver Operating Characteristic

(ROC) of all four individual models. The Area under the

curve (AUC) is another metric to evaluate the performance

of each model. The RF models (AUC = 0.83 and 0.80),

either with Dragon and MOE descriptors, were superior to

the SVM models (AUC = 0.72 and 0.68).

Furthermore, we applied Consensus prediction thresh-

olds (CPT), as cited in one of our previous studies [62], to

the prediction results. Since all of the prediction values

from the individual models ranged from 0 to 1, we initially

used the 0.5 value as a single threshold to distinguish

compounds predicted as class-1 (CPT C0.5) or class-2

(CPT\0.5). However, as shown in Fig. 4, the use of more

restrictive thresholds improved the predictivities of all

models. Consequently, compounds with CPT values

around 0.5 should be considered ‘‘inconclusive’’. Based on

the results in Fig. 4, we removed these inconclusive pre-

dictions by using two arbitrary, but reasonable, CPT

thresholds to classify compounds as actives (CPT [0.7)

and marginal actives (CPT \0.3).

The application of CPT to define the prediction results

together with the removal of ‘‘inconclusive’’ compounds

clearly enhanced the predictivity of all models, including the

consensus model (Table 1). For example, the sensitivity,

specificity, and CCR metrics of the consensus model

increased to 83, 82, and 82 %, respectively (Table 1). How-

ever, the tradeoff was to decrease the coverage of this model

from 100 to 46 %. In addition, the coverage of the individual

models ranged from 45 to 58 % after applying CPT and

excluding inconclusive compounds. Since we expect that the

models developed in this project will be used to screen large

chemical libraries and prioritize a small portion of ‘‘hits’’ for

experimental validation, we feel that it is reasonable to sac-

rifice prediction coverage to increase predictivity.

Virtual screening

Once we developed and validated our predictive QSAR

models, they could then be used to screen new compounds

for chemopreventive activity. Since chemopreventive

agents usually must be administrated for a long period of

time, low toxicity and fewer side effects are essential

factors in the design of new agents. Therefore, we used the
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Fig. 3 The chemopreventive data obtained from the EBV-EA assays:

a the original data shown as the distribution of relative induction of

TPA-mediated EBV-EA activations at four different doses [10 (blue),

100 (green), 500 (purple) and 1,000 (red) mol ratio per 32 pmol

TPA]; b the transformed LogCurveP results based on the four dose

testing data (red line shows the active/marginally active threshold at

LogCurvP = 1.25)
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ZINC natural derivatives (ZND) library that contains over

23,000 natural product molecules and their derivatives for

screening purposes [63]. The original ZND database was

curated to remove duplicates, including compounds that

overlapped with our existing dataset as well as compounds

that could not be handled by our program. This process

resulted in a total of over 23,385 unique compounds

available for virtual screening. Next, we evaluated these

compounds with all four individual models to prioritize and

choose hits. We prioritized those compounds that were

calculated as ‘‘active’’ and excluded those compounds that

were predicted as ‘‘inconclusive’’ (prediction values

between 0.3 and 0.7) based on the consensus predictions of

all four individual models. As another selection criterion,

we produced a combined score by summation of all indi-

vidual model prediction values. By applying both selection

criteria, we ultimately selected 148 compounds from the

ZND library. These compounds were predicted to be active

hits by all four models (individual prediction values were

all above 0.7), as well as had the highest combined scores

based on summations of all four predictions. For compar-

ison purposes, we intentionally selected 45 compounds that

were predicted to be ‘‘marginal active’’ by all models using

the same strategy as for the active hits.

Chemical synthesis and experimental validation

by in vitro EBV-EA inhibition

From the 148 class-1 structures and 45 class-2 structures

predicted by virtual screening, we selected 12 compounds

from the active lead set and 6 compounds from the marginal

active set. Our selection rationale included chemical synthesis

capability and availability, as well as the SAR (structure–

activity relationship) profile from previously reported litera-

ture on chemopreventive agents. For instance, favored struc-

tural groups in most of the active predictions from our virtual

screening included phenolic groups and a biphenyl moiety

with a conjugated carbonyl system and/or a 4H-chromen-4-

one. These chemical structures are common features of some

known chemopreventive agents, such as curcumin derivatives

and flavonoids [64–66]. Selected ‘‘active’’ compounds 1–4 are

structural mimics of curcuminoids, while compounds 6 and

8–10 belong to the flavonoid chemical class.

We next synthesized the 18 chosen compounds. Com-

pounds 1, 3, and 13–16 were prepared by reaction of an

appropriately substituted benzoic acid (compound 16) or

cinnamic acid (compounds 1, 3, and 13–15) with an

appropriate amine in the presence of the coupling reagent

EDCI hydrochloride and the catalyst DAMP (Scheme 1).

Compounds 2 and 4 were obtained by subsequent

demethylation of 1 and 3 with BBr3 at low temperature.

Compound 5 was synthesized by reaction of 1-(2-hydroxy-

5-methoxyphenyl)ethanone with 2,3-dimethoxybenzalde-

hyde. Treatment of 5 with sodium acetate in aqueous eth-

anol and heating to reflux gave cyclized compound 5a,

which underwent demethylation with BBr3 in methylene

chloride yielding compound 6 (Scheme 2). Unexpectedly,

the ring-opened product 7 was also obtained during the

demethylation process, probably due to the instability of

the 2H-pyran-4(3H)-one moiety under the reaction

Table 1 The results of fivefold

cross validation
No CPT CPT applied

Sensitivity Specificity CCR Sensitivity Specificity CCR

RF-MOE 0.70 0.71 0.70 0.82 0.80 0.81

SVM-MOE 0.57 0.61 0.59 0.60 0.68 0.64

RF-DRG 0.75 0.74 0.74 0.82 0.80 0.81

SVM-MOE 0.66 0.63 0.65 0.80 0.74 0.77

Consensus 0.69 0.69 0.69 0.83 0.82 0.82

Fig. 4 ROC curves obtained as

a result of five-fold cross

validation: a two models using

Dragon descriptors; b two

models using MOE descriptors
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conditions (Scheme 2). Compound 17 was prepared by

reaction of naphthalen-1-ol with methyl 2-chloroacetate in

the presence of potassium carbonate. Compound 18 was

afforded by demethylation of 17 with trimethylstannanol

(Scheme 3). Compounds 8-11 were synthesized by heating

1-(2-hydroxy-5-methoxyphenyl)ethanone and 3,4-dim-

ethoxybenzoyl chloride in pyridine (Scheme 4). After

treatment of the resulting compound with potassium

hydroxide followed by acidification, the cyclized com-

pound 8 was obtained. Selective demethylation of com-

pound 8 afforded compounds 9–11.

All 18 synthesized compounds were evaluated for che-

moprevention activities measured as inhibition of TPA-

induced EBV-EA expression in Raji cells. These 18 com-

pounds and their relevant response data are shown in Table 2.

The value corresponding to each compound indicates a rela-

tive ratio to the positive control TPA on activation of EBV-EA

expression in Raji cells. Unsurprisingly, compounds derived

from the predicted class-1 set (compounds 1–12), especially

compounds 8–12 with a flavonoid structural scaffold,

generally showed more potent inhibition of EBV-EA

expression than those derived from the class-2 set (13–18).

Based on our definition of class-1 and -2 as mentioned above,

all predicted ‘‘marginal active’’ compounds (compounds

13–18) were experimentally proved to be correctly predicted.

Among all actives (compounds 1–12), compounds 5–12 were

True positives (TP); however, compounds 1–4 were False

positives (FP). Structurally, compounds 1–4 are derived from

curcuminoids. However, in comparison with curcumin,

compounds 1–4 were weaker inhibitors in the validation

assay, especially at the higher concentration levels (Table 2).

Thus, the high activity of curcumin derivatives in our mod-

eling set was the major reason for these FP predictions. This

result also provided us with important information on revis-

ing/optimizing curcumin derivatives as chemoprevention

agents. In summary, the experimental validation showed

67 % sensitivity, 100 % specificity, and 83 % CCR. Although

the number of experimentally tested compounds was not

great, the experimentally validated results clearly demonstrate

that the newly developed cheminformatics models can be used

Scheme 1 Synthesis of acrylamide substituted compounds 1–4 and 13–16
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to screen new chemical libraries and prioritize novel hits for

future development.

Further Structure–Activity Relationship profiles result-

ing from this study indicated that phenolic substitution in

the molecule enhanced the EBV-EA inhibition ability.

Flavonoids 9–12 with multiple phenolic hydroxyl groups

displayed 100 % inhibition at the highest tested concen-

tration and 24–28 % inhibition even at 1 9 102 mol ratio

to TPA (32 pmol). Compound 9 was the most potent

analog among the tested compounds showing significant

inhibition even at concentrations as low as 1 9 10 mol

ratio to TPA. Interestingly, compound 7, a ring-opened

analog bearing four phenolic hydroxy groups, was less

potent than its ring-closed analog 9 against EBV-EA acti-

vation. These results suggested that the flavonoid skeleton

is essential for the inhibition activity and phenolic groups

enhance the inhibition potency.

To evaluate the novelty of the 18 new compounds, we

analyzed the major chemical features of the compounds

and compared them to those existing in the modeling set.

To this end, chemical scaffolds were generated and com-

pared for the 18 new compounds against the 408-com-

pound dataset. All compounds were reduced to core

fragments (or ‘‘scaffolds’’) based on the method reported in

a previous study [67]. Eight unique scaffolds were gener-

ated out of the 18 compounds (Fig. 5), and 167 unique

scaffolds out of the 408 compounds. By comparison, 50 %

of the prior scaffolds (4 out of 8) were novel and did not

exist in the 408-compound dataset (Fig. 5).

In summary, we employed a Combi-QSAR workflow to

develop predictive models for a database consisting of 405

chemopreventive agents, which were all tested by EBV-EA

assay. We used our in-house tool to define a chemopreven-

tion activity endpoint that was suitable for modeling pur-

poses. The resulting four individual models were validated

by a five-fold cross validation procedure. The consensus

prediction showed superior performance compared with that

of the individual models. For this reason, we used all four

Scheme 2 Synthesis of flavonone 6 and its open rings compounds 5 and 7

Scheme 3 Synthesis of naphthalen-1-yloxyl compounds 17 and 18

Scheme 4 Synthesis of flavones 9–11
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Table 2 Novel chemopreventive agents identified by virtual screening and their experimental EBV-EA inhibition activities

Compounds Responses in different concentration (nM) (folds

of compound mol/TPA mol)a
LogCurvPb Pred. Act. Exp. Act.

32 (1,000) 16 (500) 3.2 (100) 0.32 (10)

1

11.4 ± 0.5 ([60)c 47.3 ± 1.6 79.3 ± 2.5 100 ± 0.4 1.04 Active Mariginal

active

2

10.3 ± 0.6 ([60) 45.3 ± 1.6 78.1 ± 2.4 100 ± 0.4 1.04 Active Marginal

active

3

13.4 ± 0.6 ([60) 48.9 ± 1.6 80.3 ± 2.5 100 ± 0.3 1.04 Active Marginal

active

4

11.6 ± 0.5 ([60) 46.1 ± 1.6 78.3 ± 2.5 100 ± 0.3 1.04 Active Marginal

active

5

6.3 ± 0.4 ([60) 42.5 ± 1.4 74.6 ± 2.3 100 ± 0.5 1.43 Active Active

6

3.1 ± 0.4 ([60) 41.3 ± 1.3 72.8 ± 2.3 98.7 ± 0.6 1.43 Active Active

7

4.6 ± 0.4 ([60) 40.3 ± 1.4 73.1 ± 2.4 98.6 ± 0.5 1.43 Active Active

8

3.2 ± 0.4 ([60) 32.6 ± 1.3 67.2 ± 2.3 96.5 ± 0.6 1.43 Active Active

9

0 ± 0.3 ([60) 26.4 ± 1.3 62.5 ± 2.3 89.1 ± 0.7 1.43 Active Active

10

0 ± 0.3 ([60) 29.5 ± 1.4 65.8 ± 2.4 94.6 ± 0.7 1.43 Active Active

11

0 ± 0.4 ([60) 28.9 ± 1.4 64.3 ± 2.5 92.4 ± 0.6 1.43 Active Active
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individual models to virtually screen a large chemical

library. Eighteen ‘‘hits’’, 12 from a class-1 ‘‘active’’ set and 6

from a class-2 ‘‘marginal active’’ set, were finally selected,

synthesized, and then validated by the same EBV-EA assay.

The validation results indicated that the compounds derived

from the ‘‘active’’ prediction were more potent EBV-EA

activation inhibitors than the compounds derived from the

‘‘marginal active’’ prediction. Both the cross validation and

experimental validation results showed that our developed

models are suitable for designing novel chemopreventive

agents by prioritizing novel molecules for experimental

testing and further development.

Experiments

Chemical synthesis

General synthesis procedures for compounds 1–4

and 13–16

Substituted cinnamic acid (1 eq., for compounds 1,3,

13–15,) or benzoic acid (1 eq., for compound 16) was

dissolved in DMF. EDCI hydrochloride (1.5 eq.) and 10 %

(mol ratio) of DMAP were added. After being stirred at r.t.

for 30 min. an appropriate amine (1.5 eq.) was added. The

Table 2 continued

Compounds Responses in different concentration (nM) (folds

of compound mol/TPA mol)a
LogCurvPb Pred. Act. Exp. Act.

32 (1,000) 16 (500) 3.2 (100) 0.32 (10)

12

0 ± 0.4 ([60) 29.0 ± 1.6 62.1 ± 2.5 93.3 ± 0.6 1.43 Active Active

13

13.1 ± 0.6 ([60) 48.6 ± 1.6 9.3 ± 2.6 100 ± 0.3 1.04 Marginal

active

Marginal

active

14

17.8 ± 0.5 ([60) 51.6 ± 1.5 83.0 ± 2.4 100 ± 0.4 0.85 Marginal

active

Marginal

active

15

15.9 ± 0.5 ([60) 50.0 ± 1.5 81.3 ± 2.4 100 ± 0.3 1.04 Marginal

active

Marginal

active

16

18.3 ± 0.7 ([60) 53.5 ± 1.4 84.3 ± 2.6 100 ± 0.2 0.85 Marginal

active

Marginal

active

17

11.3 ± 0.5 ([60) 43.5 ± 1.5 77.3 ± 2.5 100 ± 0.4 1.04 Marginal

active

Marginal

active

18

9.9 ± 0.5 ([60) 41.3 ± 1.5 75.1 ± 2.5 100 ± 0.4 1.04 Marginal

active

Marginal

active

Curcumin

0 ± 0.5 ([60) 21.1 ± 1.1 80.1 ± 2.4 100 ± 0.2 1.43 – Active

a TPA concentration is 32 pmol/mL
b logCureP represents a log10 transformed response fingerprint values, as described in reference 45
c Values in parentheses represent viability percentages of Raji cells. For the determination of cytotoxicity, the cell viability is required greater

than 60 %
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resulting mixture was stirred at r.t. overnight. The solid was

removed by filtration and the filtrate was concentrated

under vacuum. The residue was partitioned in EtOAc and

water, and the organic portion was washed twice with

water. After drying over Na2SO4, the crude product was

purified by column chromatograph through a combiflash

system with hexanes/EtOAc as eluent.

(E)-3-(3-hydroxyphenyl)-N-(3-methoxybenzyl)-N-

methylacrylamide (1)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.75 (d, J = 15.6 Hz, 1H), 7.29–7.02 (m, aromatic H, 4H),

6.92–6.73 (m, 4H), 6.55 (d, J = 17.2 Hz, 1H), 4.66

(d, J = 16.0 Hz, PhCH2N–, 2H), 3.82 (s, OCH3, 3H), 3.07

(s, NCH3, 3H); ESI MS m/z 298.20 (M ? H)?.

(E)-N-(3-hydroxybenzyl)-3-(3-hydroxyphenyl)-N-

methylacrylamide (2)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.65 (d, J = 15.6 Hz, 1H), 7.24–6.69 (m, aromatic H, 7H),

6.02 (d, J = 17.2 Hz, 1H), 5.82 (d, J = 17.2 Hz, 1H), 4.62

(d, J = 13.6 Hz, PhCH2N–, 2H), 3.02 (s, NCH3, 3H); ESI

MS m/z 283.91 (M ? H)?.

(E)-N-(3-methoxybenzyl)-3-(3-methoxyphenyl)acrylamide

(3)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.61 (d, J = 15.6 Hz, 1H), 7.27–7.22 (m, aromatic-H, 2H),

7.07 (d, J = 7.6 Hz, 1H), 6.99 (s, aromatic-H, 1H),

6.99–6.79 (m, aromatic-H, 4H), 6.38 (d, J = 15.6 Hz, 1H),

5.96 (s, br, –NH–, 1H), 4.52 (d, J = 6.0 Hz, PhCH2N–,

2H), 3.79, 3.78 (s, OCH3 9 2, 3H each); ESI MS

m/z 298.20 (M ? H)?.

(E)-N-(3-hydroxybenzyl)-3-(3-hydroxyphenyl)acrylamide (4)

Off-white crystalline solid; 1H NMR (400 MHz, CDCl3): d
7.47 (d, J = 15.6 Hz, 1H), 7.19–7.10 (m, aromatic-H, 2H),

7.01 (d, J = 7.2 Hz, 1H), 6.95 (s, aromatic-H, 1H),

6.78–6.73 (m, aromatic-H, 3H), 6.66–6.64 (m, aromatic-H,

1H), 6.57 (d, J = 15.6 Hz, 1H), 4.40 (s, PhCH2N–, 2H);

ESI MS m/z 270.21 (M ? H)?.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3,4-

dimethoxyphenethyl)acrylamide (13)

Off-white crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.50 (d, J = 15.2 Hz, 1H), 6.95 (s, aromatic H, 1H), 6.93

(d, J = 1.6 Hz, aromatic H, 1H), 6.80–6.71 (m, aromatic

H, 4H), 6.11 (d, J = 15.2 Hz, 1H), 5.96 (s, methylene H,

2H), 5.52 (br. NH, 1H), 3.84 (s, OCH3, 6H), 3.60 (q,

NHCH2–, 2H), 2.78 (t, J = 7.2 Hz, 2H); ESI MS

m/z 356.20 (M ? H)?.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(4-

chlorophenethyl)acrylamide (14)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.50 (d, J = 15.2 Hz, 1H), 7.25 (d, J = 8.4 Hz, aromatic

H, 2H), 7.12 (d, J = 8.4 Hz, aromatic H, 2H), 6.95

(s, aromatic H, 1H), 6.93 (d, J = 2.0 Hz, aromatic H, 1H),

6.76 (dd, J = 1.2, 7.6 Hz, aromatic H, 1H), 6.11 (d,

J = 15.2 Hz, 1H), 5.95 (s, methylene H, 2H), 5.52 (br. NH,

1H), 3.60 (q, J = 6.8 Hz, NHCH2–, 2H), 2.83

(t, J = 7.2 Hz, 2H); ESI MS m/z 330.15 (M ? H)?.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3-

phenylpropyl)acrylamide (15)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.47 (d, J = 15.6 Hz, 1H), 7.28–7.23 (m, aromatic H, 2H),

7.18–7.16 (m, aromatic H, 3H), 6.95 (d, J = 0.8 Hz, aro-

matic H, 1H), 6.93 (d, J = 1.2 Hz, aromatic H, 1H), 6.76

Fig. 5 The major chemical scaffolds within the 18 new compounds. The four red ones are new scaffolds and the four black ones are within the

scaffolds of the modeling set compounds
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(d, J = 8.4 Hz, aromatic H, 1H), 6.11 (d, J = 15.6 Hz,

1H), 5.96 (s, methylene H, 2H), 5.52 (br. NH, 1H), 3.39 (q,

J = 6.8 Hz, NHCH2–, 2H), 2.70 (t, J = 7.6 Hz, 2H), 1.88

(pent, J = 7.2 Hz, 2H); ESI MS m/z 310.21 (M ? H)?.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3-

(dimethylamino)propyl)acrylamide (16)

Light yellow solid. 1H NMR (400 MHz, CDCl3): d 8.83

(br. NH, 1H), 6.93 (dd, J = 2.0, 9.2 Hz, aromatic H, 1H),

6.88 (s, aromatic H, 1H), 6.81 (dd, J = 2.0, 9.2 Hz, aro-

matic H, 1H), 5.99 (s, methylene H, 2H), 3.33 (q,

J = 6.8 Hz, NHCH2–, 2H), 2.42 (t, J = 7.6 Hz, 2H), 2.27

(s, N(CH3)2, 6H), 1.75 (pent, J = 7.2 Hz, 2H); ESI MS m/

z 251.24 (M ? H)?.

Syntheses of compounds 5–7

To a solution of 1-(2-hydroxy-5-methoxyphenyl)ethanone

(3 mmol) in 10 mL of EtOH was added 2,3-dimethoxy-

benzaldehyde (1.05 eq.). 20 % KOH (5 mL aq.) was added

dropwise. The resulting red mixture was stirred at r.t for

5 h with TLC monitoring, and then was poured into ice

water, acidified with 2 N HCl to pH 2, and extracted with

EtOAc. After purification through a combiflash column

chromatography system, compound 5 was obtained.

Compound 5 (0.6 mmol) was dissolved in 5 mL of EtOH

and NaOAc (10 eq.) was added. The mixture was heated to

reflux until the reaction was complete (approximately

24 h). The reaction mixture was poured into ice water and

extracted with EtOAc. The crude product was purified by

column chromatography on a combiflash system with

hexanes/EtOAc as eluent to yield 5a. Compound 5a

(0.545 mmol) was dissolved in 20 mL of anhydrous

methylene chloride (CH2Cl2) and cooled to -78 �C. BBr3

(1 M in CH2Cl2, 4.5 eq.) was added slowly. The resulting

mixture was stirred at -78 �C for 10 min, 0 �C for 10 min,

and r.t. for 3 h with TLC monitoring. The reaction mixture

cooled in an ice-bath then pured into ice water with stir-

ring. The mixture was extracted with ethyl ether (Et2O)

three times and dried over Na2SO4. The desired products 5

and 6 were obtained after purification over a combiflash

system with CH2Cl2/MeOH as eluent.

(E)-3-(2,3-dimethoxyphenyl)-1-(2-hydroxy-5-

methoxyphenyl)prop-2-en-1-one (5)

Yellow crystalline solid. 1H NMR (400 MHz, CDCl3): d
8.15 (d, J = 16.0 Hz, 1H), 7.68 (d, J = 16.0 Hz, 1H), 7.33

(d, J = 2.8 Hz, aromatic H, 1H), 7.24 (d, J = 8.0 Hz,

aromatic H, 1H), 7.13–7.07 (m, aromatic H, 2H), 6.98–6.94

(m, aromatic H, 2H), 3.89 (s, OCH3, 3H), 3.88 (s, OCH3,

3H), 3.80 (s, OCH3, 3H); ESI MS m/z 315.21 (M ? H)?.

2-(2,3-dihydroxyphenyl)-6-methoxychroman-4-one (6)

Light yellow solid. 1H NMR (400 MHz, CDCl3): d 7.30 (d,

J = 3.2 Hz, aromatic H, 1H), 7.14 (dd, J = 3.2, 8.0 Hz,

aromatic H, 1H), 6.99 (d, J = 8.0 Hz, aromatic H, 1H),

6.97 (d, J = 5.6 Hz, aromatic H, 1H), 6.74 (td, J = 2.0,

8.0 Hz, aromatic H, 1H), 6.70 (t, J = 8.0 Hz,aromatic H,

1H), 5.73 (dd, J = 3.2, 12.0 Hz, 1H), 3.77 (s, OCH3, 3H),

2.97 (dd, J = 12.8, 30.0 Hz, 1H), 2.84 (dd, J = 3.2,

20.0 Hz, 1H); ESI MS m/z 285.21 (M ? H)?.

(E)-3-(2,3-dihydroxyphenyl)-1-(2,5-dihydroxyphenyl)prop-

2-en-1-one (7)

Yellow crystalline solid. 1H NMR (400 MHz, CDCl3): d
8.14 (d, J = 15.6 Hz, 1H), 7.84 (d, J = 15.6 Hz, 1H), 7.36

(d, J = 2.8 Hz, aromatic H, 1H), 7.11 (dd, J = 1.2, 8.0 Hz,

aromatic H, 1H), 6.99 (dd, J = 2.8, 8.0 Hz, aromatic H,

1H), 6.83 (dd, J = 1.6, 8.0 Hz, aromatic H, 1H), 6.79 (d,

J = 8.8 Hz, aromatic H, 1H), 6.70 (t, J = 8.0 Hz, aromatic

H, 1H); ESI MS m/z 273.21 (M ? H)?.

Syntheses of compounds 8–10

To a solution of 1-(2-hydroxy-5-methoxyphenyl)ethanone

(1.84 mmol) in pyridine (3 mL) was added 3,4-dim-

ethoxybenzoyl chloride (3 eq.). The resulting mixture was

heated to reflux for 1 h. After cooling to r.t., the reaction

mixture was pured into ice water with stirring, and solids

started to precipitate. After storage in a refrigerater over-

night, the off-white solid product (2-acetyl-4-methoxy-

phenyl 3,4-dimethoxybenzoate) was collected by filtration

and dried in vacuo (0.4 g). The resulting compound

(0.9 mmol) was further dissolved in 1 mL of pyridine, and

86 mg of KOH powder was added with stirring. The

mixture was then heated at 50 �C for 1 h, then poured into

10 % H2SO4 (8 mL). A light brown solid precipitated. The

solid was filtered and dissolved in 1.5 mL of EtOH con-

taining 0.1 mL of H2SO4. The solution was heated to reflux

for 1 h followed by alkalinization to pH 10 with 20 %

NaOH and refluxed for another 15 min. After cooling, the

solution was neutralized with 10 % H2SO4 to give a solid,

which was recrystallied from MeOH to afford compound 8

(0.121 g) as a dark gray crystalline solid. Compound 8

(0.096 mmol) was dissolved in 5 mL of anhydrous CH2Cl2
and cooled to -78 �C. Then, BBr3 (1 M in CH2Cl2, 4.5

eq.) was added slowly. The resulting mixture was stirred at

-78 �C for 10 min, 0 �C for 10 min, and r.t. for 2 h with

TLC monitoring. The reaction mixture then was cooled in

an ice-bath and poured into ice water. After stirring for

0.5 h, the mixture was extracted with Et2O and dried over

Na2SO4. The desired products 9–11 were obtained after
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column chromatography over a combiflash system with

CH2Cl2/MeOH as eluent.

2-(3,4-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (8)

Yellow–brown crystalline solid. 1H NMR (400 MHz,

CDCl3): d 7.67-7.64 (m, aromatic-H 2H), 7.54–7.52 (m,

aromatic-H 2H), 7.37 (dd, J = 3.2, 9.2 Hz, aromatic H,

1H), 7.11 (d, J = 8.4 Hz, aromatic H, 1H), 6.82 (s, 1H),

3.92, 3.89, 3.88 (s, OCH3 9 3, 3H each); ESI MS

m/z 313.23 (M ? H)?.

2-(3,4-dihydroxyphenyl)-6-hydroxy-4H-chromen-4-one (9)

Yellow–brown crystalline solid. 1H NMR (400 MHz,

CDCl3): d 7.53 (d, J = 8.8 Hz, aromatic-H 1H), 7.41-7.37

(m, aromatic-H, 3H), 7.23 (dd, J = 2.8, 8.8 Hz, aromatic

H, 1H), 6.88 (d, J = 8.8 Hz, aromatic H, 1H), 6.65 (s, 1H);

ESI MS m/z 270.21 (M ? H)?.

2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-

one (10)

Yellow crystalline solid. 1H NMR (400 MHz, CDCl3): d
7.62 (d, J = 9.2 Hz, aromatic-H 1H), 7.52 (dd, J = 2.4,

8.4 Hz, aromatic-H, 2H), 7.43 (d, J = 2.4 Hz, aromatic H,

1H), 6.88 (dd, J = 2.8, 8.8 Hz, aromatic-H, 1H), 7.06 (d,

J = 8.8 Hz, aromatic-H, 1H), 6.74 (s, 1H), 3.91, 3.88 (s,

OCH3 9 2, 3H each); ESI MS m/z 299.21 (M ? H)?.

2-(3,4-dihydroxyphenyl)-6-methoxy-4H-chromen-4-one (11)

Yellow–brown crystalline solid. 1H NMR (400 MHz,

CDCl3): d 7.59 (d, J = 9.2 Hz, aromatic-H, 1H), 7.50 (d,

J = 2.8 Hz, aromatic-H, 1H), 7.41 (t, J = 2.4 Hz, aro-

matic-H, 1H), 7.39 (s, aromatic-H, 1H), 7.35 (dd, J = 3.2,

9.2 Hz, aromatic-H, 1H), 6.88 (dd, J = 1.2, 7.6 Hz, aro-

matic H, 1H), 6.69 (s, 1H), 3.87 (s, OCH3, 3H); ESI MS

m/z 285.19 (M ? H)?.

Syntheses of compounds 17–18

To a solution of naphthalen-1-ol (1 mmol) in acetone

(10 mL) was added K2CO3 (3 eq.) followed by methyl

2-chloroacetate (1.5 eq.). The resulting mixture was heated

to reflux for 20 h with TLC monitoring. The solid was fil-

tered and the filtrate was concentrated to dryness. The resi-

due was diluted with EtOAc and washed twice with brine.

The organic portion was dried over Na2SO4, filtered, and

concentrated. The crude product was purified through a

combiflash chromatography system with hexanes/EtOAc as

eluent to afford the desired product 17. Compound 18 was

obtained by treatment of 17 (0.1 mmol) with

trimethylstannanol (10 eq.) in dichloroethane (1.5 mL). The

resulting mixture was heated at 80 �C for 3 h with TLC

monitoring. Upon completion, the solvent was evaporated

and the residue was diluted with EtOAc and washed with

5 % HCl followed by brine three times. After drying ove

Na2SO4, the crude product was purified through a combiflash

chromatography system with hexanes/EtOAc as eluent. The

desired product 18 was obtained as a off-white solid.

Methyl 2-(naphthalen-1-yloxy)acetate (17)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
8.36-8.33 (m, aromatic-H 1H), 7.80–7.77 (m, aromatic-H,

1H), 7.50–7.45 (m, aromatic H, 3H), 7.32 (t, J = 7.6 Hz,

aromatic-H, 1H), 6.68 (d, J = 7.6 Hz, aromatic-H, 1H)

3.80 (s, OCH3, 3H); ESI MS m/z 217.21 (M ? H)?.

2-(naphthalen-1-yloxy)acetic acid (18)

White crystalline solid. 1H NMR (400 MHz, CDCl3): d
8.30–8.27 (m, aromatic-H 1H), 7.77–7.75 (m, aromatic-H,

1H), 7.46–7.41 (m, aromatic H, 3H), 7.32 (t, J = 7.6 Hz,

aromatic-H, 1H), 6.79 (d, J = 7.6 Hz, aromatic-H, 1H)

3.80 (s, OCH3, 3H); ESI MS m/z 203.19 (M ? H)?.
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