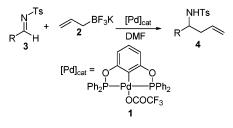
Palladium Pincer-Complex Catalyzed Allylation of Tosylimines by Potassium Trifluoro(allyl)borates


Niclas Solin, Olov A. Wallner, and Kálmán J. Szabó*

Stockholm University, Arrhenius Laboratory, Department of Organic Chemistry, SE-106 91 Stockhom, Sweden

kalman@organ.su.se

Received December 6, 2004

ABSTRACT

Palladium pincer complex 1 catalyzes the reaction of trifluoro(allyl)borate 2 with a wide range of tosylimines (3) under mild and neutral reaction conditions. This catalytic transformation affords homoallylic amines (4) in good to excellent yield. Mechanistic studies suggest that a transmetalation reaction between complex 1 and the borate salt 2 provides an η^1 -allylpalladium complex, which subsequently reacts with the imine substrate.

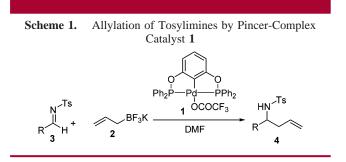
Allylpalladium chemistry is one of the most successful areas in transition-metal catalysis. In the most common application of this methodology, an allylpalladium intermediate is generated, which subsequently reacts with nucleophiles.¹ Recently, however, possibilities to extend allylpalladium chemistry to electrophilic substrates have attracted much attention, as certain allylpalladium species^{2,3} have been shown to react with electrophiles. In these catalytic reactions, the

(1) (a) Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: Chichester, 1995. (b) Hegedus. L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Mill Valley, CA, 1999.

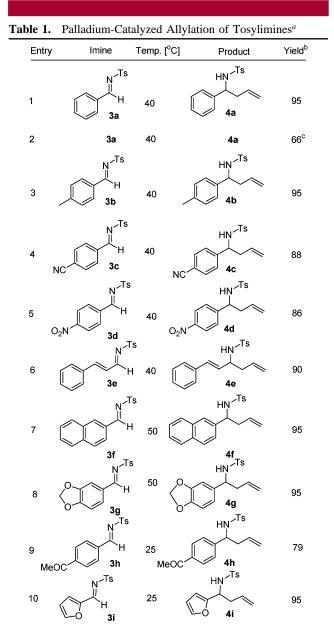
active allylpalladium species are usually generated in a transmetalation reaction between an allylstannane and a palladium complex. Because of the toxicity of organo-tin reagents, and the tedious separation of the tin-containing byproducts,⁴ it would be desirable to replace the allylstannane component of the reaction with other allylmetal species.⁵ We have now found that in palladium-catalyzed electrophilic substitution reactions allylstannanes can be replaced by potassium trifluoro(allyl)borate **2**.⁶ Thus, palladium pincer complex **1** catalyzes the allylation of tosylimines **3** with the borate salt **2** (Scheme 1). A wide range of tosylimines (**3a**–**i**) can be allylated by this procedure in good to excellent yields (Table 1).

ORGANIC LETTERS

2005 Vol. 7, No. 4

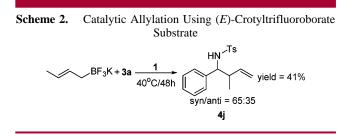

<u>689–691</u>

^{(2) (}a) Nakamura, K.; Iwama, H.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 6641. (b) Nakamura, H.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113. (c) Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 4242. (d) Nakamura, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 1999, 64, 2614. (e) Nakamura, H.; Kouichi, A.; Shim, J.-G.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 372. (f) Fernandes, R. A.; Stimac, A.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 14133. (g) Kiji, J.; Okano, T.; Nomura, T.; Saiki, K.; Sai, T.; Tsuji, J. Bull. Chem. Soc. Jpn. 2001, 74, 1939. (h) Solin, N.; Narayan, S.; Szabó, K. J. J. Org. Chem. 2001, 66, 1686. (i) Solin, N.; Narayan, S.; Szabó, K. J. Org. Lett. 2001, 3, 909. (j) Wallner, O. A.; Szabó, K. J. Org. Lett. 2003, 68, 2934. (l) Wallner, O. A.; Szabó, K. J. Chem. Eur. J. 2003, 68, 2934. (l) Wallner, O. A.; Szabó, K. J. Chem. Eur. J. 2003, 64, 2934. (l) Wallner, C. A.; Szabó, K. J. Chem. Eur. J. 2003, 9, 4025. (m) Szabó, K. J. Chem. Eur. J. 2004, 60, 5268.


^{(3) (}a) Solin, N.; Kjellgren, J.; Szabó, K. J. Angew. Chem., Int. Ed. **2003**, 42, 3656. (b) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. **2004**, 126, 7026. (c) Wallner, O. A.; Szabó, K. J. Org. Lett. **2004**, 6, 1829.

⁽⁴⁾ Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1.
(5) For possibilities to replace allylstannanes with allylsilanes see ref 2d.

^{(6) (}a) Batey, R. A.; Thadani, A. N.; Smil, D. V. *Tetrahedron Lett.* **1999**, 40, 4289. (b) Batey, R. A.; Thadani, A. N.; Smil, D. V. Lough, A. J. *Synthesis* **2000**, 990. (c) Thadani, A. N.; Batey, R. A. *Org. Lett.* **2002**, 4, 3827. Thadani, A. N.; Batey, R. A. *Tetrahedron Lett.* **2002**, 44, 8051. (d) Sze-Wan, L.; Batey, R. A. *Chem. Commun.* **2004**, 1382.

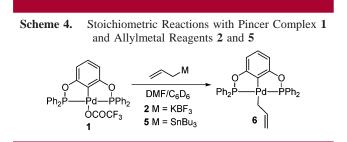


In a typical procedure, the imine **3** (0.10 mmol), borate salt **2** (0.11 mmol) and pincer complex **1** (0.005 mmol, 5 mol %) in DMF (300 μ L) were reacted for 24 h at 25–50

^{*a*} Unless otherwise stated, the reactions were conducted in DMF for 24 h using 5 mol % of complex **1** as catalyst and 1.1 equiv of borate salt **2**. ^{*b*} Isolated yield. ^{*c*} 5 mol % of Pd(OAc)₂ and 5 mol % of PPh₃ were used as catalyst.

°C. After workup, the crude product was purified by column chromatography. The reactions were typically carried out at 40 °C (entries 1–6); however, bulky (**3f**, entry 7) or deactivated (**3g**, entry 8) imines required 50 °C reaction temperature, while activated imines **3h** (entry 9) and **3i** (entry 10) could be allylated at 25 °C. The mild and neutral reaction conditions are compatible with many functional groups, such as MeCO, NO₂, acetals, and CN. In this regard, the imine functionality of **3c** and **3h** could be selectively allylated in the presence of the cyano and keto groups. To assess the stereochemistry of the catalytic allylation reaction we reacted **3a** with (*E*)-crotyltrifluoroborate^{6b} (Scheme 2). This reaction,

however, proceeds with a poor yield and stereoselectivity.


We also tested $Pd(OAc)_2$ as catalyst anticipating the formation of a bis-allylpalladium intermediate, which would be able to allylate imine **3a**.^{2j} Using 5 mol % $Pd(OAc)_2$ and 5 mol % PPh_3 , imine **3a** was allylated in 66% yield (entry 2). Use of PPh_3 proved to be indispensable to get an acceptable yield, as $Pd(OAc)_2$ alone or other phosphine free catalysts (such as $[Pd(allyl)Cl]_2$) gave a low conversion of **3a**.

We have also performed a control experiment using the reaction conditions given in entry 1 without adding palladium catalyst (Scheme 3). In this experiment, homoallylic amine

Scheme 3. Reactions in the Absence of Palladium Catalyst 1		
OH Ph traces	5 mol % BF ₃ •Et ₂ O DMF[H ₂ O] 3a + 2 DMF[H	H ₂ O] Ph traces

4a was not formed at all. The only product observed in this reaction was a trace of homoallyl alcohol. This product is probably formed by the reaction of benzaldehyde (resulted from partial hydrolysis of the imine) and **2**.

Mechanistic Aspects. Batey and Sze-Wan^{6d} showed that tosylimines are allylated in excellent yield by two equivalents of borate salt **2** in CH₂Cl₂ using 5 mol % of BF₃•Et₂O as Lewis acid catalyst. We have attempted to perform this Lewis acid-catalyzed reaction with **3a** and **2** in DMF (Scheme 3); however, we did not observe any formation of the desired homoallylamine product (**4a**). This probably can be explained by the deactivation of the employed Lewis acid (BF₃•Et₂O) by the DMF solvent. A clear advantage of using **1** as catalyst is that application of 1.1 equiv. of **2** is sufficient to obtain high yields, while employment of Lewis acid catalyst BF₃•

 Et_2O requires the use of 2 equiv of the allylic substrate (2). On the other hand, Batey's conditions give higher yield and stereoselectivity with crotyltrifluoroborate, than the pincer-complex catalyzed reaction (Scheme 2).

To gain more mechanistic insights into the above catalytic process (Scheme 1), we monitored the stoichiometric reaction of **1** and **2** by ³¹P NMR spectroscopy. Complex **1**, dissolved in a mixture of DMF/C₆D₆ (10:1), was reacted with **2** at room temperature (Scheme 4). Addition of **2** led to a decrease of the ³¹P NMR peak of **1** at δ 146.0 ppm, while a new peak appeared at δ 148.4 ppm clearly indicating a reaction between the palladium complex (**1**) and the allylic substrate (**2**). To clarify the nature of this reaction we performed a similar stoichiometric experiment using allylstannane (**5**) in place of **2** (Scheme 4). In this process we observed again a downfield shift by δ 2.4 ppm of the ³¹P NMR shift of complex **1**. In a recent study we have shown^{3b} that pincer

complex **1** reacts with allylstannanes to form η^1 -allylpalladium complex **6**. Therefore, the fact that either of allylstannane **5** or borate salt **2** gives the same product when reacted with complex **1** strongly indicates that **2** also undergoes a transmetalation reaction⁷ with complex **1** resulting in (η^1 allyl)palladium complex **6** (Scheme 4). Complex **6** subsequently undergoes electrophilic attack by tosylimine **3**³ affording homoallylic amines **4**.

In summary, we have developed a palladium pincercomplex catalyzed allylation reaction, where tosylimines were allylated with borate salt **2**. This reaction is assumed to proceed via (η^1 -allyl)palladium intermediate (**6**). Application of this procedure eliminates the use of toxic tin compounds, thereby extending the synthetic utility of the palladium catalyzed electrophilic substitution reaction.

Acknowledgment. This work was supported by The Swedish Research Council (VR).

Supporting Information Available: Experimental procedures, NMR data, as well as ¹H and ¹³C NMR spectra of products **4a**–**j**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0475010

⁽⁷⁾ For studies on the transmetalation reaction between palladium complexes and potassium trifluoro(organo)borates, see: (a) Molander, G. A.; Bialatto, B. J. Org. Chem. **2003**, 68, 4302. (b) Darses, S.; Genet, J.-P. *Eur. J. Org. Chem.* **2003**, 4313.