DOI: 10.1002/cphc.201000438

Atmospheric Chemistry of $HCF_2O(CF_2CF_2O)_xCF_2H$ (x=2-4): Kinetics and Mechanisms of the Chlorine-Atom-Initiated Oxidation

Mads P. Sulbaek Andersen,^{*[a]} Vibeke F. Andersen,^[c] Ole J. Nielsen,^[c] Stanley P. Sander,^[a] and Timothy J. Wallington^{*[b]}

Smog chamber/FTIR techniques were used to measure $k(CI+HCF_2O(CF_2CF_2O)_xCF_2H) = (5.3 \pm 1.5) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ in 700 Torr of N₂/O₂ diluent at 296 ± 1 K. The CI-initiated atmospheric oxidation of HCF₂O(CF₂CF₂O)_xCF₂H, x = 2,3 and 4, gave COF₂ in molar yields of (593 ± 41) %, (758 ± 71) % and (939 ± 73) %, respectively, with no other observable carbon-containing products (i.e., essentially complete conversion of the hydrofluoropolyethers into COF₂). Quantitative infrared spectra for

1. Introduction

Recognition of the adverse environmental consequences of the release of chlorofluorocarbons (CFCs) and Halon into the atmosphere^[1,2] has led to an international effort to replace CFCs with environmentally acceptable alternatives. While safeguarding the ozone layer has been at the center of these efforts, concerns related to global climate change are becoming an increasingly important consideration in the choice of alternative compounds because of their significant atmospheric lifetime and radiative properties. Radiative forcing is the common metric used to compare the impacts of external drivers of climate change and is defined as the change in net irradiance (Wm⁻²) at the tropospause caused by a change in an external driver of the climate system. In the context of greenhouse gases, the change normally considered is a 1 ppb increase in the concentration of the gas in the troposphere and is termed radiative efficiency with units of $Wm^{-2}ppb^{-1}$. The overall radiative forcing of a particular greenhouse gas is then the radiative efficiency of the compound multiplied by its atmospheric concentration. Radiative forcing values are useful in assessing the relative impacts on climate of long-lived greenhouse gases, such as fluorinated ethers. Perfluoropolyethers (PFPEs) and hydrofluoropolyethers (HFPEs) have been used as replacements for CFCs as heat transfer fluids and refrigeration working fluids. PFPEs and HFEs do not contain chlorine and therefore do not contribute to chlorine based catalytic destruction of stratospheric ozone. PFPEs do not contain hydrogen atoms and do not react in the lower atmosphere. The atmospheric lifetimes of PFPEs are determined by photolysis in the upper atmosphere and are expected to be long, probably >800 years.^[3] The long lifetimes of PFPEs combined with their large radiative efficiencies result in these compounds having high global warming potentials (GWPs). HFPEs contain one or more carbon-hydrogen bonds and react with OH radicals in $HCF_2O(CF_2CF_2O)_xCF_2H$ (x = 2-4) were recorded and used to estimate the radiative efficiencies of the title compounds (1.07, 1.33, and 1.36 W m⁻² ppb⁻¹). Global warming potentials (100 year time horizon) of 3870, 4730 and 5060 were estimated for $HCF_2O(CF_2CF_2O)_xCF_2H$, x = 2, 3 and 4, respectively. The results are discussed with respect to the atmospheric chemistry and environmental impact of hydrofluoropolyethers.

the troposphere. This reduces the atmospheric lifetime of HFPEs compared to PFPEs and CFCs and thus reduces their GWPs.

A new class of HFPEs, having the structure $HCF_2O-(CF_2CF_2O)_xCF_2H$, has recently been developed. Atmospheric oxidation of $HCF_2O(CF_2CF_2O)_xCF_2H$ will be initiated by reaction with OH radicals [reaction (1)]:

$$\mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2\mathsf{H} + \mathsf{OH} \to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2 + \mathsf{H}_2\mathsf{O}$$
(1)

The alkyl radical produced in reaction (1) adds O_2 rapidly to give a peroxy radical, which we choose to abbreviate to R_fOCF_2OO [reaction (2)]:

$$\mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2 + \mathsf{O}_2 + \mathsf{M} \to \mathsf{R}_\mathsf{f}\mathsf{O}\mathsf{CF}_2\mathsf{O}\mathsf{O} + \mathsf{M} \tag{2}$$

This peroxy radical will react with NO, NO₂, HO₂, or other peroxy radicals,^[4-6] mainly CH_3O_2 under atmospheric conditions [reactions (3a)–(6b)]:

[a] Dr. M. P. Sulbaek Andersen, Dr. S. P. Sander Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive,Stop 183-901, Pasadena, CA 91109 (USA) Fax: (+1)818-393-5019 E-mail: mads@sulbaek.dk
[b] Dr. T. J. Wallington Systems Analytics and Environmental Sciences Department Ford Motor Company,Drop RIC-2122, Dearborn Michigan 48121-2053 (USA) Fax: (+1)313-323-1129 E-mail: twalling@ford.com
[c] V. F. Andersen, Prof. Dr. O. J. Nielsen Department of Chemistry, University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen (Denmark)

🕏 WILEY 师

ONLINE LIBRARY

CHEMPHYSCHEM

 $R_f OCF_2 OO + NO \rightarrow R_f OCF_2 O + NO_2$ (3a)

$$R_{f}OCF_{2}OO + NO + M \rightarrow R_{f}OCF_{2}ONO_{2} + M$$
(3b)

$$R_{f}OCF_{2}OO + NO_{2} \rightarrow R_{f}OCF_{2}OONO_{2}$$
(4)

$$R_{f}OCF_{2}OO + HO_{2} \rightarrow R_{f}OCF_{2}OOH + O_{2}$$
(5)

$$R_fOCF_2OO + CH_3O_2 \rightarrow R_fOCF_2O + CH_3O + O_2 \tag{6a}$$

$$R_fOCF_2OO + CH_3O_2 \rightarrow R_fOCF_2OH + HCHO + O_2 \tag{6b}$$

The importance of these reactions is determined by the relative abundances of NO, NO₂, HO₂, and CH_3O_2 and the rates of reactions (3–6).

Prior to their large-scale industrial use, an assessment of the atmospheric chemistry, and hence environmental impact, of HFPEs is needed. To improve our understanding of the atmospheric chemistry of HFPEs in general, and HCF₂O-(CF₂CF₂O)_xCF₂H, in particular, samples of HCF₂O(CF₂CF₂O)₂CF₂H (bp = 110 °C), HCF₂O(CF₂CF₂O)₃CF₂H (bp = 133 °C) and HCF₂O-(CF₂CF₂O)₄CF₂H (bp = 160 °C) were prepared by 3M. Smog chamber/FTIR techniques were used to determine the kinetics and products of the chlorine atom initiated oxidation of HCF₂O(CF₂CF₂O)_xCF₂H. IR spectra were measured and used to determine the radiative efficiencies for the title compounds. The results are reported herein.

Experimental Section

Experiments were performed in a 140 L Pyrex reactor interfaced to a Mattson Sirus 100 FTIR spectrometer.^[7] The reactor was surrounded by 22 fluorescent blacklamps (GE F15T8-BL), which were used to photochemically initiate the experiments. The loss of HFPEs and formation of products were monitored by FTIR spectroscopy. IR spectra were derived from 32 co-added interferograms with a spectral resolution of 0.25 cm⁻¹ and an analytical path length of 26.2 m.

Cl atoms were generated by the photolysis of molecular chlorine in air diluent [reaction (7)]:

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (7)

Samples of HCF₂O(CF₂CF₂O)_xCF₂H (x=2-4) were obtained from the 3M Company. The stated purity of HCF₂O(CF₂CF₂O)_xCF₂H was > 99% (x=2), >96% (x=3) and 94% (x=4). Sample impurities were various cyclic isomers with the same nominal formula as the parent compound minus 2 fluorine atoms. The samples of HCF₂O-(CF₂CF₂O)_xCF₂H were subjected to several freeze-pump-thaw cycles prior to use. All experiments were performed at 296±1 K in 700 Torr total pressure of N₂/O₂ diluent. Analysis of the IR spectra was achieved through a process of spectral stripping in which small fractions of the reference spectrum were subtracted incrementally from the sample spectrum.

The decay of reactants and reference compounds and formation of products were monitored using their characteristic absorptions in the infrared over the following wavelength ranges (in cm⁻¹): $HCF_2O(CF_2CF_2O)_xCF_2H$, 1033 and 1368; COF_2 , 773–775 and 1900–1980; CF_2CICH_3 , 850–950; and CF_3CF_2H , 710–730.

The relative rate method is a well-established technique for measuring the reactivity of CI atoms with organic compounds.^[8] Kinetic data were derived by monitoring the loss of HFPE relative to one or more reference compounds [reactions (8) and(9)]:

$$CI + HFPE \rightarrow products$$
 (8)

$$CI + Reference \rightarrow products$$
 (9)

Provided that the HFPE and the reference compound are lost only by reaction with chlorine atoms and neither HFPE nor the reference compounds are reformed in any process, then it can be shown that [Eq. (10)]:

$$Ln\left(\frac{[HFPE]to}{[HFPE]t}\right) = \frac{k_{HFPE}}{k_{Reference}} Ln\left(\frac{[Reference]to}{[Reference]t}\right)$$
(10)

where [HFPE]_{t0}, [HFPE]_t, [Reference]_{t0}, and [Reference]_t are the concentrations of the HFPE and reference at times t_0 and t, and k_{HFPE} and $k_{\text{Reference}}$ are the rate constants for reactions of the HFPE and the reference with CI atoms. Plots of Ln([HFPE]_{t0}/[HFPE]_t) versus Ln([Reference]_{t0}/[Reference]_t) should be linear, pass through the origin and have a slope of $k_{\rm HFPE}/k_{\rm Reference}$. In smog chamber experiments unwanted loss of reactants and products via photolysis, dark chemistry and heterogeneous reactions have to be considered. Control experiments were performed in which mixtures of reactants (except Cl₂) in air were subjected to UV irradiation for 15 min and reactant/product mixtures obtained after the UV irradiation were allowed to stand in the dark in the chamber for 40 min. There was no observable loss (<1%) of reactants or reference compounds suggesting that photolysis, dark chemistry and heterogeneous reactions are not a significant complication over the time scale of the present experiments.

Quoted uncertainties are two standard deviations from the least-squares regressions (forced through zero) together with our estimated uncertainties (\pm 1% of the initial concentration) associated with the IR spectral analysis of the relative reactant and reference concentrations.

2. Results and Discussion

2.1. Kinetics of the Reaction of CI Atoms with HFPEs

Relative rate experiments were performed to investigate the kinetics of reaction (11) relative to reactions (12) and (13):

$CI + HCF_2O(CF_2CF_2O)_{v}CF_2H$	$(x = 2 - 4) \rightarrow \text{products}$	(11)
$C_1 + 11C_2 = (C_1 + 2C_2)_X = 2^{-1}$	(x - 2 - 1) products	('')

$$CI + CF_3CF_2H \rightarrow products$$
 (12)

$$CI + CF_2CICH_3 \rightarrow products$$
 (13)

The initial concentrations were 1.25-2.85 mTorr HCF₂O-(CF₂CF₂O)_xCF₂H, 282–1387 mTorr Cl₂, and either 2.28–2.56 mTorr CF₃CF₂H or 2.12–2.28 mTorr CF₂CICH₃ in 700 Torr of either N₂ or air diluent. The observed loss of the HCF₂O(CF₂CF₂O)_xCF₂H versus those of reference compounds are shown in Figure 1.

As seen from Figure 1, there was no discernable difference in the reactivity of the three HFPEs studied. Linear least squares analyses of the composite data sets in Figure 1 give $k_{11}/k_{12}=0.206\pm0.016$ and $k_{11}/k_{13}=0.138\pm0.011$ where the uncertainties include uncertainties in the IR analysis and two standard deviations from the regression analysis. Using literature values of $k_{12}=(2.5\pm0.6)\times10^{-16[9]}$ and $k_{13}=(3.90\pm0.52)\times$

ARTICLES

Figure 1. Decay of HCF₂O(CF₂CF₂O)₂CF₂H (circles), HCF₂O(CF₂CF₂O)₃CF₂H (triangles) and HCF₂O(CF₂CF₂O)₄CF₂H (squares) versus CF₃CF₂H (filled symbols) and CF₂CICH₃ (open symbols) in the presence of CI atoms in 700 Torr total pressure of either N₂ or air (cross-haired symbols). Separate experiments were conducted for each compound–reference combination.

 $10^{-16[8]}$ cm³ molecule⁻¹ s⁻¹ (based on $k(CI+CH_4) = 1.0 \times 10^{-13}$) gives $k_{11} = (5.15 \pm 1.30) \times 10^{-17}$ and $(5.38 \pm 0.84) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹, respectively. The fact that consistent values of k_{11} were derived from experiments using different reference compounds suggests the absence of significant systematic errors in the present work. We choose to cite a final value which is the average of the individual determinations together with error limits which encompass the extremes of the determinations, hence, $k_{11} = (5.3 \pm 1.5) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹. There are no literature data for k_{11} to compare with our results.

We find that HCF₂O(CF₂CF₂O)₂CF₂H, HCF₂O(CF₂CF₂O)₃CF₂H, and HCF₂O(CF₂CF₂O)₄CF₂H have indistinguishable reactivities towards Cl atoms. This seems entirely reasonable based upon expectations that the (CF₂CF₂O) groups will not react with Cl atoms, and that its influence on the reactivity of the -CF₂H groups will not change markedly upon increasing "x" from two to four. Hence, the results presented herein can be generalized to k_{11} =(5.3 ± 1.5)×10⁻¹⁷ cm³ molecule⁻¹ s⁻¹ for x ≥ 2.

2.2. Products of CI-Initiated Oxidation

The atmospheric degradation mechanism was studied using the UV irradiation of HCF₂O(CF₂CF₂O)_xCF₂H(x=2-4)/Cl₂/O₂/N₂ mixtures. Reaction mixtures consisted of 1.62–2.55 mTorr HCF₂O(CF₂CF₂O)_xCF₂H, 2.3–5.6 Torr Cl₂, and 14–73 Torr O₂ in 700 Torr N₂ diluent. Figure 2 shows IR spectra at 650– 2100 cm⁻¹ obtained before (panel A) and after (panel B) subjecting a mixture containing 1.62 mTorr HCF₂O(CF₂CF₂O)₄CF₂H and 3.4 Torr Cl₂ in 700 Torr of N₂/O₂ to UV irradiation for 33 min. Subtraction of the IR features attributed to HCF₂O-(CF₂CF₂O)₄CF₂H from panel B gives the product spectrum in panel C. Comparison of the product features in panel C with the reference spectrum in panel D shows the formation of

Figure 2. IR spectra obtained before (A) and after (B) a 33 min irradiation of a mixture containing 1.62 mTorr HCF₂O(CF₂CF₂O)₄CF₂H, 3.4 Torr Cl₂ and 15 Torr O₂ in 700 Torr of N₂ diluent. Subtraction of features attributable to HCF₂O(CF₂CF₂O)₄CF₂H gives the product spectrum shown in panel C. A reference spectrum of COF₂ is shown in panel D.

Figure 3. Formation of COF_2 following UV irradiation of mixtures of either $HCF_2O(CF_2CF_2O)_4CF_2H$ (two replicate experiments), $HCF_2O(CF_2CF_2O)_3CF_2H$ (one experiment) or $HCF_2O(CF_2CF_2O)_2CF_2H$ (one experiment), and CI_2 in 700 Torr of O_2/N_2 .

COF₂. Figure 3 shows a plot of the observed formation of COF₂ versus the loss of HCF₂O(CF₂CF₂O)₂CF₂H, HCF₂O(CF₂CF₂O)₃CF₂H and HCF₂O(CF₂CF₂O)₄CF₂H.

As seen from Figure 3, the formation of COF_2 scaled linearly with the HFPE loss over the range studied (up to 61% consumption of the HFPEs). The linearity of the formation of COF_2 shown in Figure 3 suggests the absence of significant loss of COF_2 via secondary reactions in the chamber. There were no other carbon-containing products discernable in the IR spectra. The lines through the data in Figure 3 give molar yields of COF_2 of (939 ± 73) %, (758 ± 71) % and (593 ± 41) % for the oxidation of $HCF_2O(CF_2CF_2O)_4CF_2H$, $HCF_2O(CF_2CF_2O)_3CF_2H$ and $HCF_2O(CF_2CF_2O)_2CF_2H$, respectively.

Quoted uncertainties include two standard deviations from the regression analysis and 5% uncertainties in the calibration of COF₂ and HFPE spectra. Within the experimental uncertainties, the observed formation of COF₂ accounts for the entire loss of the HCF₂O(CF₂CF₂O)_xCF₂H. Given the absence of any other product features we also conclude that COF₂ accounts for the entire loss of HCF₂O(CF₂CF₂O)_xCF₂H, x=2-4.

2.3. IR Spectra and Radiative Efficiencies of $CHF_2O(CF_2CF_2O)_xCHF_2$ (x = 2-4)

The IR spectra of HCF₂O(CF₂CF₂O)_xCF₂H (x=2-4) were recorded in 700 Torr of air diluent at (295±2) K and are shown in Figure 4. The integrated cross-sections (650–1500 cm⁻¹) are $(9.25\pm0.46)\times10^{-16}$, $(8.52\pm0.43)\times10^{-16}$ and $(7.02\pm0.35)\times10^{-16}$

Figure 4. Infrared spectrum of HCF₂O(CF₂CF₂O)₄CF₂H (A), HCF₂O-(CF₂CF₂O)₃CF₂H (B), and HCF₂O(CF₂CF₂O)₂CF₂H (C) in 700 Torr of air, 295 \pm 2 K (base e).

for $HCF_2O(CF_2CF_2O)_4CF_2H$, $HCF_2O(CF_2CF_2O)_3CF_2H$ and $HCF_2O-(CF_2CF_2O)_2CF_2H$, respectively.

Compounds that absorb at wavelengths of 8–14 microns $(700-1300 \text{ cm}^{-1})$ in the optically thin spectral region of the atmosphere, known as the "atmospheric window", hinder the escape of terrestrial radiation and increase the temperature at the surface of the Earth. Vibrational transitions associated with C–F bonds occur largely in the atmospheric window, and, consequently, highly fluorinated compounds tend to have high radiative efficiency values.

Using the method outlined by Pinnock et al.^[10] and the IR spectra shown in Figure 4, we calculate radiative efficiencies for $HCF_2O(CF_2CF_2O)_xCF_2H$ (x = 2,3,4) of 1.07, 1.33, and 1.36 W m⁻² ppb⁻¹, respectively. The trend in increasing *radiative* efficiency with increasing number of internal (CF₂CF₂O) units is consistent with the radiative efficiency in the latest Intergovernmental Panel on Climate Change (IPCC) report for HCF₂O-(CF₂CF₂O)CF₂H (HFE-338pcc13) of 0.87 W m⁻² ppbv⁻¹.^[12] Using the structure-activity relationship (SAR) derived by Young et al.,^[11] to estimate radiative efficiencies of fluorinated ethers, we calculate 0.94, 1.20, and 1.45 $Wm^{-2}ppb^{-1}$ for HCF₂O- $(CF_2CF_2O)_2CF_2H$, HCF₂O(CF₂CF₂O)₃CF₂H and HCF₂O-(CF₂CF₂O)₄CF₂H, respectively. The radiative efficiency values predicted by SAR are in good agreement (within 15%) with our measurements. It is worth noting that the radiative efficiencies of HCF₂O(CF₂CF₂O)₃CF₂H and HCF₂O(CF₂CF₂O)₄CF₂H, measured in this work, are larger than for any of the HPFEs considered in the latest Intergovernmental Panel on Climate (IPCC)^[12] (the Change radiative efficiency HCF₂OCF₂OCF₂CF₂OCF₂H is reported by the IPCC as 1.37 Wm⁻²ppb⁻¹, however, a recent study^[13] has shown this value to be erroneously high, and a revised radiative efficiency of 1.02 $Wm^{-2}ppb^{-1}$ was recommended).

2.4. Atmospheric Implications

The reaction of Cl atoms with $HCF_2O(CF_2CF_2O)_xCF_2H$ occurs via hydrogen abstraction from one of the terminal $-CF_2H$ groups [reaction (14)]:

$$\begin{split} \mathsf{CI} + \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2\mathsf{H} &\to \mathsf{CF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2\mathsf{H} + \mathsf{HCI} \\ (14a) \\ \\ \mathsf{CI} + \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2\mathsf{H} &\to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2 + \mathsf{HCI} \end{split}$$

$$F_2O(CF_2CF_2O)_xCF_2H \rightarrow HCF_2O(CF_2CF_2O)_xCF_2 + HCI$$
(14b)

The radicals formed in reaction (14) will add O_2 to give peroxy radicals [reaction (2)], which will undergo self- or crossreactions to produce the corresponding alkoxy radicals. The alkoxy radicals are expected to decompose via the elimination of a COF₂ molecule and initiate a sequence of reactions in which the radical "unzips" by shedding successive COF₂ molecules [reactions (15)–(19)]:

$$\mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_x\mathsf{CF}_2\mathsf{O} \to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2\mathsf{CF}_2\mathsf{O} + \mathsf{COF}_2$$
(15)

ARTICLES

$$\begin{split} \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2\mathsf{CF}_2\mathsf{O} \to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2 + \mathsf{COF}_2 \\ (16) \end{split}$$

$$\mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2 + \mathsf{O}_2 \to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2\mathsf{O}_2 \tag{17}$$

 $HCF_2O(CF_2CF_2O)_{x-1}CF_2O_2 + ROO$ (18)

$$\rightarrow \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2\mathsf{O} + \mathsf{RO} + \mathsf{O}_2$$

$$\mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1}\mathsf{CF}_2\mathsf{O} \to \mathsf{HCF}_2\mathsf{O}(\mathsf{CF}_2\mathsf{CF}_2\mathsf{O})_{x-1} + \mathsf{COF}_2$$
(19)

Reactions (16) through (19) are repeated until only the terminal HCF_2O group remains. This group undergoes final conversion into COF_2 [reaction (20)]:

$$HCF_2O + O_2 \rightarrow COF_2 + HO_2$$
(20)

In contrast to the situation in the experimental chamber, the concentrations of fluorinated peroxy radicals in the atmosphere will be extremely small, and the self- and cross-reactions described above will not be of atmospheric significance. In the atmosphere the fate of the fluorinated peroxy radicals will be reaction with NO, NO2, HO2, or CH3O2 radicals [reactions (3)-(6)]. Reaction with NO gives the corresponding alkoxy radical and NO₂ as major products with the fluorinated organic nitrate as a minor product. Reaction with NO₂ gives a thermally unstable peroxynitrate whose fate is decomposition to reform NO₂ and the peroxy radical.^[14, 15] Reaction with HO₂ radicals gives a hydroperoxide which will be returned back to the fluorinated peroxy radical pool via reaction with OH radicals or photolysis.^[16] Reaction with CH₃O₂ radicals is expected to proceed via two channels [reactions (6a) and (6b)], leading to the formation of alkoxy radicals [reaction (6a)] and a fluorinated alcohol and formaldehyde [reaction (6b)]. The atmospheric fate of the fluorinated alcohol is expected to be heterogeneous elimination of HF followed by hydrolysis of the acid fluoride to give a carboxylic acid; for example, from HCF₂O(CF₂CF₂O)_xCF₂H one might expect the formation of $HCF_2O(CF_2CF_2O)_xC(O)OH$. The possibility that small amounts of fluorinated acidic compounds may be formed during the atmospheric oxidation of HFPEs is interesting and merits further study but is beyond the scope of the present work.

While to the best of our knowledge there are no previous studies of $HCF_2O(CF_2CF_2O)_xCF_2H$ (x=2-4), the results from the present work can be compared with those for similar HFPEs. Wallington et al.^[17] reported a rate-constant ratio relative to CF₃CF₂H for the reactions of chlorine atoms towards HCF₂O- $(CF_2O)_n(CF_2CF_2O)_mCF_2H$ of $k/k_{12} = 0.205 \pm 0.019$. Tuazon^[6] studied the reactivity of chlorine atoms towards HCF2OCF2OCF2H and HCF₂O(CF₂CF₂O)CF₂H and determined rate constant ratios of $k/k_{12} = 0.208 \pm 0.006$ and 0.188 ± 0.004 , respectively. The reactivities reported by Tuazon and Wallington et al. are, within the experimental uncertainties, indistinguishable from that determined for the HFPEs in the present work $(k_{11}/k_{12}=0.206\pm$ 0.016). Tuazon^[6] also studied the reaction of CI atoms with HCF₂OCF₂OCF₂CF₂OCF₂H, but for reasons which are unclear, reported a reactivity of HCF2OCF2OCF2CF2OCF2H which is approximately 25% below those of the other HFPEs.

Table 1. Chlorine and OH kinetic data at 295 ±5 K for selected HFEs and HFPEs.		
Compound	k(Cl)	<i>k</i> (OH)
$\begin{split} &HCF_2OCF_2H \\ &HCF_2OCF_2OCF_2H \\ &HCF_2O(CF_2CF_2O)CF_2H \\ &HCF_2O(CF_2CF_2O)_xCF_2H \ (x \ge 2) \\ &HCF_2OCF_2OCF_2CF_2OCF_2H \\ &HCF_2O(CF_2O)_n(CF_2CF_2O)_mCF_2H \\ &HCF_2O(CF_2H) \end{split}$	$\begin{array}{c} (5.7 \pm 1.5) \times 10^{-14[20]} \\ (5.0 \pm 1.1) \times 10^{-17[6]} \\ (4.5 \pm 1.0) \times 10^{-17[6]} \\ (5.3 \pm 1.5) \times 10^{-17[3]} \\ (5.0 \pm 1.4) \times 10^{-17[17]} \\ (5.0 \pm 1.4) \times 10^{-17[17]} \\ (2.3 \pm 0.3) \times 10^{-17[23]} \end{array}$	$\begin{array}{c} (2.4{\pm}0.5){\times}10^{-15[21]}\\ (2.4{\pm}0.7){\times}10^{-15[22]}\\ (4.7{\pm}1.6){\times}10^{-15[20]}\\ -\\ (4.6{\pm}1.6){\times}10^{-15[20]}\\ -\\ (4.9{\pm}1.0){\times}10^{-16[19]} \end{array}$
[a] Determined in this work.		

Table 1 show kinetic data for the reactions of Cl atoms and OH radicals with selected HFEs and HFPEs. Given the similar chemical environment of the C-H bonds in HCF2OCF2H, HCF₂OCF₂OCF₂H, HCF₂O(CF₂CF₂O)CF₂H, HCF₂O(CF₂CF₂O)_xCF₂H, HCF₂OCF₂OCF₂CF₂OCF₂H and HCF₂O(CF₂O)_n(CF₂CF₂O)_mCF₂H, it is not surprising that these compounds react with chlorine radicals at similar rates. As discussed by Sander et al.^[19] the reactivity of OH radicals towards HCF2OCF2H has been studied by several groups using different experimental techniques and is well established. As with the reaction with chlorine atoms, we would expect the reactivity of HCF2OCF2H, HCF2OCF2OCF2H, CF₂O(CF₂CF₂O)CF₂H, and HCF₂OCF₂OCF₂CF₂OCF₂H towards OH radicals to be comparable. Consistent with this expectation, the reactivity reported by Cavalli et al.^[20] for OH radicals towards HCF2OCF2OCF2H is indistinguishable from that recommended by Sander et al.^[19] for HCF₂OCF₂H. Surprisingly, Cavalli et al.^[20] reported that OH radicals react with HCF₂O-(CF₂CF₂O)CF₂H and HCF₂OCF₂OCF₂CF₂OCF₂H at rates which are approximately a factor of 2 greater than for HCF_2OCF_2H and HCF₂OCF₂OCF₂H. It is difficult to understand the reactivity trend reported by Cavalli et al.^[20] Close inspection of the experimental data reveals that the magnitude of the consumptions of the HFEs in the investigation by Cavalli et al.^[20] was rather small (<7%). The measurement of such small consumptions of compounds which have broad IR absorption features is challenging and we believe that the uncertainties reported by Cavalli et al. are probably underestimated. We proceed with the assumption that the reactivity of OH radicals towards the HFPEs studied in the present work will be similar to that of OH radicals towards HCF2OCF2H. This assumption needs to be investigated in further experimental work.

Wallington et al.^[17] and Tuazon^[6] reported the formation of COF₂ in a near-unit yield per carbon atom from the chlorineatom-initiated oxidation of HCF₂OCF₂OCF₂H, HCF₂O-(CF₂CF₂O)CF₂H, HCF₂OCF₂OCF₂CF₂OCF₂H and HCF₂O(CF₂O)_n-(CF₂CF₂O)_mCF₂H in 700–740 Torr of air/N₂/O₂ at 298 K. Cavalli et al.^[20] conducted four experiments of the chlorine-atom-initiated oxidation of HCF₂OCF₂OCF₂CF₂OCF₂H in 740 Torr of air and reported the formation of COF₂ in a molar yield of 300– 485%. The large range reported by Cavalli et al. presumably reflects difficulties in measuring the small amounts of COF₂ formed (0.16–0.74 mTorr) and HFPE lost (0.03–0.24 mTorr) in their experiments—approximately an order of magnitude smaller than those reported herein (see Figure 3). The molar COF_2 yields measured in this work are consistent with expectations based on the previous work by Tuazon,^[6] Cavalli et al.,^[20] and Wallington et al.^[17]

The atmospheric oxidation of HFPEs is initiated by reaction with OH radicals. Polyfluorinated compounds, such as HFPEs, are relatively unreactive in the troposphere, as the electronwithdrawing nature of fluorine reduces the probability of hydrogen abstraction by the hydroxyl radical. The presence of the ether bond generally increases the reactivity of organic compounds with hydroxyl radicals, yet atmospheric lifetimes for HFEs and HFPEs are still typically on the order of years. During the course of this work, experiments were performed to measure the kinetics of OH radicals towards HCF2O- $(CF_2CF_2O)_xCF_2H$ (x = 2-4), using the methyl nitrite photolysis in the presence of NO as a source of OH radicals Photolysis of CH₃ONO is a convenient source of OH radicals in relative rate studies, however, CH₃ONO itself reacts with OH at a moderate rate (with a rate constant of approximately $3 \times$ 10⁻¹³ cm³ molecule⁻¹ s^{-1[18]}), scavenges OH radicals, and makes loss of a less reactive compound (e.g., HCF₂O(CF₂CF₂O)_xCF₂H) small and difficult to measure. To circumvent this problem, we have in the past successfully employed a variation on the conventional relative rate method, in which the loss of the reactant is monitored indirectly by observing the formation of its oxidation products (e.g., COF₂).^[19] Interestingly, we were unable to utilize this indirect method as we did not observe any formation of COF_2 (< 0.2 mTorr) in these experiments. The fact that COF₂ does not appear as a major product in these experiments suggests a competing different fate of the inital peroxy radical, $HCF_2O(CF_2CF_2O)_xCF_2O$, in the presence of large concentrations of NO_x [reaction (21)]:

 $HCF_2O(CF_2CF_2O)_xCF_2O \rightarrow HCF_2O(CF_2CF_2O)_x + COF_2$ (15)

$$\begin{split} HCF_2O(CF_2CF_2O)_xCF_2O + NO \rightarrow HCF_2O(CF_2CF_2O)_xC(O)F + FNO \eqno(21) \end{split}$$

The experimental system at Ford used in the present study is not well suited to a determination of k_1 and further work using other techniques is needed.

Radiative efficiencies of $1.07-1.36 \text{ Wm}^{-2} \text{ppb}^{-1}$ were determined for HCF₂O(CF₂CF₂O)_xCF₂O (x=2-4). Radiative efficiency provides a measure of the instantaneous effect of a compound on climate; yet, this effect will only be realized if the compound is long-lived in the atmosphere. The potential of long-lived greenhouse gases to affect climate is assessed through the global warming potential (GWP), which is a function of both radiative efficiency and atmospheric lifetime of the forcing agent. Integrating the radiative efficiency over time gives the Absolute Global Warming Potential (AGWP) for time horizon *t*' defined as [Eq. (22)]:^[16]

$$AGWP(x(t)) = \int_0^\tau F_x[x(t)]dt$$
(22)

where F_x is the radiative forcing per unit mass of species x, x(t) describes the decay with time of a unit pulse of compound x,

and t' is the time horizon considered. The AGWP has units of $Wm^{-2}ppb^{-1}yr$ and quantifies the future integrated radiative forcing to the time horizon of a unit mass pulse emission of a greenhouse gas.

The GWP for time horizon t' can then be defined as [Eq. (23)]:

$$GWP(x(t)) = \frac{\int_{0}^{t'} F_x \exp(-t/\tau_x) dt}{\int_{0}^{t'} F_{CO_2} R(t) dt}$$
(23)

where F_{CO2} is the radiative forcing of CO₂, R(t) is the response function that describes the decay of an instantaneous pulse of CO₂, and with the decay of the pulse of compound *x* assuming it obeys a simple exponential decay curve determined by a response time of τ_x . The denominator in Equation (23) is the absolute global warming potential (AGWP) for CO₂, which has been evaluated by the WMO as 0.676 Wm⁻²ppm⁻¹ for a 100year time horizon.^[16] Thus, Equation (23) can be rewritten as [Eq. (24)]:

$$GWP(x(t)) = \frac{\int_{0}^{t'} F_x \exp(-t/\tau_x) dt}{0.676}$$
(24)

Using the radiative efficiencies determined herein, and assuming a lifetime for HCF₂O(CF₂CF₂O)_xCF₂H (x=2-4) similar to that of HCF₂OCF₂H (26 years^[12]), we estimate GWPs over a 100-year time horizon for HCF₂O(CF₂CF₂O)₂CF₂H, HCF₂O-(CF₂CF₂O)₃CF₂H, and HCF₂O(CF₂CF₂O)₄CF₂H of 3870, 4730 and 5060, respectively.

3. Conclusions

The goal of this work was to provide insight into the kinetics and mechanism of the atmospheric oxidation of the HFPEs, HCF₂O(CF₂CF₂O)_xCF₂H, x=2,3 and 4. Chlorine atoms react with HCF₂O(CF₂CF₂O)_xCF₂H with a rate constant of $(5.3 \pm 1.5) \times 10^{-17}$ cm³molecule⁻¹s⁻¹. The reactivity of chlorine atoms towards HCF₂O(CF₂CF₂O)_xCF₂H (x=2-4) does not depend on the size of the central (CF₂CF₂O)_x group. Hence, we are able to generalize our results for $x \ge 2$; k(Cl+HCF₂O(CF₂CF₂O)_xCF₂H) = $(5.3 \pm 1.5) \times 10^{-17}$ cm³molecule⁻¹s⁻¹.

The atmospheric oxidation of HCF₂O(CF₂CF₂O)_xCF₂H (x=2–4) is initiated by reactions with OH radicals and gives carbonyl fluoride, COF₂, as the major product. COF₂ is removed from the troposphere via contact with water surfaces and hydrolysis to HF and CO₂ in rain/aerosol/cloud/sea water with a lifetime of approximately 5–10 days.^[4]

 $HCF_2O(CF_2CF_2O)_xCF_2H$ does not contain any chlorine and will not contribute to stratospheric ozone depletion via the well-established chlorine-based chemistry. As with all hydrofluorocarbons (HFCs), hydrofluoroethers (HFEs), and hydrofluoropolyethers (HFPEs), the ozone depletion of $HCF_2O(CF_2CF_2O)_xCF_2H$ (x =2–4) is, for all practical purposes, zero.

HFPEs absorb strongly in the optically thin spectral region of the atmosphere, known as the "atmospheric window". Using the radiative efficiencies determined herein, and assuming a lifetime for HCF₂O(CF₂CF₂O)_xCF₂H (x=2–4) similar to that of HCF₂OCF₂H, we estimate significant global warming potentials over a 100-year time horizon for HCF₂O(CF₂CF₂O)₂CF₂H, HCF₂O-(CF₂CF₂O)₃CF₂H, and HCF₂O(CF₂CF₂O)₄CF₂H of 3870, 4730 and 5060, respectively.

Acknowledgements

We thank John Owens (3M EMMD Fluids Laboratory) for providing high-purity samples of the HFPEs. O.J.N. and V.F.A. acknowledge financial support from the Danish Natural Science Research Council and the Villum Kann Rasmussen Foundation for the Copenhagen Center for Atmospheric Research (CCAR). This work was performed partly at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. M.P.S.A. is supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA.

Keywords: atmospheric chemistry · chlorine · kinetics · radical reactions · reaction mechanisms

- [1] M. J. Molina, F. S. Rowland, *Nature* **1974**, *249*, 810.
- [2] J. D. Farman, B. G. Gardiner, J. D. Shanklin, Nature 1985, 315, 207.
- [3] C. J. Young, M. D. Hurley, T. J. Wallington, S. A. Mabury, *Environ. Sci. Technol.* 2006, 40, 2242.
- [4] T. J. Wallington, W. F. Schneider, D. R. Worsnop, O. J. Nielsen, J. Sehested, W. J. Debruyn, J. A. Shorter, *Environ. Sci. Technol.* **1994**, *28*, 320A.
- [5] G. S. Tyndall, R. A. Cox, C. Granier, R. Lesclaux, G. K. Moortgat, M. J. Pilling, A. R. Ravishankara, T. J. Wallington, J. Geophys. Res. 2001, 106, 12157.
- [6] E. C. Tuazon, Environ. Sci. Technol. 1997, 31, 1817.
- [7] T. J. Wallington, C. A. Gierczak, J. C. Ball, S. M. Japar, Int. J. Chem. Kinet. 1989, 21, 1077.
- [8] T. J. Wallington, M. D. Hurley, Chem. Phys. Lett. 1992, 189, 437.
- [9] J. Sehested, T. Ellermann, O. J. Nielsen, T. J. Wallington, M. D. Hurley, Int. J. Chem. Kinet. 1993, 25, 701.

- [10] S. Pinnock, M. D. Hurley, K. P. Shine, T. J. Wallington, T. J. Smyth, J. Geophys. Res. 1995, 100, 23227.
- [11] C. J. Young, M. D. Hurley, T. J. Wallington, S. A. Mabury, J. Geophys. Res. 2008, 113, D010178.
- [12] "Changes in Atmospheric Constituents and in Radiative Forcing": P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds.: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M.Tignor, H. L. Miller), Cambridge University Press, Cambridge, 2007.
- [13] T. J. Wallington, M. D. Hurley, O. J. Nielsen, Atmos. Environ. 2009, 43, 4247.
- [14] F. Zabel, A. Reimer, K. H. Becker, E. H. Fink, J. Phys. Chem. 1989, 93, 5500.
- [15] D. Köppenkastrop, F. Zabel, Int. J. Chem. Kinet. 1991, 23, 1.
- [16] World Meteorological Organization (WMO): Scientific Assessment of Ozone Depletion: 2006, Global Ozone, Research and Monitoring Project-Report 50, Geneva, Switzerland, 2007.
- [17] T. J. Wallington, M. D. Hurley, M. S. Javadi, O. J. Nielsen, Int. J. Chem. Kinet. 2008, 40, 819.
- [18] O. J. Nielsen, H. W. Sidebottom, M. Donlon, J. Treacy, Int. J. Chem. Kinet. 1991, 23, 1095.
- [19] M. P. Sulbaek Andersen, O. J. Nielsen, T. J. Wallington, M. D. Hurley, W. B. DeMore, J. Phys. Chem. A 2005, 109, 3926.
- [20] M. P. Sulbaek Andersen, M. D. Hurley, V. F. Andersen, O. J. Nielsen, T. J. Wallington, J. Phys. Chem. A 2010, 114, 4963.
- [21] S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, H. Kellar-Rudek, P. H. Wine, R. E. Huie, V. L. Orkin, G. K. Moortgat, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, *Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation Number 15*, Jet Propulsion Laboratory, National Aeronautics and Space Administration/Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2006.
- [22] F. Cavalli, M. Glasius, J. Hjorth, B. Rindone, N. R. Jensen, Atmos. Environ. 1998, 32, 3767.
- [23] Y. Inoue, M. Kawasaki, T. J. Wallington, M. D. Hurley, Chem. Phys. Lett. 2001, 343, 296.

Received: May 31, 2010 Published online on October 27, 2010