

Journal of Molecular Structure 349 (1995) 333-336

# FTIR Studies of the Reaction of $O(^{1}D)$ -Atoms with CF<sub>3</sub>Br in Solid Argon Matrices

Heike Lorenzen-Schmidt, Rolf Weller, and Otto Schrems

Alfred-Wegener-Institute for Polar-and Marine Research Chemistry Section, D-27570 Bremerhaven, FRG

The reaction  $O(^1D) + CF_3Br$  has been investigated in solid Ar-matrices at T = 14 K. Codeposition of  $O_3/CF_3Br/Ar$  mixtures and irradiation at 250 nm yielded  $F_2CO$  as dominant reaction product. Experiments with  $^{18}O_3$  indicate that  $CF_3OBr$  was formed during the course of the reaction. Our observations were interpreted with the formation of an excited  $CF_3OBr$  molecule which can be stabilized in the matrix cage or decompose rapidly into two different  $F_2CO$ ·HF complexes.

### **1. INTRODUCTION**

There is evidence of an increasing impact of the atmospheric bromine chemistry on the stratospheric ozone budget. From recent measurements on the vertical distribution of halons within the Innertropical Convergence Zone, it was concluded that  $CF_3Br$  (halon 1301) contributes about 13% to the total amount of bromine in the stratosphere [1]. Apart from direct photolysis, the fast reaction with  $O(^1D)$  atoms  $(4.0x10^{-11} \text{ cm}^3 \text{ s}^{-1}$  [2]) is the main step initializing the photodecomposition and the release of Br-atoms within the stratosphere. It is possible that the primary step is  $O(^1D)$  insertion into the C-Br bond. An analogous mechanism is favoured in  $O(^1D)$  + alkane reactions [3]. However, there exist experimental findings indicating that formation of BrO and thus Br- abstraction from  $CF_3Br$  is the favoured primary step in the gas phase [4, 5]. The aim of this work was to get further information about the primary step of the reaction  $O(^1D) + CF_3Br$  from matrix experiments, which allow the isolation and characterization of unstable intermediates.

#### 2. EXPERIMENTAL

Aggregation and photoreaction of  $CF_3Br$  and ozone isolated in solid argon matrices has been studied by means of FTIR-spectroscopy in the frequency range between 4000 and 700 cm<sup>-1</sup> at a spectral resolution of 1.0 cm<sup>-1</sup>. In these experiments the FTIR-spectrometer was used in the reflection mode. The matrices were prepared by depositing various  $O_3/CF_3Br/Ar$ gas mixtures (1/2/1000 to 1/10/1000) with a rate of < 0.1 cm<sup>3</sup>/min through one injection inlet onto a gold coated metal substrate maintained at 14 K. The photolysis experiments were carried out with a 450 W high pressure Hg-Xe-lamp. An interference filter (250 nm, bandwidth at 0.5 peak transmission: 10 nm) was used, which allowed the selective photolysis of  $O_3$ . The synthesis of ozone and its isotopes was performed by Tesla coil discharge.

Contribution No. 809 of the Alfred Wegener Institute for Polar and Marine Research 0022-2860/95/\$09.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0022-2860(95)08777-X

## **3. RESULTS AND DISCUSSION**

In order to isolate 1:1  $CF_3Br\cdot O_3$  hetero-associates and to characterize their IR absorptions  $CF_3Br/O_3/Ar$  matrices with mixing ratios between 1:10:1000 and 1:50:1000 were prepared. Weak band structures located at 1203.4 cm<sup>-1</sup> and 1192.6 cm<sup>-1</sup>, corresponding to the red- and blue shifted v<sub>4</sub>-band of  $CF_3Br$ , respectively, and the blue shifted v<sub>3</sub>-band of ozone at 1044.0 cm<sup>-1</sup>, indicated a weak  $CF_3Br\cdot O_3$  interaction. In the case of  $CF_3I$  the interaction between  $CF_3I$  and  $O_3$  turned out to be much stronger [6] due to the higher polarizability of the iodine atom. In accordance with the study of Andrews et al. [6], we associate these absorptions with a weak  $F_3C$ -Br·O<sub>3</sub> complex.

Selective photolysis of ozone at 250 nm produced O(<sup>1</sup>D) atoms. Considering the slow relaxation of O(<sup>1</sup>D) to O(<sup>3</sup>P) by the host matrix [7, 8] and the negligible rate coefficient  $k(O(^{3}P)+CF_{3}Br)$  ( $k(300K) = 2.1 \times 10^{-21} \text{ cm}^{3}\text{s}^{-1}$  [9]), the reaction O(<sup>3</sup>P) + CF<sub>3</sub>Br was not important. The dominant reaction product was F<sub>2</sub>CO, identified by the disturbed absorptions at 1940.6 cm<sup>-1</sup>, 1912.5 cm<sup>-1</sup>, 1241.5 cm<sup>-1</sup>, 966.3 cm<sup>-1</sup>, and 766.6 cm<sup>-1</sup>. Obviously, F<sub>2</sub>CO has been trapped essentially as a hetero-complex with FBr after formation. Annealing to 30 K resulted in a decay of these bands and a simultaneous increase of IR absorptions at 1963.0 cm<sup>-1</sup>, 1887.3 cm<sup>-1</sup>, 982.4 cm<sup>-1</sup>, and 773.1 cm<sup>-1</sup> (table 1 and figure 1).

Table 1

Frequencies [cm<sup>-1</sup>] of the observed different F<sub>2</sub>CO·FBr complexes

| F <sub>2</sub> CO | F <sub>2</sub> C <sup>16</sup> O (I) | F <sub>2</sub> C <sup>16</sup> O (II) | F <sub>2</sub> C <sup>18</sup> O (I) | F <sub>2</sub> C <sup>18</sup> O (II) | assignment    |
|-------------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------|
| 1941.3            | 1940.6                               | 1963.0                                | 1907.6                               | 1930.0                                | $2v_2$        |
| 1913.3            | 1912.5                               | 1887.3                                | 1878.7                               | 1854.7                                | $\tilde{v_1}$ |
| 1237.6            | 1241.5                               |                                       | 1240.7                               |                                       | V4            |
| 965.3             | 966.3                                | 982.4                                 | 948.5                                | 966.2                                 | $v_2$         |
| 769.0             | 766.6                                | 773.1                                 |                                      |                                       | $v_6^2$       |

The strong opposite shifts between the  $v_2$  and  $v_1$  fundamentals substantially reduce the Fermi resonance, resulting in a much more pronounced  $v_1$  band compared to the  $2v_2$  band. A similar behaviour could be observed in the analogous CF<sub>3</sub>I + O<sub>3</sub> system by Andrews et al. [6]. In agreement with the interpretation of these authors, we conclude that at first a less stable F<sub>2</sub>CO FBr complex (I) was formed. Annealing causes an interconversion of this labile complex to the more stable complex II [6].

| $F_2 \dot{C} = \dot{O}$     | $F_2C = O_1$                 |  |
|-----------------------------|------------------------------|--|
| :<br>F - Br                 | Br - F                       |  |
| $F_2CO \cdot FBr$ complex I | $F_2CO \cdot FBr$ complex II |  |

Additionally, distinct absorption features could be observed at 1249.2 cm<sup>-1</sup>, 1204.3 cm<sup>-1</sup>, and 1193.0 cm<sup>-1</sup>. From comparison with the fundamental modes of CF<sub>3</sub>OF, CF<sub>3</sub>OCl [10, 11], and CF<sub>3</sub>OI [6], we conclude that CF<sub>3</sub>OBr is an intermediate of the CF<sub>3</sub>Br·O(<sup>1</sup>D) interaction (table 2 and figure 2).

Table 2

Frequencies  $[cm^{-1}]$  of CF<sub>3</sub>OF, CF<sub>3</sub>OCl, CF<sub>3</sub>OBr, and CF<sub>3</sub>OI in Ar-matrices (frequencies of CF<sub>3</sub><sup>18</sup>OBr and CF<sub>3</sub><sup>18</sup>OI in brackets).

| CF <sub>3</sub> OF | CF <sub>3</sub> OCl | CF <sub>3</sub> OBr | CF <sub>3</sub> OI | assignment             |
|--------------------|---------------------|---------------------|--------------------|------------------------|
| 1290               | 1268                | 1249.2 (1250.0)     | 1240.8 (1236.4)    | C-Fantisym             |
| 1252               | 1219                | 1204.3 (1197.5)     | 1203.2 (1193.0)    | C-F <sub>antisym</sub> |
| 1214               | 1200                | 1193.0 (1193.5)     |                    | C-F <sub>svm</sub>     |
| 945                | 918                 | <b>`</b>            | 914.9 (896.7)      | C-O <sub>str</sub>     |



Figure 1. Matrix spectra of CF<sub>3</sub>Br/<sup>18</sup>O<sub>3</sub>/Ar =1:10:1000 (res. 1.0 cm<sup>-1</sup>); (1) denotes the  $2v_2$  and  $v_1$  band of  $F_2C^{18}O$ , respectively, (2) the  $F_2C^{18}O$ ·FBr complex (I) and (3) the more stable  $F_2C^{18}O$ ·FBr complex (II). Lower trace: matrix spectra of  $F_2C^{18}O$ /Ar, middle trace: reaction products after photolysis (250 nm, 1 hr) at 12 K and upper trace: same reaction mixture after annealing to 30 K.

Figure 2.  $F_3COBr$  (4) and  $F_2CO \cdot FBr$  (I) (2) formation after photolysis (250 nm, 1 hr) of a CF\_3Br/O\_3/Ar = 1:10:1000 matrix, identified by the absorptions at 1249.2 cm<sup>-1</sup>, 1204.3 cm<sup>-1</sup>, and 1193.0 cm<sup>-1</sup> (4) and 1241.5 cm<sup>-1</sup> (2).

The results of our matrix experiments and comparable investigations on the  $CFCl_3/O_3$ [12] and  $CF_3I/O_3$  [6] system revealed a consistent pattern. As a remarkable difference to the gas phase experiments, there were no indications for IO or ClO formation in the respective reaction systems. Moreover, reaction pathways generating radicals have not been observed in the mentioned matrix studies. Our experiments provide strong evidence that CF<sub>3</sub>OBr is an intermediate of the reaction  $CF_3Br + O(^1D)$  in Ar-matrices. One possible explanation which could support the findings of the gas phase experiments would be a rapid recombination of the nascent BrO with the adjacent CF<sub>3</sub> radical in the Ar matrix cage. In this case, however, products of the competing reaction with  $O_2$  (the photolysis product of ozone), particularily  $CF_3O_2$  should have been observed. Alternatelively, a possible mechanism of the primary step could be an insertion reaction resulting in the highly excited intermediate  $CF_3OBr^*$ . The excess energy can partly be transferred to the host matrix or BrF elimination forms the final product F<sub>2</sub>CO. In the CF<sub>3</sub>I·O<sub>3</sub> system Andrews et al. [6] observed the primary formation of  $CF_{3}IO$  at photolysis wavelength above 420 nm. The formation of  $CF_{3}OI$  was explained by a light induced rearrangement of the iodosyl compound  $CF_3IO$  [6]. It should be noted that the quantum yield for  $O(^{1}D)$  formation decreases sharply above 305 nm [13]. The iodosyl compound is most likely a product of the reaction of ground state  $O(^{3}P)$  atoms with CF<sub>3</sub>I. Photolysis experiments of these authors in a wavelength range where  $O(^{1}D)$  production is dominant (between 240 and 420 nm) yielded nearly exclusively F<sub>3</sub>C-O-I. Thus we conclude that in our experiments the reaction  $O(^{1}D) + CF_{3}Br$  proceeds directly via  $CF_{3}OBr$  formation and not via a F<sub>3</sub>CBrO intermediate.

It is obvious, that the rather different conditions in solid Ar - matrices compared to the gas phase (low temperature, cage effects, rapid relaxation of excited molecules by the host matrix) can favour different reaction mechanisms and products. In the gas phase the highly excited nascent  $CF_3OBr^*$  will decompose nearly instantly to secondary products, whereas in the matrix cage FBr elimination from  $CF_3OBr$  seems to be the dominant secondary step.

#### REFERENCES

- 1. S.M.Schauffler, L.E. Heidt, W.H. Pollock, T.M. Gilpin, J.F. Vedder, S. Solomon, R.A. Lueb, E.L. Atlas, Geophys. Res. Lett. 20, 2567 (1993).
- 2. H. Lorenzen-Schmidt, R. Weller, and O. Schrems, submitted to Ber. Bunsenges. Phys. Chem. (1994).
- 3. C.R. Park and J.R. Wiesenfeld, J. Chem. Phys. 95, 8166 (1991).
- 4. M.C. Addison, R.J. Donovan, J. Garraway, Farad. Disc. Chem. Soc. 67, 286 (1979).
- 5. H.M. Gillespie, J. Garraway, and R.J. Donovan, J. Photochem. 7, 29 (1977).
- 6. L. Andrews, M. Hawkins, R. Withnall, Inorg. Chem. 24, 4234 (1985).
- 7. J. Fournier, H.H. Mohamed, J. Deson, and D. Maillard, Chem. Phys. 70, 39 (1982).
- 8. H.H. Mohammed, J. Chem. Phys. 93, 412 (1990).
- 9. J.T. Herron, J. Phys. Chem. Ref. Data 17, 967 (1988).
- 10. R.R. Smardzewski and W.B. Fox, J. Phys. Chem. 79, 219 (1975).
- 11. J.C. Kuo, D.D. DesMarteau, W.G. Fateley, R.M. Hammaker, C.T. Marsden, J.D. Witt, J. Raman Spectrosc. 9, 230 (1980).
- 12. L. Schriver, O. Abdelaoui, and A. Schriver, J. Phys. Chem. 96, 8069 (1992).
- 13. G.K. Moortgat, and P. Warneck, Z. Naturforsch. 30a, 835 (1975).