Preparation of Potassium Azidoaryltrifluoroborates and Their Cross-Coupling with Aryl Halides

LETTERS 2009 Vol. 11, No. 19 4330–4333

ORGANIC

Young Ae Cho,[†] Dong-Su Kim,[†] Hong Ryul Ahn,[†] Belgin Canturk,[‡] Gary A. Molander,^{*,‡} and Jungyeob Ham^{*,†}

Korea Institute of Science and Technology, 290 Daejeon-dong, Gangneung 210-340, Korea, and Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

ham0606@kist.re.kr; gmolandr@sas.upenn.edu

Received July 22, 2009

Potassium azidoaryltrifluoroborates have been prepared from the corresponding haloaryltrifluoroborates in 73–98% yields. Also, we successfully cross-coupled the azido-functionalized organotrifluoroborates and carried out a one-pot sequential cross-coupling/1,3-dipolar cycloaddition and a one-pot cross-coupling/azide reduction process.

The azide functional group has been used as an important moiety for the formation of nitrogen-containing compounds in fields ranging from synthetic organic chemistry to pharmaceutical chemistry, materials science, and biology.¹ Alkyl and aryl azides have gained prominence in particular because they may be used for the preparation of [1,2,3]-triazoles by Cu-catalyzed 1,3-dipolar cycloadditions onto terminal alkynes (via "Click" chemistry).² Unfortunately, the preparation of certain classes of organic azides has presented considerable challenges. Moreover, to the best of our knowledge, the Suzuki–Miyaura cross-coupling reaction

with boron reagents bearing the azide functional group has not been reported, perhaps because of the inherent difficulty in preparing such bifunctional molecules and the perceived instability of the azide under cross-coupling reaction conditions.

Recently, organotrifluoroborate salts have been used as important synthetic reagents in the Suzuki–Miyaura crosscoupling reaction, providing many advantages over the corresponding boronic acids or boronate esters.³ The organotrifluoroborates are air- and moisture-stable, crystalline solids that are inert to various nucleophilic reagents owing to the tetracoordinate nature of the boron.⁴

Consequently, it seemed likely that they would be tolerant of conditions allowing the incorporation of the azide

[†] Korea Institute of Science and Technology (Gangneung Institute). [‡] University of Pennsylvania.

^{(1) (}a) Sheradsky, T. In *Chemistry of the Azido Group*; Patai, S., Ed.; Wiley: New York, 1971. (b) Scriven, E. F. V.; Turnbull, K. *Chem. Rev.* **1988**, 88, 297. (c) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. *Angew. Chem., Int. Ed.* **2005**, 44, 5188, and references therein.

^{(2) (}a) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Chapter 1, p 1. (b) Padwa, A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, p 1069. (c) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. (d) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (e) Gil, M. V.; Arévalo, M. J.; Lopez, Ó. Synthesis 2007, 11, 1589. (f) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952, and references therein.

^{(3) (}a) Molander, G. A.; Figueroa, R. *Aldrichimica Acta* **2005**, *38*, 49. (b) Stefani, H. A.; Cella, R.; Vieira, A. S. *Tetrahedron* **2007**, *63*, 3623. (c) Molander, G. A.; Ellis, N. *Acc. Chem. Res.* **2007**, *40*, 275. (d) Darses, S.; Genet, J.-P. *Chem. Rev.* **2008**, *108*, 288.

^{(4) (}a) Molander, G. A.; Ham, J. Org. Lett. **2006**, *8*, 2031. (b) Molander, G. A.; Sandrock, D. L. Org. Lett. **2007**, *9*, 1597. (c) Molander, G. A.; Canturk, B. Org. Lett. **2008**, *10*, 2135. (d) Ahn, H. R.; Cho, Y. A.; Kim, D.-S.; Chin, J.; Gyoung, Y.-S.; Lee, S.; Kang, H.; Ham, J. Org. Lett. **2009**, *11*, 361.

functional group. Herein, we describe the first preparation of azidoaryltrifluoroborates from the corresponding haloaryltrifluoroborates and reaction conditions permitting Suzuki– Miyaura cross-coupling reactions of the azidoaryltrifluoroborates thus generated.

As a starting point, potassium haloaryltrifluoroborates were generated via the one-pot synthesis of aryl dihalides and

Table 1. One-Pot Preparation of PotassiumHaloaryltrifluoroborates from Various Aryl Dihalides^a

	X—Ar—X	i) B(O ⁱ Pr) ₃ / 1 <i>n</i> -BuLi (1.0	THF equiv)		
	(X = Br, I)	-78 °C to rt	/1h × X−Ar−	BF₃K	
		II) 1 N KHF ₂			
entry	X—Ar—X		product		yield
1	x	X = Br I	× BF ₃ K	1a-Br 1a-I	86% 90%
2	×	X = Br I	× BF ₃ K	2a-Br 2a-I	56% 85%
3	×××	X = Br I	BF ₃ K	3a -	52% _
4	Br		Br	4 a	81%
5	Br		Br-BF ₃ K	5a	47%
6	Br OCH3		Br OCH3	6a	82%
7	Br OCF3		BF ₃ K OCF ₃	7a	82%
8	Br		BF ₃ K	8a	72%
9	BrNBr		Br N BF ₃ K	9a	90%
10	BrN		Br N BF ₃ K	10a	87%
11	Br		Br N BF K	11a	90%
12	BrN		Br N Br ₃ K	12a	85%
13	Br	Br Bi	BF ₃ K	13a ≺	93%
14				14a	94%
15	Br Br	r I	Br BF ₃ K	15a	90%
16				16a	80%

^{*a*} Reaction conditions: aryl dihalide (2.0 mmol), triisopropyl borate (2.0 mmol), and *n*-BuLi (2.0 mmol) at -78 °C to rt under N₂ and then quenched with 1 N KHF₂.

 $B(O'Pr)_3$ using 1.0 equiv of *n*-BuLi (Table 1). When dibromo or diiodobenzenes were used as starting materials, the target compounds were obtained in good yields except when 1,2-diiodobenzene was used. Interestingly, the reaction of dibromo pyridines gave the corresponding organotrifluoroborates in excellent yields. The reaction of 2,5-dibromo-*p*-xylene was also problematic, providing the desired product in much lower yield (Table 1, **5a** 47%) under the same reaction conditions.

Next, using conditions previously developed for the preparation of aryl azides with aryl halide and Cu/amine-ligand,^{1,5} we attempted the formation of azidoaryltrifluo-roborates (Table 2).

Table 2. Optimization of Reaction Conditions for the

^{*a*} All reactions were performed on a 0.05 mmol scale in 0.5 mL of DMSO- d_6 in an NMR tube. ^{*b*} Percent conversions were determined by ¹H NMR of the reaction mixtures. The conversion yield was based on the integration of peaks at 7.14 (**1a-I**) ppm and 6.85 (**1b**) ppm, respectively. ^{*c*} Reactions were performed on a 0.1 mmol scale and isolated yields are reported. ^{*d*} Five molar percent of CuI was used. ^{*e*} Reaction was performed in DMF- d_7 .

We first carried out the reaction of potassium 4-azidophenyltrifluoroborate (**1b**) generated in situ by treatment of **1a-I** with 1.0 equiv of NaN₃ in the presence of 10 mol % of Cu(I) and various amine ligands.

A number of different amine ligands were screened for their efficacy in promoting the azidation, and it was found that N,N'-dimethylethylenediamine (ligand **f**) provided the fastest reaction time and the highest converted yield (Table 2, entry 6). Although both CuI and CuBr catalysts generated the target compound **1b** under the same reaction conditions (Table 2, entries 6 and 10), the isolated yield and purity of compound **1b** using CuBr were better than those of using **Table 3.** One-Pot Preparation of Potassium

 Azidoaryltrifluoroborates^a

^{*a*} All reactions were performed on a 1.0 mmol scale in 4 mL of DMSO and monitored by ¹H NMR in D₂O. Yields are given for isolated products. ^{*b*} Reaction was performed on a 3.0 mmol scale. ^{*c*} Products were obtained as amorphous solids. ^{*d*} Product was contaminated with about 10% of **14a**. ^{*e*} Product was contaminated with about 15% of the azide product.

CuI. A decrease in the catalyst loading from 10 to 5 mol % effectively doubled the reaction time (Table 2, entries 6 and 9).

When Cs_2CO_3 was used as a base instead of K_2CO_3 , the reaction time decreased from 1 h to 30 min (Table 2, entries

10 and 11), and DMSO- d_6 appeared to be a better solvent than DMF- d_7 (Table 2, entries 11 and 12). Using these conditions (Table 2, entry 11), the azidation of various potassium haloaryltrifluoroborates was examined (Table 3). As a general rule, isolated yields and reaction rates of the corresponding azidophenyltrifluoroborates increased in the order para > meta > ortho under the same conditions (Table 3, **1b**-**3b**). Both mono- and dimethyl-substituted aryltrifluoroborates in satisfactory yields (Table 3, **4b**-**5b**). Surprisingly, when organotrifluoroborates **7a**, **8a**, and**13a** were used as starting materials, aminoaryltrifluoroborates.

On the other hand, the azidation reactions of bromopyridinyl and iodonaphthyl organotrifluoroborates proceeded readily to give the desired azide compounds in excellent yields (Table 3, 9b-12b and 16b). Naphthyl organotrifluoroborates were not suitable for this azidation because the resulting products were contaminated with the starting material or mixtures of azido- and aminoaryltrifluoroborates (Table 3, 14b and 15b).

We next examined the Suzuki–Miyaura cross-coupling reaction of 4-azidophenyltrifluoroborate (1b) and various aryl halides in the presence of Pd catalyst and 3.0 equiv of Cs_2CO_3 (Table 4). As expected, the coupling of aryl and

^{*a*} Reaction conditions **A**: potassium 4-azidophenyltrifluoroborate (**1b**, 0.2 mmol), aryl bromide (0.2 mmol), 10 mol % of PdCl₂(dppf)•CH₂Cl₂, Cs₂CO₃ (0.6 mmol), MeOH (1.5 mL), 80 °C.; **B**: **1b** (0.2 mmol), aryl chloride (0.2 mmol), 3 mol % of Pd(OAc)₂, 6 mol % of XPhos, Cs₂CO₃ (0.6 mmol), 1,4-dioxane/H₂O (10/1, 1.5 mL), 100 °C. Yields are given for isolated products.

heteroaryl bromides led to the corresponding target products in good yields. Aryl chlorides were generally ineffective as coupling partners.

Finally, we examined one-pot sequential reactions that incorporated cross-coupling followed by 1,3-dipolar cycloaddition or NaBH₄ reduction to the amine (eqs 1 and 2).⁶ These processes provided the desired compounds in good overall yields.

In summary, we have developed a new synthetic method for the preparation of potassium azidoarytrifluoroborates from the corresponding haloaryltrifluoroborates. Additionally, we successfully cross-coupled the azido-functionalized organotrifluoroborates and carried out a one-pot sequential crosscoupling/1,3-dipolar cycloaddition and a one-pot crosscoupling/azide reduction process. Further investigations on transformations of azido-substituted trifluoroborates are currently underway in our laboratory.

Acknowledgment. This research was supported by KIST Institutional Program (2Z03270) and a grant from Marine Biotechnology Program funded by Ministry of Land, Transport and Maritime Affairs, Republic of Korea. Support from the NIH General Medical Sciences Institute is also acknowledged.

Supporting Information Available: General experimental procedures, compound characterization data, and NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901669K

^{(5) (}a) Zhu, W.; Ma, D. *Chem. Commun.* **2004**, 888. (b) Andersen, J.; Madsen, U.; Björkling, F.; Liang, X. *Synlett* **2005**, *14*, 2209, and references therein.

⁽⁶⁾ For detailed procedures, see Supporting Information.